植物生态学报 ›› 2010, Vol. 34 ›› Issue (11): 1294-1302.DOI: 10.3773/j.issn.1005-264x.2010.11.006
闫帮国1, 文维全2, 张健1,*(), 杨万勤1, 刘洋1, 黄旭1, 李泽波1
收稿日期:
2009-11-16
接受日期:
2010-08-14
出版日期:
2010-11-16
发布日期:
2010-10-31
通讯作者:
张健
作者简介:
(E-mail: sicauzhangjian@163.com)
YAN Bang-Guo1, WEN Wei-Quan2, ZHANG Jian1,*(), YANG Wan-Qin1, LIU Yang1, HUANG Xu1, LI Ze-Bo1
Received:
2009-11-16
Accepted:
2010-08-14
Online:
2010-11-16
Published:
2010-10-31
Contact:
ZHANG Jian
摘要:
为了阐明放牧干扰对川西亚高山区域植物群落的组合过程以及群落结构的影响, 研究了放牧干扰梯度下的功能群均匀度和群落谱系结构的变化趋势。结果显示: 在干扰较轻的阔叶林与针叶林样地, 部分样方的功能群均匀度显著高于无效模型, 随着干扰梯度的增强, 功能群均匀度呈线性下降, 样方平均值从0.930降至0.840, 其高于无效模型的次数也逐渐降低, 干扰程度较大的草甸中出现部分样方的功能群均匀度显著低于无效模型。随着干扰程度的增强, 群落的谱系结构指数也呈逐渐上升趋势, 净关联指数平均值由-0.634逐渐增加至2.360, 邻近类群指数由-0.158上升至2.179。草甸与低矮灌丛受干扰较为严重, 其大部分样方的谱系结构指数显著高于随机群落, 表明干扰群落的谱系结构呈聚集分布。功能群均匀度与谱系结构的变化趋势一致, 表明生境筛滤效应与种间竞争作用的平衡决定着群落的组合过程。干扰降低了竞争作用, 促进了少数耐干扰功能群的优势地位, 造成功能群均匀度下降, 同时通过生境筛滤作用, 使群落的谱系结构呈现出聚集分布; 而未干扰的群落中由于竞争作用的效应, 功能群均匀度较高, 谱系结构也更加分散。研究区域植物群落的功能群均匀度与物种丰富度呈负相关, 表明物种间特别是相似物种间的竞争限制了群落的物种多样性。研究结果说明, 生态位分化和物种间的相互竞争在物种共存与群落组合中具有重要作用。
闫帮国, 文维全, 张健, 杨万勤, 刘洋, 黄旭, 李泽波. 放牧干扰梯度下川西亚高山植物群落的组合机理. 植物生态学报, 2010, 34(11): 1294-1302. DOI: 10.3773/j.issn.1005-264x.2010.11.006
YAN Bang-Guo, WEN Wei-Quan, ZHANG Jian, YANG Wan-Qin, LIU Yang, HUANG Xu, LI Ze-Bo. Plant community assembly rules across a subalpine grazing gradient in western Sichuan, China. Chinese Journal of Plant Ecology, 2010, 34(11): 1294-1302. DOI: 10.3773/j.issn.1005-264x.2010.11.006
样地编号 Site No. | 植被类型 Vegetation type | 坡度 Gradient (°) | 坡向 Slope aspect | 郁闭度 Canopy density (%) | 优势木本植物 Dominance woody species |
---|---|---|---|---|---|
1 | 草甸 Meadow | 28 | 西偏北21° West by North 21° | 8 | 窄叶鲜卑花 Sibiraea angustata 金露梅 Potentilla fruticosa |
2 | 矮灌丛 Short shrub | 26 | 西偏北30° West by North 30° | 50 | 杯腺柳 Salix cupularis 鹧鸪杜鹃 Rhododendron zheguense |
3 | 灌丛 Shrub | 30 | 西偏北35° West by North 35° | 60 | 华西花楸 Sorbus wilsoniana 细枝绣线菊 Spiraea myrtilloides |
4 | 高大灌丛 Tall shrub | 30 | 西偏北42° West by North 42° | 75 | 华西花楸 Sorbus wilsoniana 越桔叶忍冬 Lonicera myrtillus 柳叶忍冬 L. lanceolata |
5 | 阔叶林 Deciduous forest | 28 | 西偏北30° West by North 30° | 70 | 红桦 Betula albo-sinensis 糙皮桦 B. utilis |
6 | 针叶林 Coniferous forest | 32 | 西偏北28° West by North 28° | 85 | 岷江冷杉 Abies faxoniana 大理杜鹃 R. taliense |
表1 研究样地概况
Table 1 Outline of research sites
样地编号 Site No. | 植被类型 Vegetation type | 坡度 Gradient (°) | 坡向 Slope aspect | 郁闭度 Canopy density (%) | 优势木本植物 Dominance woody species |
---|---|---|---|---|---|
1 | 草甸 Meadow | 28 | 西偏北21° West by North 21° | 8 | 窄叶鲜卑花 Sibiraea angustata 金露梅 Potentilla fruticosa |
2 | 矮灌丛 Short shrub | 26 | 西偏北30° West by North 30° | 50 | 杯腺柳 Salix cupularis 鹧鸪杜鹃 Rhododendron zheguense |
