植物生态学报 ›› 2005, Vol. 29 ›› Issue (4): 523-529.DOI: 10.17521/cjpe.2005.0070
所属专题: 生物多样性
• 论文 • 下一篇
收稿日期:
2004-08-30
接受日期:
2005-03-15
出版日期:
2005-08-30
发布日期:
2005-07-31
作者简介:
E-mail: jiangxl@lzu.edu.cn
基金资助:
JIANG Xiao-Lei1(), ZHANG Wei-Guo1, DUAN Zheng-Hu2
Received:
2004-08-30
Accepted:
2005-03-15
Online:
2005-08-30
Published:
2005-07-31
摘要:
许多有关物种多样性-生态系统功能关系的观察、理论和实验研究都表明, 在局域尺度范围内, 植物种多样性对生态系统生产力存在正效应。 然而, 对于促成这种关系的潜在生态学机制却缺乏足够的了解。 该实验利用9种一年生栽培牧草, 采用各物种单播及混播的方法, 构建不同多样性梯度的实验群落, 对物种多样性与生态系统生产力的关系及资源互补效应对系统生产力的影响进行了研究。 结果表明, 在一年生植物群落内,植物种多样性在一定程度内对系统生产力存在正效应, 物种多样性与生产力呈二次函数关系, 关系式为y = -98.449x2 + 1 039.2 x - 42.407, (R2 = 0.423 1)。 各物种在资源利用、生长速度和竞争能力等功能特征方面存在较大差异, 最高产物种和最低产物种间产量相差5.8倍。 在同一多样性梯度内, 不同物种组合的群落间生产力和互补效应也存在较大差异, 说明物种的成分对生态系统生产力也有重要影响。 同时,在混播群落中程度不同地存在着资源的互补性利用, 说明物种多样性对系统生产力有增强作用, 但相关分析表明, 互补效应和物种多样性间不存在显著相关关系。互补效应的4种计算方法所反映的资源互补程度有所不同, 每种方法各有利弊, 在对系统的多样性效应作用机制进行评价时, 应根据具体情况, 同时采用几种方法, 以利于对资源互补效应做出恰当的估测。
江小雷, 张卫国, 段争虎. 资源互补效应对多样性-生产力关系的影响. 植物生态学报, 2005, 29(4): 523-529. DOI: 10.17521/cjpe.2005.0070
JIANG Xiao-Lei, ZHANG Wei-Guo, DUAN Zheng-Hu. EFFECTS OF COMPLEMENTARITY ON DIVERSITY-PRODUCTIVITY RELATIONSHIP. Chinese Journal of Plant Ecology, 2005, 29(4): 523-529. DOI: 10.17521/cjpe.2005.0070
图1 物种成分对生产力的影响 Y:燕麦Avena sativa D:多花黑麦草Lolium multiflorum H:湖南稷子Echinochloc crusgalli var. frumentacea S:苏丹草Sorghum sudanense G:高丹草Sorghum vulgare×S. sudanense C:草木樨Melilotus alba J:箭筈豌豆Vicia sativa M:毛苕子Vicia villosa Z:籽粒苋Amaranthus hypochondriacus
Fig.1 Effects of species composition on productivity
处理 Treatment | 种数 No. of species | Relative yield | RYTs | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Y | D | H | S | G | C | J | M | Z | |||
MY | 2 | 2.26±0.24 | 0.27±0.05 | 1.41±0.16 | |||||||
GD | 2 | 1.72±0.41 | 0.26±0.11 | 0.99±0.04 | |||||||
YHS | 3 | 3.33±0.37 | 0.45±0.17 | 0.51±0.10 | 1.43±0.13 | ||||||
MYH | 3 | 3.13±0.37 | 0.57±0.13 | 1.25±0.15 | 1.65±0.21 | ||||||
YSDH | 4 | 3.89±0.48 | 1.31±0.14 | 0.45±0.08 | 0.15±0.02 | 1.45±0.05 | |||||
ZGJH | 4 | 1.92±0.18 | 2.63±0.24 | 0.66±0.17 | 0.88±0.19 | 1.52±0.13 | |||||
CJYMZ | 5 | 5.79±1.73 | 0.66±0.15 | 0.71±0.18 | 0.43±0.09 | 0.86±0.19 | 1.69±0.16 | ||||
ZGMSC | 5 | 1.74±0.17 | 3.58±0.38 | 0.69±0.13 | 1.24±0.19 | 0.69±0.12 | 1.59±0.14 | ||||
