植物生态学报 ›› 2019, Vol. 43 ›› Issue (6): 501-511.DOI: 10.17521/cjpe.2019.0041
所属专题: 植物功能性状
赵丹丹1,2,马红媛1,*(),李阳1,2,魏继平1,王志春1
收稿日期:
2019-02-25
修回日期:
2019-06-10
出版日期:
2019-06-20
发布日期:
2019-09-30
通讯作者:
马红媛
基金资助:
ZHAO Dan-Dan1,2,MA Hong-Yuan1,*(),LI Yang1,2,WEI Ji-Ping1,WANG Zhi-Chun1
Received:
2019-02-25
Revised:
2019-06-10
Online:
2019-06-20
Published:
2019-09-30
Contact:
MA Hong-Yuan
Supported by:
摘要:
研究水分和养分添加对植物功能性状的影响, 对于揭示植物对环境变化的响应和适应规律至关重要。该文采用盆栽试验的方法, 进行不同水平水分处理(增水50%, 减水50%, 以498 mm降水量作为对照)和养分添加(无养分添加, 单施氮肥, 单施磷肥, 氮磷共施), 研究羊草(Leymus chinensis)的10种功能性状和地上生物量对水分和养分添加的响应。得出以下结论: (1)双因素方差分析结果表明, 水分主效应对羊草株高、分蘖数、茎生物量、叶生物量、叶面积、叶质量、净光合速率、蒸腾速率、水分利用效率存在显著影响; 养分主效应对羊草分蘖数、茎生物量、净光合速率、蒸腾速率、水分利用效率存在显著影响; 水分和养分的交互作用对羊草分蘖数、茎生物量、蒸腾速率、水分利用效率存在显著影响。(2)各功能性状对降水量的响应在不同养分添加水平是不同的, 分蘖数和叶面积在单施氮肥和氮磷共施条件下随降水量增加而增加, 而在无养分添加和单施磷肥条件下无显著变化; 茎生物量在无养分添加、单施氮肥和单施磷肥条件下随降水量增加而增加, 而在氮磷共施条件下无增加趋势; 比叶面积在单施氮肥条件下增水处理显著低于对照组, 而在其他养分添加条件下无明显变化。(3)短期氮磷处理显著影响羊草叶片光合生理性状, 而对叶形态性状影响不显著。(4)羊草地上生物量随降水量的增加呈现上升趋势, 并且在单施氮肥条件下, 增水处理使地上生物量达到最高, 为522.55 g·m -2。总之, 羊草的功能性状对降水量增加表现出明显的响应, 响应格局在不同养分条件下不同, 反映了其对水肥环境变化的适应。
赵丹丹, 马红媛, 李阳, 魏继平, 王志春. 水分和养分添加对羊草功能性状和地上生物量的影响. 植物生态学报, 2019, 43(6): 501-511. DOI: 10.17521/cjpe.2019.0041
ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis. Chinese Journal of Plant Ecology, 2019, 43(6): 501-511. DOI: 10.17521/cjpe.2019.0041
因素 Factor | d.f. | H | T | SB | LB | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |||
生长特性 Growth feature | 水分 Water (W) | 2 | 27.819 | <0.001 | 18.582 | <0.001 | 23.314 | <0.001 | 25.679 | <0.001 |
施肥 Fertilization (F) | 3 | 2.307 | ns | 3.436 | <0.05 | 3.600 | <0.05 | 2.533 | ns | |
水肥交互 W × F | 6 | 1.796 | ns | 2.925 | <0.05 | 5.637 | <0.01 | 2.372 | ns | |
LA | LM | SLA | ||||||||
F | p | F | p | F | p | |||||
形态性状 Morphological trait | 水分 W | 2 | 10.384 | <0.01 | 6.842 | <0.01 | 0.846 | ns | ||
施肥 F | 3 | 1.416 | ns | 1.422 | ns | 2.991 | ns | |||
水肥交互 W × F | 6 | 0.610 | ns | 1.424 | ns | 1.528 | ns | |||
Pn | Tr | WUE | ||||||||
F | p | F | p | F | p | |||||
生理性状 Physiological trait | 水分 W | 2 | 115.990 | <0.001 | 86.229 | <0.001 | 105.150 | <0.001 | ||
施肥 F | 3 | 6.948 | <0.001 | 5.325 | <0.01 | 3.972 | <0.05 | |||
水肥交互 W × F | 6 | 1.750 | ns | 5.608 | <0.001 | 4.828 | <0.001 |
表1 水处理、施肥处理及其交互作用对羊草功能性状影响的双因素方差分析