3 | 灌丛 Shrub | 30 | 西偏北35° West by North 35° | 60 | 华西花楸 Sorbus wilsoniana 细枝绣线菊 Spiraea myrtilloides |
4 | 高大灌丛 Tall shrub | 30 | 西偏北42° West by North 42° | 75 | 华西花楸 Sorbus wilsoniana 越桔叶忍冬 Lonicera myrtillus 柳叶忍冬 L. lanceolata |
5 | 阔叶林 Deciduous forest | 28 | 西偏北30° West by North 30° | 70 | 红桦 Betula albo-sinensis 糙皮桦 B. utilis |
6 | 针叶林 Coniferous forest | 32 | 西偏北28° West by North 28° | 85 | 岷江冷杉 Abies faxoniana 大理杜鹃 R. taliense |
图1 放牧干扰梯度上植物功能群均匀度的变化趋势。A, 各样地功能群均匀度Jp。B, 各样地小样方(50 cm × 50 cm)功能群均匀度Jsub。
Fig. 1 Functional group evenness changing along a grazing gradient. A, Functional group evenness index of plots Jp. B, Functional group evenness indexes of subplots (50 cm × 50 cm) Jsub.
样地 Site | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
样方 Plot | 1L | 1M | 1H | 2L | 2M | 2H | 3L | 3M | 3H | 4L | 4M | 4H | 5L | 5M | 5H | 6L | 6M | 6H |
物种丰富度 Species richness | 80 | 75 | 76 | 78 | 79 | 72 | 68 | 68 | 63 | 52 | 51 | 48 | 50 | 54 | 51 | 45 | 40 | 40 |
Rc | 945 | 957 | 913 | 991 | 990 | 989 | 905 | 683 | 818 | 390 | 297 | 455 | 516 | 228 | 418 | 324 | 240 | 248 |
Tc | 983 | 993 | 958 | 998 | 985 | 992 | 961 | 755 | 913 | 487 | 311 | 421 | 527 | 289 | 436 | 471 | 392 | 393 |
Jc | 55 | 27 | 4 | 71 | 38 | 33 | 25 | 19 | 888 | 763 | 778 | 812 | 959 | 950 | 994 | 877 | 995 | 990 |
表2 各样方随机群落中净关联指数(NRI)、邻近类群指数(NTI)和功能群均匀度(Jp)小于实际群落相关值的次数(总模拟次数999)
Table 2 The times of cases in which net relatedness index (NRI), nearest taxon index (NTI) and functional group evenness (Jp ) in random communities are lower than the observational communities (999 simulated replications).
样地 Site | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
样方 Plot | 1L | 1M | 1H | 2L | 2M | 2H | 3L | 3M | 3H | 4L | 4M | 4H | 5L | 5M | 5H | 6L | 6M | 6H |
物种丰富度 Species richness | 80 | 75 | 76 | 78 | 79 | 72 | 68 | 68 | 63 | 52 | 51 | 48 | 50 | 54 | 51 | 45 | 40 | 40 |
Rc | 945 | 957 | 913 | 991 | 990 | 989 | 905 | 683 | 818 | 390 | 297 | 455 | 516 | 228 | 418 | 324 | 240 | 248 |
Tc | 983 | 993 | 958 | 998 | 985 | 992 | 961 | 755 | 913 | 487 | 311 | 421 | 527 | 289 | 436 | 471 | 392 | 393 |
Jc | 55 | 27 | 4 | 71 | 38 | 33 | 25 | 19 | 888 | 763 | 778 | 812 | 959 | 950 | 994 | 877 | 995 | 990 |
图4 各主要功能群物种多样性在放牧梯度上的变化趋势(平均值±标准误差)。 BF, 基生叶阔叶杂草; BG, 丛生禾草; DW, 落叶木本; EF, 茎叶型阔叶杂草; EW, 常绿木本; FE, 蕨类; RG, 根茎禾草; SF, 半基生叶阔叶杂草。
Fig. 4 The trends of species richness of each functional group on sites across the grazing gradient (mean ± SE). BF, basal forbs; BG, bunch grasses; DW, deciduous woody plants; EF, erect leafy forbs; EW, evergreen woody plants; FE, ferns; RG, rhizome grasses; SF, semi-basal forbs.