CMHYSZ | 6 | 5.45±1.28 | 0.48±0.05 | 0.39±0.04 | 0.87±0.19 | 0.59±0.11 | 0.56±0.10 | 1.39±0.16 | |||
CJSHDYZ | 7 | 4.96±0.72 | 0.91±0.17 | 0.66±0.08 | 0.23±0.06 | 1.22±0.16 | 0.73±0.18 | 0.39±0.05 | 1.14±0.13 | ||
ZCMDHGYS | 8 | 5.34±1.31 | 0.69±0.12 | 0.54±0.12 | 0.26±0.03 | 0.40±0.13 | 0.96±0.07 | 0.68±0.13 | 0.79±0.18 | 1.07±0.61 | |
ZCJMDHGYS | 9 | 5.21±1.09 | 0.94±0.13 | 0.76±0.23 | 0.22±0.07 | 0.51±0.11 | 0.67±0.12 | 0.81±0.17 | 0.79±0.15 | 0.31±0.07 | 1.13±0.29 |
表1 混播群落中各物种相对产量(RY)及群落相对产量总和(RYTs)
Table 1 Relative yields (RY) of each species in mixtures and relative yield totals (RYTs) for those mixtures (mean±1SE, n=3)
处理 Treatment | 种数 No. of species | Relative yield | RYTs | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Y | D | H | S | G | C | J | M | Z | |||
MY | 2 | 2.26±0.24 | 0.27±0.05 | 1.41±0.16 | |||||||
GD | 2 | 1.72±0.41 | 0.26±0.11 | 0.99±0.04 | |||||||
YHS | 3 | 3.33±0.37 | 0.45±0.17 | 0.51±0.10 | 1.43±0.13 | ||||||
MYH | 3 | 3.13±0.37 | 0.57±0.13 | 1.25±0.15 | 1.65±0.21 | ||||||
YSDH | 4 | 3.89±0.48 | 1.31±0.14 | 0.45±0.08 | 0.15±0.02 | 1.45±0.05 | |||||
ZGJH | 4 | 1.92±0.18 | 2.63±0.24 | 0.66±0.17 | 0.88±0.19 | 1.52±0.13 | |||||
CJYMZ | 5 | 5.79±1.73 | 0.66±0.15 | 0.71±0.18 | 0.43±0.09 | 0.86±0.19 | 1.69±0.16 | ||||
ZGMSC | 5 | 1.74±0.17 | 3.58±0.38 | 0.69±0.13 | 1.24±0.19 | 0.69±0.12 | 1.59±0.14 | ||||
CMHYSZ | 6 | 5.45±1.28 | 0.48±0.05 | 0.39±0.04 | 0.87±0.19 | 0.59±0.11 | 0.56±0.10 | 1.39±0.16 | |||
CJSHDYZ | 7 | 4.96±0.72 | 0.91±0.17 | 0.66±0.08 | 0.23±0.06 | 1.22±0.16 | 0.73±0.18 | 0.39±0.05 | 1.14±0.13 | ||
ZCMDHGYS | 8 | 5.34±1.31 | 0.69±0.12 | 0.54±0.12 | 0.26±0.03 | 0.40±0.13 | 0.96±0.07 | 0.68±0.13 | 0.79±0.18 | 1.07±0.61 | |
ZCJMDHGYS | 9 | 5.21±1.09 | 0.94±0.13 | 0.76±0.23 | 0.22±0.07 | 0.51±0.11 | 0.67±0.12 | 0.81±0.17 | 0.79±0.15 | 0.31±0.07 | 1.13±0.29 |
处理 Treatment | 种数 No. of species | Di | D | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Y | D | H | S | G | C | J | M | Z | |||
MY | 2 | 1.03±0.06 | -0.27±0.05 | 0.38±0.07 | |||||||
GD | 2 | -0.76±0.15 | 0.91±0.19 | 0.07±0.01 | |||||||
YHS | 3 | 2.33±0.19 | -0.57±0.07 | -0.47±0.10 | 0.43±0.04 | ||||||
MYH | 3 | 2.23±0.21 | -0.43±0.08 | 0.45±0.04 | 0.7±0.14 | ||||||
YSDH | 4 | 2.89±0.31 | 0.31±0.03 | -0.55±0.09 | -0.85±0.17 | 0.4±0.06 | |||||