Table 1 Results of two-way ANOVAs for the effects of water treatments, fertilization treatment and their interactions on functional traits of Leymus chinensis
因素 Factor | d.f. | H | T | SB | LB | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |||
生长特性 Growth feature | 水分 Water (W) | 2 | 27.819 | <0.001 | 18.582 | <0.001 | 23.314 | <0.001 | 25.679 | <0.001 |
施肥 Fertilization (F) | 3 | 2.307 | ns | 3.436 | <0.05 | 3.600 | <0.05 | 2.533 | ns | |
水肥交互 W × F | 6 | 1.796 | ns | 2.925 | <0.05 | 5.637 | <0.01 | 2.372 | ns | |
LA | LM | SLA | ||||||||
F | p | F | p | F | p | |||||
形态性状 Morphological trait | 水分 W | 2 | 10.384 | <0.01 | 6.842 | <0.01 | 0.846 | ns | ||
施肥 F | 3 | 1.416 | ns | 1.422 | ns | 2.991 | ns | |||
水肥交互 W × F | 6 | 0.610 | ns | 1.424 | ns | 1.528 | ns | |||
Pn | Tr | WUE | ||||||||
F | p | F | p | F | p | |||||
生理性状 Physiological trait | 水分 W | 2 | 115.990 | <0.001 | 86.229 | <0.001 | 105.150 | <0.001 | ||
施肥 F | 3 | 6.948 | <0.001 | 5.325 | <0.01 | 3.972 | <0.05 | |||
水肥交互 W × F | 6 | 1.750 | ns | 5.608 | <0.001 | 4.828 | <0.001 |
图1 水肥添加对羊草株高和分蘖的影响(平均值±标准误差)。CK, 对照; NA, 氮添加; PA, 磷添加; N+P, 氮、磷共同添加; LW、MW、HW分别表示低、中、高降水量水平。不同小写字母表示在相同施肥水平下, 不同水分添加处理间差异显著(p < 0.05); ns表示水分处理间差异不显著(p > 0.05)。
Fig. 1 Effects of fertilization and water on height and tillers of Leymus chinensis (mean ± SE). CK, control; NA, N addition; PA, P addition; N+P, N and P additions; LW, MW, HW represent low, moderate and high precipitation levels. Different lowercase letters indicate significant difference (p < 0.05) among different water treatments at the same fertilizer addition, and ns indicates non-significant differences (p > 0.05) among water treatments.
图2 水肥添加对羊草茎叶生物量分配的影响(平均值±标准误差)。CK, 对照; NA, 氮添加; PA, 磷添加; N+P, 氮、磷共同添加; LW、MW、HW分别表示低、中、高降水量水平。不同小写字母表示在相同施肥水平下, 不同水分添加处理间差异显著(p < 0.05); ns表示水分处理间差异不显著(p > 0.05)。
Fig. 2 Effects of fertilization and water on biomass allocation of Leymus chinensis (mean ± SE). CK, control; NA, N addition; PA, P addition; N+P, N and P additions; LW, MW, HW represent low, moderate and high precipitation levels. Different lowercase letters indicate significant difference (p < 0.05) among different water treatments at the same fertilizer addition, and ns indicates non-significant differences (p > 0.05) among water treatments.