[1] |
Bai Y, Han X, Wu J, Chen Z, Li L (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI URL PMID |
[2] |
Cadotte MW, Cardinale BJ, Oakley TH (2008). Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences of the United States of America, 105, 17012-17017.
URL PMID |
[3] |
Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009). Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE, 4, e5695.
DOI URL PMID |
[4] | Chen Y (陈英 ) (2009). Detecting effect of phylogenetic diversity on seedling mortality in an evergreen broad- leaved forest in China. Chinese Journal of Plant Ecology (植物生态学报), 33, 1084-1089. (in Chinese with English abstract) |
[5] | Cornelissen JHC, Lavorel S, Garnier E, Díaz SM, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[6] | Cornwell WK, Ackerly DD (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126. |
[7] |
Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065-1071.
DOI URL PMID |
[8] |
de Deyn GB, Cornelissen JH, Bardgett RD (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11, 516-531.
DOI URL PMID |
[9] | Díaz SD, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing―a global synthesis. Global Change Biology, 13, 313-341. |
[10] | Emerson BC, Gillespie RG (2008). Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology and Evolution, 23, 619-630. |
[11] |
Faith DP (2008). Threatened species and the potential loss of phylogenetic diversity: conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conservation Biology, 22, 1461-1470.
DOI URL PMID |
[12] |
Fargione J, Brown CS, Tilman D (2003). Community assembly and invasion: an experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences of the United States of America, 100, 8916-8920.
DOI URL PMID |
[13] |
Fargione J, Tilman D (2005). Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia, 143, 598-606
URL PMID |
[14] |
Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Proches S, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007). Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757-760.
DOI URL PMID |
[15] | Fornara DA, Tilman D (2008). Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 96, 314-322. |
[16] |
Fornara DA, Tilman D, Hobbie SE (2009). Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. Journal of Ecology, 97, 48-56.
DOI URL PMID |
[17] | Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, Grigulis K, Lavorel S, Ansquer P, Castro H, Cruz P, Doležal J, Eriksson O, Freitas H, Golodets C, Jouany C, Kigel J, Kleyer M, Lehsten V, Lepš J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quétier F, Robson M, Sternberg M, Theau JP, Thébault A, Zarovali M (2009). Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology, 90, 598-611. |
[18] |
Gilbert GS, Webb CO (2007). Phylogenetic signal in plant pathogen-host range. Proceedings of the National Academy of Sciences of the United States of America, 104, 4979-4983.
DOI URL PMID |
[19] |
Helmus MR, Keller WB, Paterson MJ, Yan ND, Cannon CH, Rusak JA (2009). Communities contain closely related species during ecosystem disturbance. Ecology Letters, 13, 162-174.
DOI URL PMID |
[20] | Holdaway RJ, Sparrow AD (2006). Assembly rules operating along a primary riverbed-grassland successional sequence. Journal of Ecology, 94, 1092-1102. |
[21] | Hubbell S (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, New Jersey, USA. |
[22] | Hubbell SP (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19, 166-172. |
[23] | Jiang YX (蒋有绪 ) (1981). Phytocenological role of forest floor in subalpine fir forests in western Sichuan Province. Acta Phytoecologia et Geobotanica Sinica (植物生态学与地植物学丛刊), 5, 89-98. (in Chinese with English abstract) |
[24] |
Kraft NJ, Valencia R, Ackerly DD (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
URL PMID |
[25] | Kunin WE (1998). Biodiversity at the edge: a test of the importance of spatial “mass effects” in the Rothamsted Park Grass experiments. Proceedings of the National Academy of Sciences of the United States of America, 95, 207-212. |
[26] | Ma KP (马克平), Liu YM (刘玉明 ) (1994). Measurement of biotic community diversity. I. α diversity (Part 2). Chinese Biodiversity (生物多样性), 2, 231-239. (in Chinese with English abstract) |
[27] | MacArthur R, Levins R (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385. |
[28] |
McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178-185.
URL PMID |
[29] | Meng TT (孟婷婷), Ni J (倪健), Wang GH (王国宏 ) (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 150-165. (in Chinese with English abstract) |
[30] | Mokany K, Ash J, Roxburgh S (2008). Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology, 96, 884-893. |
[31] |
Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Westoby M (2005). A brief history of seed size. Science, 307, 576-580.
URL PMID |
[32] |
Packer A, Clay K (2000). Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404, 278-281.
DOI URL PMID |
[33] |
Prinzing A, Reiffers R, Braakhekke WG, Hennekens SM, Tackenberg O, Ozinga WA, Schaminee JH, van Groenendael JM (2008). Less lineages―more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecology Letters, 11, 809-819.
