植物生态学报 ›› 2024, Vol. 48 ›› Issue (5): 660-674.DOI: 10.17521/cjpe.2023.0244
• 研究论文 • 上一篇
陈科宇(), 邢森, 唐玉, 孙佳慧, 任世杰, 张静, 纪宝明*()
收稿日期:
2023-08-19
接受日期:
2023-12-21
出版日期:
2024-05-20
发布日期:
2023-12-21
通讯作者:
(基金资助:
CHEN Ke-Yu(), XING Sen, TANG Yu, SUN Jia-Hui, REN Shi-Jie, ZHANG Jing, JI Bao-Ming*()
Received:
2023-08-19
Accepted:
2023-12-21
Online:
2024-05-20
Published:
2023-12-21
Contact:
(Supported by:
摘要:
丛枝菌根真菌(AMF)在草地生态系统中广泛分布, 对维持草地生态系统生产力和稳定性具有重要意义, 而中国天然草地生态系统AMF群落的分布特征及其驱动机制尚不明确。该研究以常见的18种草地类型为研究对象, 通过野外调查不同植物群落特征, 分析土壤理化性质和AMF群落特征, 探究中国草地生态系统不同草地类型土壤AMF群落特征及其驱动因素。结果表明, 近明球囊霉属(Claroideoglomus)、隔球囊霉属(Septoglomus)、多孢囊霉属(Diversispora)、根孢囊霉属(Rhizophagus)、无梗囊霉属(Acaulospora)、球囊霉属(Glomus)和双型囊霉属(Ambispora)在不同草地类型AMF群落中占据优势地位(相对多度>15%)。不同草地类型AMF群落在物种组成和多样性上存在差异, 且紫花针茅(Stipa purpurea)草地AMF群落多样性和稀有可操作分类单元(OTU) (相对多度<0.1%的OTU)占比相对较高。结构方程模型表明, AMF群落多样性受植物群落多样性和土壤pH的显著影响, 而AMF群落组成受温度、土壤含水率和植物群落组成的显著影响。综上所述, 中国天然草地AMF资源丰富, 且不同草地类型AMF群落存在较大差异。草地生态系统植物群落特征对AMF群落特征具有强烈的驱动作用, 保护植物多样性对于维持土壤微生物群落稳定性具有重要意义。
陈科宇, 邢森, 唐玉, 孙佳慧, 任世杰, 张静, 纪宝明. 不同草地类型土壤丛枝菌根真菌群落特征及其驱动因素. 植物生态学报, 2024, 48(5): 660-674. DOI: 10.17521/cjpe.2023.0244
CHEN Ke-Yu, XING Sen, TANG Yu, SUN Jia-Hui, REN Shi-Jie, ZHANG Jing, JI Bao-Ming. Arbuscular mycorrhizal fungal community characteristics and driving factors in different grassland types. Chinese Journal of Plant Ecology, 2024, 48(5): 660-674. DOI: 10.17521/cjpe.2023.0244
草地类型 Grassland type | 经度 Longitude (° E) | 纬度 Latitude (° N) | 海拔 Altitude (m) | 1-8月平均气温 Average air temperature of Jan. to Aug. (℃) | 1-8月降水量 Precipitation of Jan. to Aug. (mm) |
---|---|---|---|---|---|
高山嵩草-垂穗披碱草草地 Carex parvula - Elymus nutans grassland | 91.90 | 29.72 | 4 056 | -4.29 | 576.73 |
高山嵩草-圆穗蓼草地 C. parvula - Bistorta macrophylla grassland | 93.25 | 30.69 | 4 473 | -9.73 | 328.00 |
蕨麻草地 Argentina anserina grassland | 91.15 | 31.12 | 4 488 | -2.51 | 316.85 |
高山早熟禾草地 Poa alpina grassland | 91.90 | 29.73 | 4 050 | -4.29 | 576.73 |
西藏嵩草草地 C. tibetikobresia grassland | 93.23 | 31.92 | 4 543 | -9.99 | 478.53 |
垂穗披碱草草地 E. nutans grassland | 98.27 | 30.87 | 3 640 | -4.42 | 579.03 |
火绒草草地 Leontopodium leontopodioides grassland | 91.51 | 31.87 | 4 502 | -3.21 | 392.97 |
紫花针茅草地 Stipa purpurea grassland | 90.32 | 31.39 | 4 641 | -2.54 | 340.49 |
紫花针茅-青藏薹草草地 S. purpurea - C. moorcroftii grassland | 84.83 | 32.00 | 4 578 | -1.43 | 92.64 |