图3 水肥添加对羊草叶片形态性状的影响(平均值±标准误差)。CK, 对照; NA, 氮添加; PA, 磷添加; N+P, 氮、磷共同添加; LW、MW、HW分别表示低、中、高降水量水平。不同小写字母表示在相同施肥水平下, 不同水分添加处理间差异显著(p < 0.05); ns表示水分处理间差异不显著(p > 0.05)。
Fig. 3 Effects of fertilization and water on morphological traits of Leymus chinensis (mean ± SE). LA, leaf area; SLA, specific leaf area. CK, control; NA, N addition; PA, P addition; N+P, N and P additions; LW, MW, HW represent low, moderate and high precipitation levels. Different lowercase letters indicate significant difference (p < 0.05) among different water treatments at the same fertilizer addition, and ns indicates non-significant differences (p > 0.05) among water treatments.
图4 水肥添加对羊草叶片生理性状的影响(平均值±标准误差)。CK, 对照; NA, 氮添加; PA, 磷添加; N+P, 氮、磷共同添加; LW、MW、HW分别表示低、中、高降水量水平。不同小写字母表示在相同施肥水平下, 不同水分添加处理间差异显著(p < 0.05); ns表示水分处理间差异不显著(p > 0.05)。
Fig. 4 Effects of fertilization and water on photosynthetic traits of Leymus chinensis (mean ± SE). Pn, net photosynthesis rate; WUE, water use efficiency. CK, control; NA, N addition; PA, P addition; N+P, N and P additions; LW, MW, HW represent low, moderate and high precipitation levels. Different lowercase letters indicate significant difference (p < 0.05) among different water treatments at the same fertilizer addition, and ns indicates non-significant differences (p > 0.05) among water treatments.
图5 水肥添加对羊草地上生物量的影响(平均值±标准误差)。CK, 对照; NA, 氮添加; PA, 磷添加; N+P, 氮、磷共同添加; LW、MW、HW分别表示低、中、高降水量水平。不同小写字母表示在相同施肥水平下, 不同水分添加处理间差异显著(p < 0.05); ns表示水分处理间差异不显著(p > 0.05)。
Fig. 5 Effects of fertilization and water on above-ground biomass of Leymus chinensis (mean ± SE). CK, control; NA, N addition; PA, P addition; N+P, N and P additions; LW, MW, HW represent low, moderate and high precipitation levels. Different lowercase letters indicate significant difference (p < 0.05) among different water treatments at the same fertilizer addition, and ns indicates non-significant differences (p > 0.05) among water treatments.
[1] | Bai X, Cheng JH, Zheng SX, Zhan SX, Bai YF (2014). Ecophysiological responses of Leymus chinensis to nitrogen and phosphorus additions in a typical steppe. Chinese Journal of Plant Ecology, 38, 103-115. |
[ 白雪, 程军回, 郑淑霞, 詹书侠, 白永飞 (2014). 典型草原建群种羊草对氮磷添加的生理生态响应. 植物生态学报, 38, 103-115.] | |
[2] | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia Grasslands. Global Change Biology, 16, 358-372. |
[3] | Balachowski JA, Volaire FA (2018). Implications of plant functional traits and drought survival strategies for ecological restoration. Journal of Applied Ecology, 55, 631-640. |
[4] | Barker DH, Vanier C, Namburg E, Charlet TN, Nielsen KM, Newingham BA, Smith SD (2005). Enhanced monsoon precipitation and nitrogen deposition affect leaf traits and photosynthesis differently in spring and summer in the desert shrub Larrea tridentate. New Phytologist, 169, 799-808. |
[5] | Behera SK, Panda RK (2009). Integrated management of irrigation water and fertilizers for wheat crop using field experiments and simulation modeling. Agricultural Water Management, 96, 1532-1540. |
[6] | Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, de Vries W (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30-59. |
[7] | Buckley H, Young CA, Charlton ND, Hendricks WQ, Haley B, Nagabhyru P, Rudgers JA (2019). Leaf endophytes mediate fertilizer effects on plant yield and traits in northern oat grass (Trisetum spicatum). Plant and Soil, 434, 425-440. |