DOI URL PMID |
[34] | R Development Core Team (2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Cited 26 Jun. 2009. |
[35] | Schamp B, Chau J, Aarssen L (2008). Dispersion of traits related to competitive ability in an old-field plant community. Journal of Ecology, 96, 204-212. |
[36] | Stubbs WJ, Wilson JB (2004). Evidence for limiting similarity in a sand dune community. Journal of Ecology, 92, 557-567. |
[37] | Suding KN, Lavorel S, ChapinIII FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas M-L (2008). Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology, 14, 1125-1140. |
[38] |
Valiente-Banuet A, Rumebe AV, Verdu M, Callaway RM (2006). Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. Proceedings of the National Academy of Sciences of the United States of America, 103, 16812-16817.
URL PMID |
[39] | Wang ZW (王正文), Xing F (邢福), Zhu TC (祝廷成), Li XC (李宪长 ) (2002). The responses of functional group composition and species diversity of Aneurolepidium chinensis grassland to flooding disturbance on Songnen Plain, Northeastern China. Acta Phytoecologica Sinica (植物生态学报), 26, 708-716. (in Chinese with English abstract) |
[40] |
Webb CO (2000). Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist, 156, 145-155.
DOI URL PMID |
[41] |
Webb CO, Ackerly DD, Kembel SW (2008). Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100.
URL PMID |
[42] |
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.
DOI URL |
[43] | Weiher E, Keddy P (1995). Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos, 74, 159-164. |
[44] | Wikstrom N, Savolainen V, Chase MW (2001). Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London, Series B: Biological Sciences, 268, 2211-2220 |
[45] |
Willis CG, Ruhfel B, Primack RB, Miller-Rushing AJ, Davis CC (2008). Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proceedings of the National Academy of Sciences of the United States of America, 105, 17029-17033.
URL PMID |
[46] | Wilson JB, Roxburgh SH (1994). A demonstration of guild-based assembly rules for a plant community, and determination of intrinsic guilds. Oikos, 69, 267-276. |
[1] | 董劭琼, 侯东杰, 曲孝云, 郭柯. 柴达木盆地植物群落样方数据集[J]. 植物生态学报, 2024, 48(4): 534-540. |
[2] | 肖兰, 董标, 张琳婷, 邓传远, 李霞, 姜德刚, 林勇明. 渤海无居民海岛主要植被类型群落特征[J]. 植物生态学报, 2024, 48(1): 127-134. |
[3] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[4] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[5] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[6] | 朱芩, 宁盼, 侯琳, 郝家田, 胡云云. 三江源地区刺柏属植物群落类型特征[J]. 植物生态学报, 2022, 46(1): 114-122. |
[7] | 张欢, 张云玲, 张彦才, 阎平. 新疆奇台荒漠类草地自然保护区主要植物群落及其特征[J]. 植物生态学报, 2021, 45(8): 918-924. |
[8] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[9] | 贺露炎, 侯满福, 唐伟, 刘雨婷, 赵俊. 滇东菌子山喀斯特森林的植被类型及其特征[J]. 植物生态学报, 2021, 45(12): 1380-1390. |
[10] | 于燕妹, 黄林娟, 薛跃规. 广西大石围天坑群不同植物群落的特征[J]. 植物生态学报, 2021, 45(1): 96-103. |
[11] | 郭柯, 方精云, 王国宏, 唐志尧, 谢宗强, 沈泽昊, 王仁卿, 强胜, 梁存柱, 达良俊, 于丹. 中国植被分类系统修订方案[J]. 植物生态学报, 2020, 44(2): 111-127. |
[12] | 方精云, 郭柯, 王国宏, 唐志尧, 谢宗强, 沈泽昊, 王仁卿, 强胜, 梁存柱, 达良俊, 于丹. 《中国植被志》的植被分类系统、植被类型划分及编排体系[J]. 植物生态学报, 2020, 44(2): 96-110. |
[13] | 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响[J]. 植物生态学报, 2020, 44(1): 33-43. |
[14] | 王玉冰,孙毅寒,丁威,张恩涛,李文怀,迟永刚,郑淑霞. 长期氮添加对典型草原植物多样性与初级生产力的影响及途径[J]. 植物生态学报, 2020, 44(1): 22-32. |
[15] | 唐丽丽, 杨彤, 刘鸿雁, 康慕谊, 王仁卿, 张峰, 高贤明, 岳明, 张梅, 郑璞帆, 石福臣. 华北地区荆条灌丛分布及物种多样性空间分异 规律[J]. 植物生态学报, 2019, 43(9): 825-833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19