植物生态学报 ›› 2024, Vol. 48 ›› Issue (9): 1143-1156.DOI: 10.17521/cjpe.2023.0106 cstr: 32100.14.cjpe.2023.0106
张小雨1, 贾国栋1,2,*(), 余新晓1,2, 孙立博3, 蒋涛1
收稿日期:
2023-04-19
接受日期:
2023-10-09
出版日期:
2024-09-20
发布日期:
2023-10-10
通讯作者:
贾国栋(基金资助:
ZHANG Xiao-Yu1, JIA Guo-Dong1,2,*(), YU Xin-Xiao1,2, SUN Li-Bo3, JIANG Tao1
Received:
2023-04-19
Accepted:
2023-10-09
Online:
2024-09-20
Published:
2023-10-10
Contact:
JIA Guo-Dong (Supported by:
摘要:
冠层气孔导度(gs)是衡量冠层-大气水汽交换的重要指标, 研究其特征及对环境因子的响应, 有助于深入了解冠层水汽交换的过程及环境因子对林木冠层控制的综合机制, 目前针对不同退化程度的同一树种冠层气孔导度特征及对环境因子响应的差异性仍不清楚。该研究于2019年生长季(5-9月)以坝上张北县4种退化程度(无退化、轻度退化、中度退化、重度退化)小叶杨(Populus simonii)人工林为研究对象, 利用热扩散技术对林中小叶杨树干液流进行连续监测, 同步监测气温(T)、光合有效辐射(PAR)、饱和水汽压差(VPD)、空气相对湿度(RH)、土壤含水率(SWC)等环境因子, 分析小叶杨的液流速率、gs特征及其对环境因子的响应。结果显示: (1)小叶杨液流速率日变化总体呈单峰曲线, gs呈双峰曲线, 月尺度上两者均呈先升高后降低趋势, 7月两者值最大, 在5月和9月4种退化程度人工林中小叶杨液流速率及gs均差异显著。(2) 4种退化程度人工林中小叶杨gs均受T、VPD及SWC的影响, 但由于退化有一定的差异性, 无退化人工林中小叶杨gs主要受T、VPD和80-160 cm SWC影响, 轻度退化人工林中小叶杨gs主要受T、0-80 cm SWC和VPD影响, 中度退化人工林中小叶杨gs主要受0-80 cm SWC、T、VPD影响, 重度退化人工林中小叶杨gs主要受T、PAR、VPD的影响。(3)对于4种退化程度人工林中小叶杨, T在18 ℃以上时gs与其呈正相关关系, VPD在0.6-2.2 kPa时gs与其呈正相关关系, gs与SWC呈负相关关系; 当PAR小于250 μmol·m-2·s-1时, 重度退化小叶杨gs与其呈正相关关系。(4)重度退化程度人工林中小叶杨与另3种退化程度人工林中小叶杨相比, 对T变化的响应更积极, 对其他环境因子响应的敏感性降低, 且因形态学上的退化, 其对冠层蒸腾的控制会更加严格, 以避免进一步退化或死亡。
张小雨, 贾国栋, 余新晓, 孙立博, 蒋涛. 不同退化程度小叶杨人工林冠层气孔导度特征及其环境响应. 植物生态学报, 2024, 48(9): 1143-1156. DOI: 10.17521/cjpe.2023.0106
ZHANG Xiao-Yu, JIA Guo-Dong, YU Xin-Xiao, SUN Li-Bo, JIANG Tao. Characteristics of canopy stomatal conductance of Populus simonii stands with different degradation degrees and its responses to environmental factors. Chinese Journal of Plant Ecology, 2024, 48(9): 1143-1156. DOI: 10.17521/cjpe.2023.0106
编号Number | 人工林退化程度 Degradation degree of stand | 树高 Tree height (m) | 胸径 Diameter at breast height (cm) | 冠幅 Crown diameter (m) | |
---|---|---|---|---|---|
东西 East-west | 南北 South-north | ||||
1 | 无退化 Non-degradation | 14.3 | 32.0 | 6.7 | 5.3 |
2 | 无退化 Non-degradation | 14.2 | 23.5 | 4.1 | 2.1 |
3 | 无退化 Non-degradation | 13.5 | 24.2 | 6.5 | 5.2 |
4 | 轻度退化 Mild degradation | 14.2 | 23.5 | 2.8 | 3.5 |
5 | 轻度退化 Mild degradation | 13.7 | 26.0 | 3.5 | 2.5 |
6 | 轻度退化 Mild degradation | 13.4 | 24.2 | 2.8 | 3.5 |
7 | 中度退化 Moderate degradation | 12.6 | 21.8 | 2.8 | 3.1 |
8 | 中度退化 Moderate degradation | 11.1 | 16.2 | 2.2 | 3.5 |
9 | 中度退化 Moderate degradation | 12.9 | 23.7 | 2.2 | 3.5 |
10 | 重度退化 Severe degradation | 13.7 | 41.0 | 6.7 | 5.3 |
11 | 重度退化 Severe degradation | 10.6 | 18.5 | 6.5 | 5.1 |
12 | 重度退化 Severe degradation | 12.9 | 23.7 | 6.4 | 5.3 |
表1 坝上张北县小叶杨液流监测代表树木特征
Table 1 Characteristics of representative trees of Populus simonii for sap flow monitoring in Zhangbei County of Bashang Plateau