沙生薹草草地 C. praeclara grassland | 84.03 | 29.78 | 4 816 | -8.25 | 186.31 |
丝颖针茅草地 S. capillacea grassland | 84.03 | 29.77 | 4 836 | -8.22 | 186.31 |
大花嵩草草地 C. nudicarpa grassland | 88.47 | 28.21 | 4 700 | 0.44 | 271.86 |
羊草-短花针茅草地 Leymus chinensis - S. breviflora grassland | 111.22 | 41.25 | 1 701 | 4.40 | 96.12 |
短花针茅-冷蒿草地 S. breviflora - Artemisia frigida grassland | 111.22 | 41.26 | 1 690 | 4.39 | 95.89 |
羊草-糙隐子草草地 L. chinensis - Cleistogenes squarrosa grassland | 116.34 | 44.27 | 1 075 | 3.00 | 136.15 |
大针茅草地 S. grandis grassland | 116.44 | 43.48 | 1 377 | 2.71 | 132.78 |
羊草-狼针草草地 L. chinensis - S. baicalensis grassland | 120.00 | 49.34 | 613 | -0.18 | 116.59 |
狼针草草地 S. baicalensis grassland | 119.98 | 49.60 | 644 | -0.31 | 119.26 |
表1 不同草地类型样地信息
Table 1 Plots information of different grassland types
草地类型 Grassland type | 经度 Longitude (° E) | 纬度 Latitude (° N) | 海拔 Altitude (m) | 1-8月平均气温 Average air temperature of Jan. to Aug. (℃) | 1-8月降水量 Precipitation of Jan. to Aug. (mm) |
---|---|---|---|---|---|
高山嵩草-垂穗披碱草草地 Carex parvula - Elymus nutans grassland | 91.90 | 29.72 | 4 056 | -4.29 | 576.73 |
高山嵩草-圆穗蓼草地 C. parvula - Bistorta macrophylla grassland | 93.25 | 30.69 | 4 473 | -9.73 | 328.00 |
蕨麻草地 Argentina anserina grassland | 91.15 | 31.12 | 4 488 | -2.51 | 316.85 |
高山早熟禾草地 Poa alpina grassland | 91.90 | 29.73 | 4 050 | -4.29 | 576.73 |
西藏嵩草草地 C. tibetikobresia grassland | 93.23 | 31.92 | 4 543 | -9.99 | 478.53 |
垂穗披碱草草地 E. nutans grassland | 98.27 | 30.87 | 3 640 | -4.42 | 579.03 |
火绒草草地 Leontopodium leontopodioides grassland | 91.51 | 31.87 | 4 502 | -3.21 | 392.97 |
紫花针茅草地 Stipa purpurea grassland | 90.32 | 31.39 | 4 641 | -2.54 | 340.49 |
紫花针茅-青藏薹草草地 S. purpurea - C. moorcroftii grassland | 84.83 | 32.00 | 4 578 | -1.43 | 92.64 |
沙生薹草草地 C. praeclara grassland | 84.03 | 29.78 | 4 816 | -8.25 | 186.31 |
丝颖针茅草地 S. capillacea grassland | 84.03 | 29.77 | 4 836 | -8.22 | 186.31 |
大花嵩草草地 C. nudicarpa grassland | 88.47 | 28.21 | 4 700 | 0.44 | 271.86 |
羊草-短花针茅草地 Leymus chinensis - S. breviflora grassland | 111.22 | 41.25 | 1 701 | 4.40 | 96.12 |
短花针茅-冷蒿草地 S. breviflora - Artemisia frigida grassland | 111.22 | 41.26 | 1 690 | 4.39 | 95.89 |
羊草-糙隐子草草地 L. chinensis - Cleistogenes squarrosa grassland | 116.34 | 44.27 | 1 075 | 3.00 | 136.15 |