[8] | Chen SP, Bai YF, Zhang LX, Han XG (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 53, 65-75. |
[9] | Díaz S, Lavorel S, Mcintyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing—A global synthesis. Global Change Biology, 13, 313-341. |
[10] | Djaman K, Mel VC, Diop L, Sow A, EI-Namaky R, Manneh B, Satio K, Futakuchi K, Irmak S (2018). Effects of alternate wetting and drying irrigation regime and nitrogen fertilizer on yield and nitrogen use efficiency of irrigated rice in the Sahel. Water, 10, 711. DOI: 10.3390/w10060711. |
[11] | Faucon MP, Houben D, Lambers H (2017). Plant functional traits: Soil and ecosystem services. Trends in Plant Science, 22, 385-394. |
[12] | Fonseca CR, Overton JM, Collins B, Westoby M (2000). Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964-977. |
[13] | Forrestel EJ, Donoghue MJ, Edwards EJ, Jetz W, du Toit JCO, Smith MD (2017). Different clades and traits yield similar grassland functional responses. Proceedings of the National Academy of Sciences of the United States of America, 114, 705-710. |
[14] | Gao R, Yang X, Liu G, Huang Z, Walck JL (2015). Effects of rainfall pattern on the growth and fecundity of a dominant dune annual in a semi-arid ecosystem. Plant and Soil, 389, 335-347. |
[15] | Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neil C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637. |
[16] | Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266. |
[17] | Hu ZM, Yu GR, Fan JW, Zhong HP, Wang SQ, Li SG (2010). Precipitation-use efficiency along a 4500-km grassland transect. Global Ecology and Biogeography, 19, 842-851. |
[18] | Huang JY, Xu P, Yu HL, Yuan ZY, Li LH (2012). Responses of biomass, nutrient allocation of Leymus chinensis along N, P and water gradients. Pratacultural Science, 29, 1589-1595. |
[ 黄菊莹, 徐鹏, 余海龙, 袁志友, 李凌浩 (2012). 羊草生物量和养分分配对养分和水分添加的响应. 草业科学, 29, 1589-1595.] | |
[19] | Huang JY, Yuan ZY, Li LH (2009). Changes in [N], [P] and specific leaf area of green leaves of Leymus chinensis along nitrogen, phosphorus and water gradients. Chinese Journal of Plant Ecology, 33, 442-448. |
[ 黄菊莹, 袁志友, 李凌浩 (2009). 羊草绿叶氮、磷浓度和比叶面积沿氮、磷和水分梯度的变化. 植物生态学报, 33, 442-448.] | |
[20] | Jan R, Aga FA, Bahar FA, Singh T, Lone R (2018). Effect of nitrogen and silicon on growth and yield attributes of transplanted rice (Oryza sativa L.) under Kashmir conditions. Journal of Pharmacognosy and Phytochemistry, 7, 328-332. |
[21] | Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornrlissen JHC, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun IF, Ståhl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng HC, Zimmermann JK, Zimmermann NE, Westoby M (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207. |
[22] | Lavorel S, Grigulis K, Lamarque P (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 99, 135-147. |
[23] | LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379. |
[24] | Li DJ, Mo JM, Fang YT, Cai XA, Xue JH, Xu GL (2004). Effects of simulated nitrogen deposition on growth and photosynthesis of Schima superba, Castanopsis chinensis and Cryptocarya concinna seedlings. Acta Ecologica Sinica, 2004,24, 876-882. |
[ 李德军, 莫江明, 方运霆, 蔡锡安, 薛璟花, 徐国良 (2004). 模拟氮沉降对三种南亚热带树苗生长和光合作用的影响. 生态学报, 24, 876-882.] | |