编号Number | 人工林退化程度 Degradation degree of stand | 树高 Tree height (m) | 胸径 Diameter at breast height (cm) | 冠幅 Crown diameter (m) | |
---|---|---|---|---|---|
东西 East-west | 南北 South-north | ||||
1 | 无退化 Non-degradation | 14.3 | 32.0 | 6.7 | 5.3 |
2 | 无退化 Non-degradation | 14.2 | 23.5 | 4.1 | 2.1 |
3 | 无退化 Non-degradation | 13.5 | 24.2 | 6.5 | 5.2 |
4 | 轻度退化 Mild degradation | 14.2 | 23.5 | 2.8 | 3.5 |
5 | 轻度退化 Mild degradation | 13.7 | 26.0 | 3.5 | 2.5 |
6 | 轻度退化 Mild degradation | 13.4 | 24.2 | 2.8 | 3.5 |
7 | 中度退化 Moderate degradation | 12.6 | 21.8 | 2.8 | 3.1 |
8 | 中度退化 Moderate degradation | 11.1 | 16.2 | 2.2 | 3.5 |
9 | 中度退化 Moderate degradation | 12.9 | 23.7 | 2.2 | 3.5 |
10 | 重度退化 Severe degradation | 13.7 | 41.0 | 6.7 | 5.3 |
11 | 重度退化 Severe degradation | 10.6 | 18.5 | 6.5 | 5.1 |
12 | 重度退化 Severe degradation | 12.9 | 23.7 | 6.4 | 5.3 |
图3 坝上地区生长季4种退化林地土壤含水率特征(平均值±标准差)。
Fig. 3 Characteristics of soil water content in four degraded forest lands in Bashang area during the growing season (mean ± SD).
图4 研究期间坝上地区4种退化程度小叶杨液流速率日变化。
Fig. 4 Daily variation of sap flow rate of Populus simonii with four degradation degrees in Bashang area during the study period.
月份 Month | 无退化 Non-degradation | 轻度退化 Mild degradation | 中度退化 Moderate degradation | 重度退化 Severe degradation |
---|---|---|---|---|
5月 May | 43.54 ± 3.90b | 31.52 ± 3.13bc | 17.65 ± 2.05c | 80.71 ± 8.36a |
6月 June | 114.75 ± 12.40a | 67.25 ± 8.67b | 54.39 ± 6.09b | 47.64 ± 4.68b |
7月 July | 151.60 ± 18.19a | 100.48 ± 13.22b | 68.15 ± 8.39bc | 43.83 ± 4.80c |
8月 August | 119.25 ± 14.83a | 54.28 ± 7.14b | 41.57 ± 5.29b | 35.91 ± 4.17b |
9月 September | 48.37 ± 6.25a | 10.15 ± 1.16b | 9.39 ± 1.22b | 4.85 ± 0.61b |
表2 坝上地区4种退化程度小叶杨月液流速率(g·m-2·s-1) (平均值±标准误差)
Table 2 Monthly sap flow rate (g·m-2·s-1) of Populus simonii with four degradation degrees in Bashang area (mean ± SE)
月份 Month | 无退化 Non-degradation | 轻度退化 Mild degradation | 中度退化 Moderate degradation | 重度退化 Severe degradation |
---|---|---|---|---|
5月 May | 43.54 ± 3.90b | 31.52 ± 3.13bc | 17.65 ± 2.05c | 80.71 ± 8.36a |
6月 June | 114.75 ± 12.40a | 67.25 ± 8.67b | 54.39 ± 6.09b | 47.64 ± 4.68b |
7月 July | 151.60 ± 18.19a | 100.48 ± 13.22b | 68.15 ± 8.39bc | 43.83 ± 4.80c |
8月 August | 119.25 ± 14.83a | 54.28 ± 7.14b | 41.57 ± 5.29b | 35.91 ± 4.17b |
9月 September | 48.37 ± 6.25a | 10.15 ± 1.16b | 9.39 ± 1.22b | 4.85 ± 0.61b |
图5 研究期间坝上地区4种退化程度小叶杨冠层气孔导度日变化。
Fig. 5 Daily variation of canopy stomatal conductance (gs) of Populus simonii with four degradation degrees in Bashang area during the study period.