大针茅草地 S. grandis grassland | 116.44 | 43.48 | 1 377 | 2.71 | 132.78 |
羊草-狼针草草地 L. chinensis - S. baicalensis grassland | 120.00 | 49.34 | 613 | -0.18 | 116.59 |
狼针草草地 S. baicalensis grassland | 119.98 | 49.60 | 644 | -0.31 | 119.26 |
草地类型 Grassland type | 盖度 Coverage | 高度 Height | 丰富度 Richness | Simpson多样性指数 Simpson diversity index | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Pielou均匀度指数 Pielou evenness index |
---|---|---|---|---|---|---|
高山嵩草-垂穗披碱草草地 Carex parvula - Elymus nutans grassland | 98.40 ± 0.40a | 26.51 ± 1.46c | 9.20 ± 0.73c | 0.86 ± 0.01ab | 2.07 ± 0.05cd | 0.94 ± 0.01ab |
高山嵩草-圆穗蓼草地 C. parvula - Bistorta macrophylla grassland | 98.00 ± 0.45a | 7.53 ± 0.26hij | 13.40 ± 0.51a | 0.89 ± 0.01a | 2.42 ± 0.02a | 0.94 ± 0.01ab |
蕨麻草地 Argentina anserina grassland | 48.00 ± 1.64e | 7.01 ± 0.71ij | 2.80 ± 0.37f | 0.51 ± 0.04hi | 0.82 ± 0.10jk | 0.89 ± 0.02abcd |
高山早熟禾草地 Poa alpina grassland | 94.20 ± 1.66ab | 12.01 ± 0.78efg | 12.40 ± 0.40ab | 0.89 ± 0.01a | 2.33 ± 0.03ab | 0.94 ± 0.02ab |
西藏嵩草草地 C. tibetikobresia grassland | 95.60 ± 1.50ab | 4.71 ± 0.23j | 11.60 ± 1.03b | 0.85 ± 0.02ab | 2.19 ± 0.08bc | 0.90 ± 0.01abcd |
垂穗披碱草草地 E. nutans grassland | 96.60 ± 0.51ab | 23.57 ± 1.62cd | 8.60 ± 0.51c | 0.84 ± 0.02abc | 1.87 ± 0.05def | 0.87 ± 0.01bcde |
火绒草草地 Leontopodium leontopodioides grassland | 64.20 ± 2.29d | 10.55 ± 0.57fgh | 3.60 ± 0.24f | 0.59 ± 0.03fg | 1.08 ± 0.06hi | 0.90 ± 0.03abcd |
紫花针茅草地 Stipa purpurea grassland | 48.00 ± 0.95e | 12.63 ± 0.18efg | 7.00 ± 0.45d | 0.78 ± 0.01bcd | 1.75 ± 0.05efg | 0.90 ± 0.01abcd |
紫花针茅-青藏薹草草地 S. purpurea - C. moorcroftii grassland | 43.00 ± 3.74ef | 14.64 ± 0.21e | 3.00 ± 0.32f | 0.58 ± 0.01gh | 0.98 ± 0.01hij | 0.89 ± 0.01abcd |
沙生薹草草地 C. praeclara grassland | 40.40 ± 1.44fg | 9.84 ± 0.74ghi | 3.40 ± 0.24f | 0.73 ± 0.06de | 1.00 ± 0.02 hij | 0.85 ± 0.06de |
丝颖针茅草地 S. capillacea grassland | 36.00 ± 1.30g | 13.91 ± 0.54ef | 3.00 ± 0.45f | 0.67 ± 0.02ef | 0.88 ± 0.16ijk | 0.81 ± 0.04e |
大花嵩草草地 C. nudicarpa grassland | 29.00 ± 1.38h | 9.51 ± 1.28ghi | 2.40 ± 0.24f | 0.49 ± 0.03i | 0.75 ± 0.07k | 0.91 ± 0.02abcd |
羊草-短花针茅草地 Leymus chinensis - S. breviflora grassland | 43.40 ± 3.33ef | 20.44 ± 0.52d | 3.40 ± 0.24f | 0.67 ± 0.01ef | 1.15 ± 0.05h | 0.95 ± 0.01a |