[25] | Li J, Liu ZS, Xue XQ, Yu XG, Zhang B, Yue YT (2015). Study of rainfall characteristics and pattern in Changchun city. China Water & Wastewater, 31, 100-104. |
[ 李晶, 刘志生, 薛喜权, 于相国, 张波, 岳奕彤 (2015). 长春市降雨特征及雨型分析研究. 中国给水排水, 31, 100-104.] | |
[26] | Li KF, Zhang FC, Qi YL, Xing YY, Li ZJ (2010). Effects of water-fertilizer spatial coupling in root zone on winter wheat growth and yield. Chinese Journal of Applied Ecology, 21, 3154-3160. |
[ 李开峰, 张富仓, 祁有玲, 邢英英, 李志军 (2010). 根区水肥空间耦合对冬小麦生长及产量的影响. 应用生态学报, 21, 3154-3160.] | |
[27] | Li SX, Li SQ, Gao YJ, Wang XQ, He HX, Du JJ (1994). The mechanism and effects of N fertilization in increasing water use efficiency. Agricultural Research in the Arid Areas, 12, 38-46. |
[ 李生秀, 李世清, 高亚军, 王喜庆, 贺海香, 杜建军 (1994). 施用氮肥对提高旱地作物利用土壤水分的作用机理和效果. 干旱地区农业研究, 12, 38-46.] | |
[28] | Li XF (2011). Effects of Water and Fertilizer Cooperation on the Growth Nutrient Absorption and Root Activity of Summer Maize. Master degree dissertation, Hebei Agricultural University, Baoding, Hebei. |
[ 李秀芳 (2011). 水肥互作对夏玉米生长与养分吸收及根系活性的影响. 硕士学位论文, 河北农业大学, 河北保定.] | |
[29] | Li YH (1993). Grazing dynamics of the species diversity in Aneurolepidium chinense steppe and Stipa grandis steppe. Acta Botanica Sinica, 35, 877-884. |
[ 李永宏 (1993). 放牧影响下羊草草原和大针茅草原植物多样性的变化. 植物学报, 35, 877-884.] | |
[30] | Liu GS, Li XF (2011). Study on Germplasm Resources of Leymus chinensis. Science Press, Beijing. |
[ 刘公社, 李晓峰 (2011). 羊草种质资源研究. 科学出版社, 北京.] | |
[31] | Liu XJ, Ma KP (2015). Plant functional traits-concepts, applications and future directions. Scientia Sinica Vitae, 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[32] | Lü XT, Reed S, Yu Q, He NP, Wang ZW, Han XG (2013). Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Global Change Biology, 19, 2775-2784. |
[33] | Lü XT, Reed SC, Yu Q, Han XG (2016). Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions. Plant and Soil, 398, 111-120. |
[34] | Ma HY, Yang HY, Liang ZW, Ooi MKJ (2015). Effects of 10-year management regimes on the soil seed bank in saline- alkaline grassland. PLOS ONE, 10, e0122319. DOI: 10.1371/ journal.pone.0122319. |
[35] | Meng FC, Zhang JH, Yao FM (2014). Interactive effects of elevated CO2 concentration and increasing precipitation on yield and growth development in maize. Chinese Journal of Plant Ecology, 38, 1064-1073. |
[ 孟凡超, 张佳华, 姚凤梅 (2014). CO2浓度升高和降水增加协同作用对玉米产量及生长发育的影响. 植物生态学报, 38, 1064-1073.] | |
[36] | Mokany K, Ash J, Roxburgh S (2010). Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology, 96, 884-893. |
[37] | Moor H, Hylander K, Norberg J (2015). Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits. Ambio, 44, 113-126. |
[38] | Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y, Williams DG, Heisler-White J, Dijkstra FA, West M (2011). C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 476, 202-205. |
[39] | Osborne CP, Charles-Dominique T, Stevens N, Bond WJ, Midgley G, Lehmann CER (2018). Human impacts in African savannas are mediated by plant functional traits. New Phytologist, 220, 10-24. |
[40] | Poorter L, Rozendaal DMA (2008). Leaf size and leaf display of thirty-eight tropical tree species. Oecologia, 158, 35-46. |
[41] | Rao LE, Allen EB (2010). Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts. Oecologia, 162, 1035-1046. |