月份 Month | 无退化 Non-degradation | 轻度退化 Mild degradation | 中度退化 Moderate degradation | 重度退化 Severe degradation |
---|---|---|---|---|
5月 May | 0.077 ± 0.008 4b | 0.106 ± 0.011 0b | 0.070 ± 0.007 8b | 0.220 ± 0.021 0a |
6月 June | 0.297 ± 0.039 7ab | 0.337 ± 0.045 0a | 0.219 ± 0.033 7b | 0.213 ± 0.024 9b |
7月 July | 0.662 ± 0.102 0a | 0.789 ± 0.102 0a | 0.569 ± 0.072 9ab | 0.367 ± 0.045 2ab |
8月 August | 0.372 ± 0.048 0a | 0.265 ± 0.037 2b | 0.242 ± 0.024 6b | 0.255 ± 0.034 0b |
9月 September | 0.175 ± 0.014 5a | 0.082 ± 0.006 8b | 0.054 ± 0.007 2c | 0.036 ± 0.006 2c |
表3 坝上地区4种退化程度小叶杨各月冠层气孔导度(mol·m-2·s-1) (平均值±标准误差)
Table 3 Monthly canopy stomatal conductance (mol·m-2·s-1) of Populus simonii with four degradation degrees in Bashang area (mean ± SE)
月份 Month | 无退化 Non-degradation | 轻度退化 Mild degradation | 中度退化 Moderate degradation | 重度退化 Severe degradation |
---|---|---|---|---|
5月 May | 0.077 ± 0.008 4b | 0.106 ± 0.011 0b | 0.070 ± 0.007 8b | 0.220 ± 0.021 0a |
6月 June | 0.297 ± 0.039 7ab | 0.337 ± 0.045 0a | 0.219 ± 0.033 7b | 0.213 ± 0.024 9b |
7月 July | 0.662 ± 0.102 0a | 0.789 ± 0.102 0a | 0.569 ± 0.072 9ab | 0.367 ± 0.045 2ab |
8月 August | 0.372 ± 0.048 0a | 0.265 ± 0.037 2b | 0.242 ± 0.024 6b | 0.255 ± 0.034 0b |
9月 September | 0.175 ± 0.014 5a | 0.082 ± 0.006 8b | 0.054 ± 0.007 2c | 0.036 ± 0.006 2c |
退化程度 Degree of degradation | 温度 Air temperature | 饱和水汽压差 Vapor pressure deficit | 风速 Wind speed | 光合有效辐射 Photosynthetically active radiation | 0-80 cm土层含水率 0-80 cm soil water content | 80-160 cm土层含水率 80-160 cm soil water content |
---|---|---|---|---|---|---|
无退化 Non-degradation | 43.1 | 25.5 | 7.7 | 6.6 | 3.5 | 13.6 |
轻度退化 Mild degradation | 39.2 | 12.4 | 1.7 | 6.7 | 36.1 | 4.0 |
中度退化 Moderate degradation | 27.1 | 16.7 | 3.3 | 15.0 | 36.0 | 1.9 |
重度退化 Severe degradation | 43.0 | 13.1 | 4.5 | 14.7 | 12.0 | 12.7 |
表4 环境因子对4种退化程度小叶杨冠层气孔导度的贡献率(%)
Table 4 Contribution rate of environmental factors to the canopy stomatal conductance of Populus simonii with four degradation degrees (%)
退化程度 Degree of degradation | 温度 Air temperature | 饱和水汽压差 Vapor pressure deficit | 风速 Wind speed | 光合有效辐射 Photosynthetically active radiation | 0-80 cm土层含水率 0-80 cm soil water content | 80-160 cm土层含水率 80-160 cm soil water content |
---|---|---|---|---|---|---|
无退化 Non-degradation | 43.1 | 25.5 | 7.7 | 6.6 | 3.5 | 13.6 |
轻度退化 Mild degradation | 39.2 | 12.4 | 1.7 | 6.7 | 36.1 | 4.0 |
中度退化 Moderate degradation | 27.1 | 16.7 | 3.3 | 15.0 | 36.0 | 1.9 |
重度退化 Severe degradation | 43.0 | 13.1 | 4.5 | 14.7 | 12.0 | 12.7 |
[1] |
Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 113, 5024-5029.