短花针茅-冷蒿草地 S. breviflora - Artemisia frigida grassland | 45.00 ± 1.70ef | 25.54 ± 1.35c | 3.00 ± 0.45f | 0.52 ± 0.05ghi | 0.90 ± 0.13ijk | 0.85 ± 0.01cde |
羊草-糙隐子草草地 L. chinensis - Cleistogenes squarrosa grassland | 79.00 ± 2.63c | 31.59 ± 0.68b | 6.40 ± 0.24de | 0.77 ± 0.01cd | 1.65 ± 0.04g | 0.88 ± 0.01abcde |
大针茅草地 S. grandis grassland | 65.60 ± 0.87d | 21.84 ± 1.40d | 5.40 ± 0.24e | 0.76 ± 0.01cd | 1.55 ± 0.03g | 0.92 ± 0.01abcd |
羊草-狼针草草地 L. chinensis - S. baicalensis grassland | 95.20 ± 2.65ab | 36.32 ± 2.86a | 8.40 ± 0.24c | 0.83 ± 0.01abc | 1.93 ± 0.03de | 0.91 ± 0.01abcd |
狼针草草地 S. baicalensis grassland | 91.20 ± 1.20b | 34.12 ± 0.46ab | 6.40 ± 0.68de | 0.79 ± 0.01bcd | 1.69 ± 0.09fg | 0.92 ± 0.01abc |
表2 不同类型草地植物群落特征 (平均值±标准差)
Table 2 Plant community characteristics of different grassland types (mean ± SD)
草地类型 Grassland type | 盖度 Coverage | 高度 Height | 丰富度 Richness | Simpson多样性指数 Simpson diversity index | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Pielou均匀度指数 Pielou evenness index |
---|---|---|---|---|---|---|
高山嵩草-垂穗披碱草草地 Carex parvula - Elymus nutans grassland | 98.40 ± 0.40a | 26.51 ± 1.46c | 9.20 ± 0.73c | 0.86 ± 0.01ab | 2.07 ± 0.05cd | 0.94 ± 0.01ab |
高山嵩草-圆穗蓼草地 C. parvula - Bistorta macrophylla grassland | 98.00 ± 0.45a | 7.53 ± 0.26hij | 13.40 ± 0.51a | 0.89 ± 0.01a | 2.42 ± 0.02a | 0.94 ± 0.01ab |
蕨麻草地 Argentina anserina grassland | 48.00 ± 1.64e | 7.01 ± 0.71ij | 2.80 ± 0.37f | 0.51 ± 0.04hi | 0.82 ± 0.10jk | 0.89 ± 0.02abcd |
高山早熟禾草地 Poa alpina grassland | 94.20 ± 1.66ab | 12.01 ± 0.78efg | 12.40 ± 0.40ab | 0.89 ± 0.01a | 2.33 ± 0.03ab | 0.94 ± 0.02ab |
西藏嵩草草地 C. tibetikobresia grassland | 95.60 ± 1.50ab | 4.71 ± 0.23j | 11.60 ± 1.03b | 0.85 ± 0.02ab | 2.19 ± 0.08bc | 0.90 ± 0.01abcd |
垂穗披碱草草地 E. nutans grassland | 96.60 ± 0.51ab | 23.57 ± 1.62cd | 8.60 ± 0.51c | 0.84 ± 0.02abc | 1.87 ± 0.05def | 0.87 ± 0.01bcde |
火绒草草地 Leontopodium leontopodioides grassland | 64.20 ± 2.29d | 10.55 ± 0.57fgh | 3.60 ± 0.24f | 0.59 ± 0.03fg | 1.08 ± 0.06hi | 0.90 ± 0.03abcd |
紫花针茅草地 Stipa purpurea grassland | 48.00 ± 0.95e | 12.63 ± 0.18efg | 7.00 ± 0.45d | 0.78 ± 0.01bcd | 1.75 ± 0.05efg | 0.90 ± 0.01abcd |
紫花针茅-青藏薹草草地 S. purpurea - C. moorcroftii grassland | 43.00 ± 3.74ef | 14.64 ± 0.21e | 3.00 ± 0.32f | 0.58 ± 0.01gh | 0.98 ± 0.01hij | 0.89 ± 0.01abcd |