[42] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[43] | Rosbakh S, Römermann C, Poschlod P (2015). Specific leaf area correlates with temperature: New evidence of trait variation at the population, species and community levels. Alpine Botany, 125, 79-86. |
[44] | Shipley B (2006). Net assimilation rate, specific leaf area and leaf mass ratio: Which is most closely correlated with relative growth rate? A meta-analysis. Functional Ecology, 20, 565-574. |
[45] | Song YT, Li Q, Wang P, Zhou DW, Wu yunna (2016). Response of Leymus chinensis functional traits and aboveground biomass to nitrogen addition in Songnen grassland in northeast China. Pratacultural Science, 33, 1383-1390. |
[ 宋彦涛, 李强, 王平, 周道玮, 乌云娜 (2016). 羊草功能性状和地上生物量对氮素添加的响应. 草业科学, 33, 1383-1390.] | |
[46] | Swenson NG, Enquist BJ (2007). Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community-wide variation across latitude and elevation. American Journal of Botany, 94, 451-459. |
[47] | Violle C, Navas ML, Vile D, Kazakou E, Fortunerl C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[48] | Wan HW, Yang Y, Bai SQ, Xu YH, Bai YF (2008). Variations in leaf functional traits of six species along a nitrogen addition gradient in Leymus chinensis steppe in Inner Mongolia. Journal of Plant Ecology (Chinese Version), 32, 611-621. |
[ 万宏伟, 杨阳, 白世勤, 徐云虎, 白永飞 (2008). 羊草草原群落6种植物叶片功能特性对氮素添加的响应. 植物生态学报, 32, 611-621.] | |
[49] | Wang DS (1999). Synergistic Effect and Coupling Model of Fertilizer and Water in Dryland Farmland. China Meteorological Press, Beijing. |
[ 汪徳水 (1999). 旱地农田肥水协同效应与耦合模式. 气象出版社, 北京.] | |
[50] | Wang S (2008). Effect of N Rates on Growth of Summer Maize and Drought Threshold under Different Drought Levels. Master degree dissertation, Huazhong Agricultural University, Wuhan. |
[ 王双 (2008), 干旱条件下施氮水平对夏玉米生长及干旱阈值的影响. 硕士学位论文, 华中农业大学, 武汉.] | |
[51] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Dsada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet G, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[52] | Xu XX, Chen GL, Mu XM (1995). The coordinative effect of moisture and fertilizer upon spring wheat yields. Agricultural Research in the Arid Areas, 13, 34-38. |
[ 徐学选, 陈国良, 穆兴民 (1995). 水肥对春小麦产量的效应研究. 干旱地区农业研究, 13, 34-38.] | |
[53] | Xu ZZ, Zhou GS (2005). Effects of soil moisture on growth characteristics of Leymus chinensis seedlings under different temperature conditions. Chinese Journal of Ecology, 24, 256-260. |
[ 许振柱, 周广胜 (2005). 不同温度条件下土壤水分对羊草幼苗生长特性的影响. 生态学杂志, 24, 256-260.] | |
[54] | Xu ZZ, Zhou GS (2006). Nitrogen metabolism and photosynthesis in Leymus chinensis in response to long-term soil drought. Journal of Plant Growth Regulation, 25, 252-266. |
[55] | Yang X, Li J, Zhao T, Mo L, Zhang J, Ren H, Zhao N, Gao Y (2019). Variation and heritability of morphological and physiological traits among Leymus chinensis genotypes under different environmental conditions. Journal of Arid Land, 11, 66-74. |
[56] | Yang Y, Fang J, Ma W, Wang W (2008). Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophysical Research Letters, 35, L23710. DOI: 10.1029/2008GL035408. |
[57] | Yi J, Li QF, Gu AL, Men ZH, He WX (2001). Advances on biology characteristics the rhizomatous grasses. Journal of Arid Land Resources and Environment, 15(S1), 1-16. |