DOI PMID |
[2] | Baheti ZED, Jia GD, Yu XX, Shi JM, Jiang T (2020). Assessing water sources for Populus simonii with different degrees of degradation based on stable isotopes. Chinese Journal of Applied Ecology, 31, 1807-1816. |
[孜尔蝶·巴合提, 贾国栋, 余新晓, 史佳美, 蒋涛 (2020). 基于稳定同位素分析不同退化程度小叶杨水分来源. 应用生态学报, 31, 1807-1816.]
DOI |
|
[3] | Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006). Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems, 9, 330-343. |
[4] | Cai WH, Yang J, Liu ZH, Hu YM, Liu SJ, Jing GZ, Zhao ZF (2012). Controls of post-fire tree recruitment in Great Xing’an Mountains in Heilongjiang Province. Acta Ecologica Sinica, 32, 3303-3312. |
[蔡文华, 杨健, 刘志华, 胡远满, 柳生吉, 荆国志, 赵增福 (2012). 黑龙江省大兴安岭林区火烧迹地森林更新及其影响因子. 生态学报, 32, 3303-3312.] | |
[5] | Campbell GS, Norman JM (2000). An Introduction to Environmental Biophysics. Springer, New York. |
[6] | Cao QP, Zhao P, Ni GY, Zhu LW, Niu JF, Zeng XP (2013). Responses of canopy stomatal conductance of Schima superba stand to vapor pressure deficient in southern China. Chinese Journal of Ecology, 32, 1770-1779. |
[曹庆平, 赵平, 倪广艳, 朱丽薇, 牛俊峰, 曾小平 (2013). 华南荷木林冠层气孔导度对水汽压亏缺的响应. 生态学杂志, 32, 1770-1779.] | |
[7] | Chen SN, Chen ZSN, Zhang ZQ (2021). Canopy stomatal conductance characteristics of Pinus tabulaeformis and Acer truncatum and their responses to environmental factors in the mountain area of Beijing. Chinese Journal of Plant Ecology, 45, 1329-1340. |
[陈胜楠, 陈左司南, 张志强 (2021). 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报, 45, 1329-1340.]
DOI |
|
[8] | Dekker SC, Bouten W, Bosveld FC (2001). On the information content of forest transpiration measurements for identifying canopy conductance model parameters. Hydrological Processes, 15, 2821-2832. |
[9] |
Elith J, Leathwick JR, Hastie T (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813.
DOI PMID |
[10] | Ewers BE, MacKay DS, Samanta S (2007a). Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species. Tree Physiology, 27, 11-24. |
[11] | Ewers BE, Oren R, Kim HS, Bohrer G, Lai CT (2007b). Effects of hydraulic architecture and spatial variation in light on mean stomatal conductance of tree branches and crowns. Plant, Cell & Environment, 30, 483-496. |
[12] | Fu S, Sun L, Luo Y (2017). Canopy conductance and stand transpiration of Populus simonii Carr. in response to soil and atmospheric water deficits in farmland shelterbelt, Northwest China. Agroforestry Systems, 91, 1165-1180. |
[13] | Granier A (1985). A new method of sap flow measurement in tree stems. Annals of Forest Science, 42, 193-200. |
[14] | Hu YT, Zhao P, Niu JF, Sun ZW, Zhu LW (2015). Characteristics of canopy stomatal conductance in plantations of three re-vegetation tree species and its sensitivity to environmental factors. Chinese Journal of Applied Ecology, 26, 2623-2631. |
[胡彦婷, 赵平, 牛俊峰, 孙振伟, 朱丽薇 (2015). 三种植被恢复树种的冠层气孔导度特征及其对环境因子的敏感性. 应用生态学报, 26, 2623-2631.] | |
[15] | Huang YQ, Li XK, Zhang ZF, He CX, Zhao P, You YM, Mo L (2011). Seasonal changes in Cyclobalanopsis glauca transpiration and canopy stomatal conductance and their dependence on subterranean water and climatic factors in rocky karst terrain. Journal of Hydrology, 402, 135-143. |
[16] | Jia JB (2016). Water Movement Process and Mechanism Analysis on Forest Ecosystems in Beijing Mountainous area. PhD dissertation, Beijing Forestry University, Beijing. |