沙生薹草草地 C. praeclara grassland | 40.40 ± 1.44fg | 9.84 ± 0.74ghi | 3.40 ± 0.24f | 0.73 ± 0.06de | 1.00 ± 0.02 hij | 0.85 ± 0.06de |
丝颖针茅草地 S. capillacea grassland | 36.00 ± 1.30g | 13.91 ± 0.54ef | 3.00 ± 0.45f | 0.67 ± 0.02ef | 0.88 ± 0.16ijk | 0.81 ± 0.04e |
大花嵩草草地 C. nudicarpa grassland | 29.00 ± 1.38h | 9.51 ± 1.28ghi | 2.40 ± 0.24f | 0.49 ± 0.03i | 0.75 ± 0.07k | 0.91 ± 0.02abcd |
羊草-短花针茅草地 Leymus chinensis - S. breviflora grassland | 43.40 ± 3.33ef | 20.44 ± 0.52d | 3.40 ± 0.24f | 0.67 ± 0.01ef | 1.15 ± 0.05h | 0.95 ± 0.01a |
短花针茅-冷蒿草地 S. breviflora - Artemisia frigida grassland | 45.00 ± 1.70ef | 25.54 ± 1.35c | 3.00 ± 0.45f | 0.52 ± 0.05ghi | 0.90 ± 0.13ijk | 0.85 ± 0.01cde |
羊草-糙隐子草草地 L. chinensis - Cleistogenes squarrosa grassland | 79.00 ± 2.63c | 31.59 ± 0.68b | 6.40 ± 0.24de | 0.77 ± 0.01cd | 1.65 ± 0.04g | 0.88 ± 0.01abcde |
大针茅草地 S. grandis grassland | 65.60 ± 0.87d | 21.84 ± 1.40d | 5.40 ± 0.24e | 0.76 ± 0.01cd | 1.55 ± 0.03g | 0.92 ± 0.01abcd |
羊草-狼针草草地 L. chinensis - S. baicalensis grassland | 95.20 ± 2.65ab | 36.32 ± 2.86a | 8.40 ± 0.24c | 0.83 ± 0.01abc | 1.93 ± 0.03de | 0.91 ± 0.01abcd |
狼针草草地 S. baicalensis grassland | 91.20 ± 1.20b | 34.12 ± 0.46ab | 6.40 ± 0.68de | 0.79 ± 0.01bcd | 1.69 ± 0.09fg | 0.92 ± 0.01abc |
图1 不同草地类型植物群落组成的非度量多维尺度(NMDS)分析。AA, 蕨麻草地; CN, 大花嵩草草地; CP, 沙生薹草草地; CP-BM, 高山嵩草-圆穗蓼草地; CP-EN, 高山嵩草-垂穗披碱草草地; CT, 西藏嵩草草地; EN, 垂穗披碱草草地; LC-CS, 羊草-糙隐子草草地; LC-SB, 羊草-短花针茅草地; LC-SBA, 羊草-狼针草草地; LL, 火绒草草地; PA, 高山早熟禾草地; SB, 狼针草草地; SB-AF, 短花针茅-冷蒿草地; SC, 丝颖针茅草地; SG, 大针茅草地; SP, 紫花针茅草地; SP-CM, 紫花针茅-青藏薹草草地。Stress, 应力值。
Fig. 1 Non-metric multidimensional scaling (NMDS) analysis of plant community composition of different grassland types. AA, Argentina anserina grassland; CN, Carex nudicarpa grassland; CP, C. praeclara grassland; CP-BM, C. parvulae - Bistorta macrophylla grassland; CP-EN, C. parvulae - Elymus nutans grassland; CT, C. tibetikobresia grassland; EN, E. nutans grassland; LC-CS, Leymus chinensis - Cleistogenes squarrosa grassland; LC-SB, L. chinensis - S. breviflora grassland; LC-SBA, L. chinensis - Stipa baicalensis grassland; LL, Leontopodium leontopodioides grassland; PA, Poa alpina grassland; SB, S. baicalensis grassland; SB-AF, S. breviflora - Artemisia frigida grassland; SC, S. capillacea grassland; SG, S. grandis grassland; SP, S. purpurea grassland; SP-CM, S. purpurea - C. moorcroftii grassland.