[ 易津, 李青丰, 谷安琳, 门中华, 何文兴 (2001). 根茎类禾草生物学特性研究进展. 干旱区资源与环境, 15(S1), 1-16.] | |
[58] | Yue X, Zuo X, Yu Q, Xu C, Lv P, Zhang J, Knapp AK, Smith MD (2019). Response of plant functional traits of Leymus chinensis to extreme drought in Inner Mongolia grasslands. Plant Ecology, 220, 141-149. |
[59] | Zeng XP, Zhao P, Cai XA, Sun GC, Peng SL (2004). Physioecological characteristics of Woonyoungia septentrionalis seedlings under various soil water conditions. Chinese Journal of Ecology, 23(2), 26-31. |
[ 曾小平, 赵平, 蔡锡安, 孙谷畴, 彭少麟 (2004). 不同土壤水分条件下焕镛木幼苗的生理生态特性. 生态学杂志, 23(2), 26-31.] | |
[60] | Zhang GT, Wang KX, Wang LX, Wang Y (2007). Couple effect of the soil water and fertility in sustainable agriculture in Liaoning. Journal of Anhui Agricultural Sciences, 35, 7531-7555. |
[ 张广涛, 汪可欣, 王丽学, 王宇 (2007). 水肥耦合技术在辽宁地区农业可持续发展中的应用分析. 安徽农业科学, 35, 7531-7555.] | |
[61] | Zhang HX, Gao YZ, Tasisa BY, Baskin JM, Baskin CC, Lü XT, Zhou DW (2019). Divergent responses to water and nitrogen addition of three perennial bunchgrass species from variously degraded typical steppe in Inner Mongolia. Science of the Total Environment, 647, 1344-1350. |
[62] | Zhang ZN, Wu GL, Wang D, Deng L, Hao HM, Yang Z, Shangguan ZP (2014). Plant community structure and soil moisture in the semi-arid natural grassland of the Loess Plateau. Acta Prataculturae Sinica, 23, 313-319. |
[ 张志南, 武高林, 王冬, 邓蕾, 郝红敏, 杨政, 上官周平 (2014). 黄土高原半干旱区天然草地群落结构与土壤水分关系. 草业学报, 23, 313-319.] | |
[63] | Zhao XF, Xu HL, Zhang P, Tu WX, Zhang QQ (2014). Effects of nutrient and water additions on plant community structure and species diversity in desert grasslands. Chinese Journal of Plant Ecology, 38, 167-177. |
[ 赵新风, 许海量, 张鹏, 涂文霞, 张青青 (2014). 养分和水分添加对荒漠草地植物群落结构和物种多样性的影响. 植物生态学报, 38, 167-177.] | |
[64] | Zhou P, Geng Y, Ma WH, He JS (2010). Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China. Chinese Journal of Plant Ecology, 34, 7-16. |
[ 周鹏, 耿燕, 马文红, 贺金生 (2010). 温带草地主要优势植物不同器官间功能性状的关联. 植物生态学报, 34, 7-16.] | |
[65] | Zhu JT, Li XY, Zhang XM, Zeng FJ, Yang SG (2010). Leaf functional traits of Ceratoides latens in northern slope of Kunlun Mountain and its regional difference with the altitude. Journal of Desert Research, 30, 1325-1330. |
[ 朱军涛, 李向义, 张希明, 曾凡江, 杨尚功 (2010). 昆仑山北坡驼绒藜叶片功能性状及其海拔差异性. 中国沙漠, 30, 1325-1330.] | |
[66] | Zhu TC (2004). Bioecology of Leymus chinensis. Jilin Science and Technology Press, Changchun. |
[ 祝廷成 (2004). 羊草生物生态学. 吉林科学技术出版社, 长春.] |
[1] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[2] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[3] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[4] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[5] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[6] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[7] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[8] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[9] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[10] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[11] | 黄侩侩, 胡刚, 庞庆玲, 张贝, 何业涌, 胡聪, 徐超昊, 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[12] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[13] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[14] | 任金培, 李俊鹏, 王卫锋, 代永欣, 王林. 八个树种叶水力性状对水分条件的响应及其驱动因素[J]. 植物生态学报, 2021, 45(9): 942-951. |
[15] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19