[贾剑波 (2016). 北京山区典型森林生态系统水分运动过程与机制研究. 博士学位论文, 北京林业大学, 北京.] | |
[17] | Jiao LL, Chang Y, Shen D, Hu YM, Li CL, Ma J (2015). Using boosted regression trees to analyze the factors affecting the spatial distribution pattern of wildfire in China. Chinese Journal of Ecology, 34, 2288-2296. |
[焦琳琳, 常禹, 申丹, 胡远满, 李春林, 马俊 (2015). 利用增强回归树分析中国野火空间分布格局的影响因素. 生态学杂志, 34, 2288-2296.] | |
[18] | Komatsu H, Onozawa Y, Kume T, Tsuruta K, Shinohara Y, Otsuki K (2012). Canopy conductance for a Moso bamboo (Phyllostachys pubescens) forest in western Japan. Agricultural and Forest Meteorology, 156, 111-120. |
[19] | Li CL, Liu M, Hu YM, Xu YY, Sun FY (2014). Driving forces analysis of urban expansion based on boosted regression trees and Logistic regression. Acta Ecologica Sinica, 34, 727-737. |
[李春林, 刘淼, 胡远满, 徐岩岩, 孙凤云 (2014). 基于增强回归树和Logistic回归的城市扩展驱动力分析. 生态学报, 34, 727-737.] | |
[20] | Li Z, Niu LH, Yuan FH, Guan DX, Wang AZ, Jin CJ, Wu JB (2012). Canopy conductance characteristics of poplar in agroforestry system in West Liaoning Province of Northeast China. Chinese Journal of Applied Ecology, 23, 2975-2982. |
[李峥, 牛丽华, 袁凤辉, 关德新, 王安志, 金昌杰, 吴家兵 (2012). 辽西农林复合系统中杨树冠层导度特征. 应用生态学报, 23, 2975-2982.] | |
[21] | Liu WN, Jia JB, Yu XX, Jia GD, Hou GR (2017). Characteristics of canopy stomatal conductance of Platycladus orientalis and its responses to environmental factors in the mountainous area of North China. Chinese Journal of Applied Ecology, 28, 3217-3226. |
[刘文娜, 贾剑波, 余新晓, 贾国栋, 侯贵荣 (2017). 华北山区侧柏冠层气孔导度特征及其对环境因子的响应. 应用生态学报, 28, 3217-3226.]
DOI |
|
[22] | Liu ZH, Jia GD, Yu XX, Lu WW, Sun LB, Wang YS, Baheti Z (2021). Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region. Agricultural Water Management, 253, 106943. DOI: 10.1016/j.agwat.2021.106943. |
[23] | Luo DD (2017). Water Regulation Strategies for 8 Tree Species in the Temperate Forest of Northeastern China. Master degree dissertation, Northeast Forestry University, Harbin. |
[罗丹丹 (2017). 东北温带森林8种树种水分调节对策研究. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
[24] | Luo ZD, Guan HD, Zhang XP, Liu N, Zhang CC, Wang T (2016). Optimization of canopy stomatal conductance models for Osmanthus fragrans and analysis of its parameters. Acta Ecologica Sinica, 36, 3995-4005. |
[罗紫东, 关华德, 章新平, 刘娜, 张赐成, 王婷 (2016). 桂花树冠层气孔导度模型的优化及其参数分析. 生态学报, 36, 3995-4005.] | |
[25] | Mayr S, Wieser G, Bauer H (2006). Xylem temperatures during winter in conifers at the alpine timberline. Agricultural and Forest Meteorology, 137, 81-88. |
[26] | Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, Wang K, Loustau D (2002). Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant, Cell & Environment, 25, 1167-1179. |
[27] |
Miao B, Meng P, Zhang JS, He FJ, Sun SJ (2017). Difference of water relationships of poplar trees in Zhangbei County, Hebei, China based on stable isotope and thermal dissipation method. Chinese Journal of Applied Ecology, 28, 2111-2118.
DOI |
[苗博, 孟平, 张劲松, 何方杰, 孙守家 (2017). 基于稳定同位素和热扩散技术的张北杨树水分关系差异. 应用生态学报, 28, 2111-2118.]
DOI |
|
[28] |
Oren R, Sperry JS, Ewers BE, Pataki DE, Phillips N, Megonigal JP (2001). Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: hydraulic and non-hydraulic effects. Oecologia, 126, 21-29.