草地类型 Grassland type | TC (g·kg-1) | TN (g·kg-1) | TP (g·kg-1) | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | AP (mg·kg-1) | pH | 土壤含水率 Soil water content (%) |
---|---|---|---|---|---|---|---|---|
高山嵩草-垂穗披碱草草地 Carex parvula - Elymus nutans grassland | 13.70 ± 1.17def | 1.40 ± 0.10fghi | 0.54 ± 0.03fg | 1.80 ± 0.30c | 1.13 ± 0.36e | 0.95 ± 0.14e | 6.47 ± 0.08e | 13.44 ± 1.67fgh |
高山嵩草-圆穗蓼草地 C. parvula - Bistorta macrophylla grassland | 52.92 ± 1.15b | 4.57 ± 0.08c | 0.77 ± 0.02c | 22.51 ± 4.72b | 2.53 ± 0.29de | 4.46 ± 0.07cd | 6.23 ± 0.04ef | 34.86 ± 1.22ab |
蕨麻草地 Argentina anserina grassland | 59.90 ± 0.47b | 2.94 ± 0.04de | 0.67 ± 0.04de | 2.05 ± 0.29c | 42.20 ± 2.75bc | 4.73 ± 0.18cd | 7.93 ± 0.02b | 20.46 ± 0.47def |
高山早熟禾草地 Poa alpina grassland | 59.88 ± 8.07b | 4.94 ± 0.57bc | 0.81 ± 0.04c | 11.15 ± 4.20c | 67.73 ± 36.92b | 8.71 ± 0.58b | 5.97 ± 0.36fg | 31.59 ± 6.07abc |
西藏嵩草草地 C. tibetikobresia grassland | 61.66 ± 15.45b | 5.49 ± 1.40abc | 0.73 ± 0.08cd | 10.54 ± 2.40c | 23.58 ± 3.74cde | 8.49 ± 3.88b | 6.25 ± 0.11ef | 33.70 ± 7.89abc |
垂穗披碱草草地 E. nutans grassland | 76.54 ± 3.34a | 6.56 ± 0.27a | 1.10 ± 0.01a | 9.34 ± 1.03c | 197.20 ± 5.05a | 9.79 ± 0.11b | 5.79 ± 0.02g | 38.18 ± 1.29a |
火绒草草地 Leontopodium leontopodioides grassland | 22.88 ± 0.35cde | 2.04 ± 0.03defgh | 0.56 ± 0.02f | 3.25 ± 0.47c | 6.60 ± 0.76de | 1.98 ± 0.08de | 5.85 ± 0.08g | 16.65 ± 0.70def |
紫花针茅草地 Stipa purpurea grassland | 13.98 ± 0.81def | 0.85 ± 0.06hi | 0.37 ± 0.01i | 1.89 ± 0.29c | 7.71 ± 0.49de | 3.44 ± 0.16de | 7.86 ± 0.10b | 4.78 ± 0.91h |
紫花针茅-青藏薹草草地 S. purpurea - C. moorcroftii grassland | 18.40 ± 0.41de | 1.89 ± 0.07efgh | 0.22 ± 0.01j | 1.69 ± 0.08c | 5.70 ± 0.30de | 1.74 ± 0.11de | 8.58 ± 0.02a | 4.91 ± 0.67h |
沙生薹草草地 C. praeclara grassland | 4.16 ± 0.39f | 0.47 ± 0.02i | 0.26 ± 0.02j | 1.33 ± 0.12c | 1.08 ± 0.17e | 2.83 ± 0.06de | 8.16 ± 0.06b | 11.24 ± 7.10gh |
丝颖针茅草地 S. capillacea grassland | 14.70 ± 0.62def | 1.50 ± 0.05fghi | 0.52 ± 0.01fg | 4.05 ± 0.61c | 5.51 ± 0.45de | 4.07 ± 0.09de | 7.05 ± 0.03cd | 4.96 ± 0.84h |