ZGJH | 4 | 0.92±0.18 | 1.63±0.18 | -0.34±0.05 | 0.05±0.03 | 0.5±0.03 | |||||
CJYMZ | 5 | 4.39±0.45 | -0.34±0.06 | -0.28±0.04 | -0.57±0.18 | -0.16±0.01 | 0.6±0.19 | ||||
ZGMSC | 5 | 0.44±0.07 | 2.01±0.71 | -0.31±0.03 | 0.24±0.01 | -0.31±0.02 | 0.4±0.08 | ||||
CMHYSZ | 6 | 4.45±0.51 | -0.52±0.05 | -0.61±0.13 | -0.13±0.03 | -0.41±0.18 | -0.44±0.15 | 0.39±0.06 | |||
CJSHDYZ | 7 | 4.66±0.77 | -0.09±0.03 | -0.34±0.13 | -0.77±0.17 | 0.23±0.04 | -0.26±0.06 | -0.61±0.18 | 0.40±0.13 | ||
ZCMDHGYS | 8 | 5.17±1.58 | -0.31±0.11 | -0.45±0.07 | -0.73±0.17 | -0.59±0.15 | 0.39±0.08 | -0.32±0.07 | -0.21±0.08 | 0.37±0.09 | |
ZCJMDHGYS | 9 | 5.62±1.23 | 0.02±0.08 | -0.24±0.06 | -0.77±0.09 | -0.48±0.06 | 0.48±0.19 | -0.19±0.03 | -0.21±0.03 | -0.69±0.16 | 0.39±0.12 |
表2 各混播群落D值
Table 2 D value of each diverse communities
处理 Treatment | 种数 No. of species | Di | D | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Y | D | H | S | G | C | J | M | Z | |||
MY | 2 | 1.03±0.06 | -0.27±0.05 | 0.38±0.07 | |||||||
GD | 2 | -0.76±0.15 | 0.91±0.19 | 0.07±0.01 | |||||||
YHS | 3 | 2.33±0.19 | -0.57±0.07 | -0.47±0.10 | 0.43±0.04 | ||||||
MYH | 3 | 2.23±0.21 | -0.43±0.08 | 0.45±0.04 | 0.7±0.14 | ||||||
YSDH | 4 | 2.89±0.31 | 0.31±0.03 | -0.55±0.09 | -0.85±0.17 | 0.4±0.06 | |||||
ZGJH | 4 | 0.92±0.18 | 1.63±0.18 | -0.34±0.05 | 0.05±0.03 | 0.5±0.03 | |||||
CJYMZ | 5 | 4.39±0.45 | -0.34±0.06 | -0.28±0.04 | -0.57±0.18 | -0.16±0.01 | 0.6±0.19 | ||||
ZGMSC | 5 | 0.44±0.07 | 2.01±0.71 | -0.31±0.03 | 0.24±0.01 | -0.31±0.02 | 0.4±0.08 | ||||
CMHYSZ | 6 | 4.45±0.51 | -0.52±0.05 | -0.61±0.13 | -0.13±0.03 | -0.41±0.18 | -0.44±0.15 | 0.39±0.06 | |||
CJSHDYZ | 7 | 4.66±0.77 | -0.09±0.03 | -0.34±0.13 | -0.77±0.17 | 0.23±0.04 | -0.26±0.06 | -0.61±0.18 | 0.40±0.13 | ||
ZCMDHGYS | 8 | 5.17±1.58 | -0.31±0.11 | -0.45±0.07 | -0.73±0.17 | -0.59±0.15 | 0.39±0.08 | -0.32±0.07 | -0.21±0.08 | 0.37±0.09 | |
ZCJMDHGYS | 9 | 5.62±1.23 | 0.02±0.08 | -0.24±0.06 | -0.77±0.09 | -0.48±0.06 | 0.48±0.19 | -0.19±0.03 | -0.21±0.03 | -0.69±0.16 | 0.39±0.12 |
[1] | Chapin Ⅲ FS, Moilanen L, Kielland K (1993). Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature, 361,150-153. |
[2] |
Diaz S, Cabido M (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution, 16,646-655.