DOI PMID |
[29] | Peltier DMP, Barber JJ, Ogle K (2018). Quantifying antecedent climatic drivers of tree growth in the Southwestern US. Journal of Ecology, 106, 613-624. |
[30] | Qu BL, Guo YP, Yang JW, Lü KL, Ma CM (2020). Characteristics of sap flow in fast-growing poplar and its response to driving factors in the central Hebei plain. Journal of Northeast Forestry University, 48(12), 18-22. |
[屈柏林, 郭延朋, 杨晶雯, 吕康乐, 马长明 (2020). 冀中平原速生杨树干液流特征及驱动因子对其影响. 东北林业大学学报, 48(12), 18-22.] | |
[31] | Rodrigues TR, Vourlitis GL, de A Lobo F, Oliveira RG, de S Nogueira J(2014). Seasonal variation in energy balance and canopy conductance for a tropical savanna ecosystem of south central Mato Grosso, Brazil. Journal of Geophysical Research: Biogeosciences, 119, 1-13. |
[32] |
Ripullone F, Camarero JJ, Colangelo M, Voltas J (2020). Variation in the access to deep soil water pools explains tree-to-tree differences in drought-triggered dieback of Mediterranean oaks. Tree Physiology, 40, 591-604.
DOI PMID |
[33] | Song LN, Zhu JJ, Zhang T, Wang K, Wang GC, Liu JH (2021). Higher canopy transpiration rates induced dieback in poplar (Populus × xiaozhuanica) plantations in a semiarid sandy region of Northeast China. Agricultural Water Management, 243, 106414. DOI: 10.1016/j.agwat.2020.106414. |
[34] | Sun L, Guan W, Wang YH, Xu LH, Xiong W (2011). Simulations of Larix principis-rupprechtii stand mean canopy stomatal conductance and its responses to environmental factors. Chinese Journal of Ecology, 30, 2122-2128. |
[孙林, 管伟, 王彦辉, 徐丽宏, 熊伟 (2011). 华北落叶松冠层平均气孔导度模拟及其对环境因子的响应. 生态学杂志, 30, 2122-2128.] | |
[35] | Sun LB, Chang XM, Yu XX, Jia GD, Chen LH, Wang YS, Liu ZQ (2021). Effect of freeze-thaw processes on soil water transport of farmland in a semi-arid area. Agricultural Water Management, 252, 106876. DOI: 10.1016/j.agwat.2021.106876. |
[36] | Serra-Maluquer X, Granda E, Camarero JJ, Vilὰ-Cabrera A, Jump AS, Sάnchez-Salguero R, Sangüesa-Barreda G, Imbert JB, Gazol A, Jucker T (2021). Impacts of recurrent dry and wet years alter long-term tree growth trajectories. Journal of Ecology, 109(3), 1561-1574. |
[37] | Voltas J, Camarero JJ, Carulla D, Aguilera M, Ortiz A, Ferrio JP (2013). A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of Scots pine. Plant, Cell & Environment, 36, 1435-1448. |
[38] | Wang Y, Liu MJ, Guo HN, Du S (2023). Canopy stomatal conductance of Robinia pseudoacacia under rainfall exclusion treatment. Research of Soil and Water Conservation, 30(5), 209-216. |
[王瑛, 刘美君, 郭海宁, 杜盛 (2023). 减雨处理环境下刺槐冠层气孔导度变化特征. 水土保持研究, 30(5), 209-216.] | |
[39] | Whitley R, Medlyn B, Zeppel M, Macinnis-Ng C, Eamus D (2009). Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance. Journal of Hydrology, 373, 256-266. |
[40] | Wu JJ, Qiu YX, Wang YS, Yu XX, Chen LH, Jia GD, Qiu GF (2021). Fine roots distribution characteristics of Populus simonii with different degradation degrees in Bashang area. Journal of Soil and Water Conservation, 35(5), 242-248. |
[武娟娟, 邱云霄, 王渝淞, 余新晓, 陈丽华, 贾国栋, 邱贵福 (2021). 坝上地区不同退化程度小叶杨细根分布特征. 水土保持学报, 35(5), 242-248.] | |
[41] | Wu RQ, Jia JB, Yan WD, Hu L, Wang YF, Chen Y (2022). Characteristics of canopy conductance and environmental driving mechanism in three monsoon climate regions of China. Frontiers in Environmental Science, 10, 935926. DOI: 10.3389/fenvs.2022.935926. |
[42] | Xu H, Li ML, Liang HB, Li ZS, Wu X (2018). Review of the evaluation index system for degraded forest ecosystems. Acta Ecologica Sinica, 38, 9034-9042. |
[徐欢, 李美丽, 梁海斌, 李宗善, 伍星 (2018). 退化森林生态系统评价指标体系研究进展. 生态学报, 38, 9034-9042.] | |
[43] | Xu WT, Zhao P, Wang Q, Rao XQ, Cai XA, Zeng XP (2007). Calculation and modeling of the canopy stomatal conductance of Acacia mangium from sap flow data. Acta Ecologica Sinica, 27, 4122-4131. |
[许文滔, 赵平, 王权, 饶兴权, 蔡锡安, 曾小平 (2007). 基于树干液流测定值的马占相思(Acacia mangium)冠层气孔导度计算及数值模拟. 生态学报, 27, 4122-4131.] | |
[44] | Yan CZ, Zheng WG, Jia JB, Yan WD, Wang ZC, Jia GD (2020). Responses of canopy stomatal conductance of Platycladus orientalis to soil water under water control. Chinese Journal of Applied Ecology, 31, 4017-4026. |
[颜成正, 郑文革, 贾剑波, 闫文德, 王忠诚, 贾国栋 (2020). 控水条件下侧柏冠层气孔导度对土壤水的响应. 应用生态学报, 31, 4017-4026.]