大花嵩草草地 C. nudicarpa grassland | 9.06 ± 0.28ef | 1.24 ± 0.03ghi | 0.61 ± 0.01ef | 2.13 ± 0.34c | 3.78 ± 0.42de | 7.22 ± 0.15bc | 8.16 ± 0.06b | 4.30 ± 0.28h |
羊草-短花针茅草地 Leymus chinensis - S. breviflora grassland | 18.20 ± 0.30de | 2.17 ± 0.03defg | 0.42 ± 0.01hi | 1.46 ± 0.19c | 32.35 ± 0.99cd | 2.66 ± 0.10de | 7.18 ± 0.02cd | 10.32 ± 0.36gh |
短花针茅-冷蒿草地 S. breviflora - Artemisia frigida grassland | 14.18 ± 0.33def | 1.68 ± 0.03fgh | 0.39 ± 0.01i | 2.24 ± 0.44c | 11.51 ± 0.42de | 2.49 ± 0.12de | 6.80 ± 0.05d | 4.22 ± 0.11h |
羊草-糙隐子草草地 L. chinensis - Cleistogenes squarrosa grassland | 23.44 ± 1.16cd | 2.54 ± 0.11def | 0.47 ± 0.01gh | 2.80 ± 0.36c | 3.19 ± 0.26de | 8.58 ± 0.45b | 7.27 ± 0.03c | 4.93 ± 0.18h |
大针茅草地 S. grandis grassland | 18.32 ± 0.34de | 2.10 ± 0.04defg | 0.37 ± 0.02i | 1.84 ± 0.15c | 4.56 ± 0.29de | 3.36 ± 0.22de | 6.88 ± 0.03d | 5.27 ± 0.18h |
羊草-狼针草草地 L. chinensis - S. baicalensis grassland | 34.50 ± 1.40c | 3.14 ± 0.12d | 0.54 ± 0.01fg | 3.58 ± 0.23c | 42.29 ± 3.10bc | 3.24 ± 0.27de | 6.48 ± 0.07e | 26.76 ± 0.93bcd |
狼针草草地 S. baicalensis grassland | 61.72 ± 1.81b | 5.77 ± 0.16ab | 0.89 ± 0.02b | 47.99 ± 11.17a | 40.09 ± 5.55c | 16.28 ± 1.32a | 6.54 ± 0.02e | 24.63 ± 0.81cde |
表3 不同草地类型土壤理化特征 (平均值±标准差)
Table 3 Soil physicochemical properties of different grassland types (mean ± SD)
草地类型 Grassland type | TC (g·kg-1) | TN (g·kg-1) | TP (g·kg-1) | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | AP (mg·kg-1) | pH | 土壤含水率 Soil water content (%) |
---|---|---|---|---|---|---|---|---|
高山嵩草-垂穗披碱草草地 Carex parvula - Elymus nutans grassland | 13.70 ± 1.17def | 1.40 ± 0.10fghi | 0.54 ± 0.03fg | 1.80 ± 0.30c | 1.13 ± 0.36e | 0.95 ± 0.14e | 6.47 ± 0.08e | 13.44 ± 1.67fgh |
高山嵩草-圆穗蓼草地 C. parvula - Bistorta macrophylla grassland | 52.92 ± 1.15b | 4.57 ± 0.08c | 0.77 ± 0.02c | 22.51 ± 4.72b | 2.53 ± 0.29de | 4.46 ± 0.07cd | 6.23 ± 0.04ef | 34.86 ± 1.22ab |