DOI URL |
[3] | Dukes JS (2001). Productivity and complementarity in grassland microcosms of varying diversity. Oikos, 94,468-480. |
[4] | Fridley JD (2001). The influence of species diversity on ecosystem productivity: how, where, and why? Oikos, 93,514-526. |
[5] | Fridley JD (2003). Diversity effects on production in different light and fertility environments: an experiment with communities of annual plants. Journal of Ecology, 91,396-406. |
[6] | Hector A (1998). The effect of diversity on productivity: detecting the role of species complementarity. Oikos, 82,597-599. |
[7] |
Hector A, Schmid B, Beierkuhnlein C, Cldeira MC, Diemer M, Dimitrakppoulos PG, Fimm JA, Freitas H, Giller PS, Gjood J, Harris T, Høgberg P, Huss-Danell K, Joshi J, Jumpponen A, Kørner C, Leadley PW, Loreau M, Minns A, Mulder CPH, Donovan GO, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumdis AY, Woodward FI, Yach S, Lawton JH (1999). Plant diversity and productivity experiments in European grasslands. Science, 286,1123-1127.
DOI URL PMID |
[8] | Hooper DU, Vitousek PM (1997). The effects of plant composition and diversity on ecosystem processes. Science, 277,1302-1305. |
[9] |
Hooper DU (1998). The role of complementarity and competition in ecosystem responses to variation in plant diversity. Ecology, 79,704-719.
DOI URL |
[10] | Hooper DU, Dukes J (2004). Overyielding among plant functional groups in a long-term experiment. Ecology Letters, 7,95-105. |
[11] |
Huston MA, Aarssen LW, Austin MP, Cade BS, Fridley JD, Garnier E, Grime JP, Larenroth WK, Thompson K, Vandermeer JH, Wardle DA (2000). No consistent effect of plant diversity on productivity. Science, 289,1255.
DOI URL PMID |
[12] |
Jonssen M, Malmqvist B (2003). Mechanisms behind positive diversity effects on ecosystem functioning: testing the facilitation and interference hypotheses. Oecologia, 134,554-559.
DOI URL PMID |
[13] | Loreau M (1998a). Biodiversity and ecosystem functioning: a mechanistic model. Proceedings of the National Academy of Sciences of the United States of America, 95,5632-5636. |
[14] | Loreau M (1998b). Separating sampling and other effects in biodiversity experiments. Oikos, 82,600-602. |
[15] | Loreau M (2000). Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 91,3-17. |
[16] |
Loreau M, Hector A (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412,72-76.
DOI URL PMID |
[17] |
Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294,804-808.
DOI URL PMID |
[18] | Naeem S, Häkansson K, Lawton JH, Crawley MJ, Thompson LJ (1996). Biodiversity and plant productivity in a model assemblage of plant species. Oikos, 76,259-264. |
[19] | Symstad AJ, Tilman D, Willson J, Knops JMH (1998). Species loss and ecosystem functioning: effects of species identity and community composition. Oikos, 81,389-397. |
[20] |
Tilman D, Wedin D, Knops J (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379,718-720.
DOI URL |
[21] |
Tilman D, Lehman CL, Thomson KT (1997). Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 94,1857-1861.
URL PMID |
[22] | Tilman D (1999). The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80,1455-1475. |
[23] |
Tilman D (2000). Causes, consequences and ethics of biodiversity. Nature, 405,208-211.
DOI URL PMID |
[24] |
Tilman D, Reich P, Knops J, Wedin D, Mielke T, Lehman C (2001). Diversity and productivity in a long-term grassland experiment. Science, 249,843-845.
DOI URL PMID |
[25] | Vitousek PM, Hooper DU (1993). Biological diversity and terrestrial ecosystem biogeochemistry. In: Schulze ED, Mooney HA eds. Biodiversity and Ecosystem Function. Springer-Verlag Press, Berlin, Germany,3-14. |
[26] |
Wardle DA (1999). Is “sampling effect” a problem for experiments investigating biodiversity-ecosystem function relationships? Oikos, 87,403-407.
DOI URL |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[3] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[4] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[5] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[6] | 于水今, 王娟, 张春雨, 赵秀海. 温带针阔混交林生物量稳定性影响机制[J]. 植物生态学报, 2022, 46(6): 632-641. |
[7] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[8] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[9] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[10] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[11] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[12] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
[13] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[14] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[15] | 李周园, 叶小洲, 王少鹏. 生态系统稳定性及其与生物多样性的关系[J]. 植物生态学报, 2021, 45(10): 1127-1139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19