DOI |
|
[45] | Yoshida M, Ohta T, Kotani A, Maximov T (2010). Environmental factors controlling forest evapotranspiration and surface conductance on a multi-temporal scale in growing seasons of a Siberian larch forest. Journal of Hydrology, 395, 180-189. |
[46] |
Yoshifuji N, Kumagai T, Ichie T, Kume T, Tateishi M, Inoue Y, Yoneyama A, Nakashizuka T (2020). Limited stomatal regulation of the largest-size class of Dryobalanops aromatica in a Bornean tropical rainforest in response to artificial soil moisture reduction. Journal of Plant Research, 133, 175-191.
DOI PMID |
[47] | Yu TF, Feng Q, Si JH (2012). Simulating responses of leaf stomatal conductance to environmental factors for Tamarix ramosissma in an extreme arid region of China. Chinese Journal of Plant Ecology, 36, 483-490. |
[鱼腾飞, 冯起, 司建华 (2012). 极端干旱区多枝柽柳叶片气孔导度的环境响应模拟. 植物生态学报, 36, 483-490.]
DOI |
|
[48] |
Zhang H, Cao J, Wang HB, Song B, Jia GD, Liu ZQ, Yu XX, Zeng J (2018). Water utilization characteristics of the degraded poplar shelterbelts in Zhangbei, Hebei, China. Chinese Journal of Applied Ecology, 29, 1381-1388.
DOI |
[张欢, 曹俊, 王化冰, 宋波, 贾国栋, 刘自强, 余新晓, 曾佳 (2018). 张北地区退化杨树防护林的水分利用特征. 应用生态学报, 29, 1381-1388.]
DOI |
|
[49] | Zhang Z, Xin XZ, Yi CX, Peng ZQ, Liu QH (2021). Advanced model of canopy stomatal conductance considering vegetation types. Transactions of the Chinese Society of Agricultural Engineering, 37(3), 164-172. |
[张振, 辛晓洲, 裔传祥, 彭志晴, 柳钦火 (2021). 考虑植被类型的冠层气孔导度模型. 农业工程学报, 37(3), 164-172.] | |
[50] | Zhao P, Ma L, Sun GC, Rao XQ, Cai XA, Zeng XP (2005). The carbon assimilation rate of forest was determined by canopy stomatal conductance and 13C discrimination rate based on sap flow. Chinese Science Bulletin, 50, 1620-1626. |
[赵平, 马玲, 孙谷畴, 饶兴权, 蔡锡安, 曾小平 (2005). 利用基于sap flow测定值的冠层气孔导度和13C甄别率测定森林的碳同化率. 科学通报, 50, 1620-1626.] | |
[51] | Zhao P, Rao XQ, Ma L, Cai XA, Zeng XP (2006). Responses of canopy stomatal conductance of Acacia mangium forest to environmental driving factors. Chinese Journal of Applied Ecology, 17, 1149-1156. |
[赵平, 饶兴权, 马玲, 蔡锡安, 曾小平 (2006). 马占相思林冠层气孔导度对环境驱动因子的响应. 应用生态学报, 17, 1149-1156.] | |
[52] | Zhao P, Xu XY, Jiang SX, Xu GX, Chai CW, Zhang YJ, Ma YL, Qi FJ, Gao DC, Zhang GP (2022). Water utilization pattern of Tamarix ramosissima Ledeb. Nebkhas with different decline degrees in the lower reaches of Shiyang River. Acta Ecologica Sinica, 42, 7187-7197. |
[赵鹏, 徐先英, 姜生秀, 徐高兴, 柴成武, 张逸君, 马玉莲, 戚福俊, 高德才, 张国平 (2022). 石羊河下游不同衰退程度多枝柽柳灌丛水分利用格局研究. 生态学报, 42, 7187-7197.] | |
[53] | Zhu HY, Li HY, Wang XL, Jiang T, Sun L, Luo Y (2022). Characteristics and modeling of canopy stomatal conductance and transpiration of Pinus tabuliformis on the Loess Plateau. Acta Ecologica Sinica, 42, 9130-9142. |
[朱昊阳, 李洪宇, 王晓蕾, 姜婷, 孙林, 罗毅 (2022). 黄土高原油松冠层气孔导度和蒸腾变化特征与模拟. 生态学报, 42, 9130-9142.] | |
[54] | Zhu LW, Zhao P, Cai XA, Zou XP, Zou L, Quan W (2010). Characteristics of transpiration and canopy stomatal conductance of Schima superba plantation and their responses to environmental factors. Journal of Tropical and Subtropical Botany, 18, 599-606. |
[1] | 许梦真 卢正宽 谭星儒 王彦兵 苏天成 窦山德 潘庆民 陈世苹. 呼伦贝尔草甸草原退化特征因子识别与快速诊断指标体系构建[J]. 植物生态学报, 2025, 49(1): 0-0. |
[2] | 牛亚平 高晓霞 姚世庭 杨元合 彭云峰. 高寒草地退化过程中植物多样性和功能群组成与地上生产力的关系[J]. 植物生态学报, 2025, 49(1): 0-0. |
[3] | 李天琦 曹继容 柳小妮 田思惠 兰波兰 邱颖 薛建国 张倩 褚建民 张淑敏 黄建辉 李凌浩 王其兵. 内蒙古温带草原土壤酶化学计量对放牧的响应与土壤限制性养分解析[J]. 植物生态学报, 2025, 49(1): 1-0. |
[4] | 郝毅晴 刘伟 杨阳 安冰儿 范冰 李超 崔久辉 程延彬 孙佳美 潘庆民. 有机肥和无机肥对退化草原羊草种群密度和个体生物量的影响[J]. 植物生态学报, 2025, 49(1): 1-0. |
[5] | 张辉 赵赟鹏 刘晓琛 郭增鹏 胡国瑞 冯彦皓 马妙君. 土壤种子库在高寒草甸退化过程中的变化及其在植物群落更新中的潜在作用[J]. 植物生态学报, 2025, 49(1): 0-0. |
[6] | 孙佳美 安冰儿 刘伟 王璟 潘庆民. 草原植物繁殖体调控技术:“蘖芽岛”的培育与移植[J]. 植物生态学报, 2025, 49(1): 0-0. |
[7] | 刘伟 郝毅晴 孙佳美 王璟 范冰 郝建玺 金那申 潘庆民. 呼伦贝尔退化草原土壤养分调控的原理与技术[J]. 植物生态学报, 2025, 49(1): 0-0. |
[8] | 房凯 王迎新 黄建辉 段俊光 张琦 张倩 甘红豪 褚建民. 内蒙古典型草原不同退化阶段植被恢复的养分限制因子解析[J]. 植物生态学报, 2025, 49(1): 0-0. |
[9] | 杜淑辉 褚建民 段俊光 薛建国 徐磊 徐晓庆 王其兵 黄建辉 张倩. 不同退化程度典型草原土壤木质素酚对有机碳的影响[J]. 植物生态学报, 2025, 49(1): 0-0. |
[10] | 付照琦, 胡旭, 田沁瑞, 葛艳灵, 周红娟, 吴小云, 陈立欣. 晋西黄土区2种典型森林树种夜间液流特征及对环境因子的响应[J]. 植物生态学报, 2024, 48(9): 1128-1142. |
[11] | 童郁强, 吴梦鸽, 王玲, 赵实, 韩叙, 张彤, 刘静, 秦胜金, 董英豪, 魏亚伟, 周永斌. 基于液流径向变化的樟子松蒸腾耗水量估算及影响因素[J]. 植物生态学报, 2024, 48(9): 1118-1127. |
[12] | 韩雨晴, 熊伟, 吴波, 卢琦, 杨文斌, 刘雅莉, 张景波, 辛智鸣, 马迎宾, 廉泓林, 王思涵. 乌兰布和沙漠梭梭茎干液流对降雨脉冲的响应[J]. 植物生态学报, 2024, 48(9): 1172-1179. |
[13] | 刘士玲, 杨保国, 郑路, 舒韦维, 闵惠琳, 张培, 李华, 杨坤, 周炳江, 田祖为. 广西红锥人工林径向生长的季节格局及其对气候因子的响应[J]. 植物生态学报, 2024, 48(8): 1021-1034. |
[14] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[15] | 刘位会 宋小艳 王长庭. 退化程度对高寒草甸不同优势种植物根系形态性状和生物量的影响[J]. 植物生态学报, 2024, 48(12): 1-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19