蕨麻草地 Argentina anserina grassland | 59.90 ± 0.47b | 2.94 ± 0.04de | 0.67 ± 0.04de | 2.05 ± 0.29c | 42.20 ± 2.75bc | 4.73 ± 0.18cd | 7.93 ± 0.02b | 20.46 ± 0.47def |
高山早熟禾草地 Poa alpina grassland | 59.88 ± 8.07b | 4.94 ± 0.57bc | 0.81 ± 0.04c | 11.15 ± 4.20c | 67.73 ± 36.92b | 8.71 ± 0.58b | 5.97 ± 0.36fg | 31.59 ± 6.07abc |
西藏嵩草草地 C. tibetikobresia grassland | 61.66 ± 15.45b | 5.49 ± 1.40abc | 0.73 ± 0.08cd | 10.54 ± 2.40c | 23.58 ± 3.74cde | 8.49 ± 3.88b | 6.25 ± 0.11ef | 33.70 ± 7.89abc |
垂穗披碱草草地 E. nutans grassland | 76.54 ± 3.34a | 6.56 ± 0.27a | 1.10 ± 0.01a | 9.34 ± 1.03c | 197.20 ± 5.05a | 9.79 ± 0.11b | 5.79 ± 0.02g | 38.18 ± 1.29a |
火绒草草地 Leontopodium leontopodioides grassland | 22.88 ± 0.35cde | 2.04 ± 0.03defgh | 0.56 ± 0.02f | 3.25 ± 0.47c | 6.60 ± 0.76de | 1.98 ± 0.08de | 5.85 ± 0.08g | 16.65 ± 0.70def |
紫花针茅草地 Stipa purpurea grassland | 13.98 ± 0.81def | 0.85 ± 0.06hi | 0.37 ± 0.01i | 1.89 ± 0.29c | 7.71 ± 0.49de | 3.44 ± 0.16de | 7.86 ± 0.10b | 4.78 ± 0.91h |
紫花针茅-青藏薹草草地 S. purpurea - C. moorcroftii grassland | 18.40 ± 0.41de | 1.89 ± 0.07efgh | 0.22 ± 0.01j | 1.69 ± 0.08c | 5.70 ± 0.30de | 1.74 ± 0.11de | 8.58 ± 0.02a | 4.91 ± 0.67h |
沙生薹草草地 C. praeclara grassland | 4.16 ± 0.39f | 0.47 ± 0.02i | 0.26 ± 0.02j | 1.33 ± 0.12c | 1.08 ± 0.17e | 2.83 ± 0.06de | 8.16 ± 0.06b | 11.24 ± 7.10gh |
丝颖针茅草地 S. capillacea grassland | 14.70 ± 0.62def | 1.50 ± 0.05fghi | 0.52 ± 0.01fg | 4.05 ± 0.61c | 5.51 ± 0.45de | 4.07 ± 0.09de | 7.05 ± 0.03cd | 4.96 ± 0.84h |
大花嵩草草地 C. nudicarpa grassland | 9.06 ± 0.28ef | 1.24 ± 0.03ghi | 0.61 ± 0.01ef | 2.13 ± 0.34c | 3.78 ± 0.42de | 7.22 ± 0.15bc | 8.16 ± 0.06b | 4.30 ± 0.28h |
羊草-短花针茅草地 Leymus chinensis - S. breviflora grassland | 18.20 ± 0.30de | 2.17 ± 0.03defg | 0.42 ± 0.01hi | 1.46 ± 0.19c | 32.35 ± 0.99cd | 2.66 ± 0.10de | 7.18 ± 0.02cd | 10.32 ± 0.36gh |
短花针茅-冷蒿草地 S. breviflora - Artemisia frigida grassland | 14.18 ± 0.33def | 1.68 ± 0.03fgh | 0.39 ± 0.01i | 2.24 ± 0.44c | 11.51 ± 0.42de | 2.49 ± 0.12de | 6.80 ± 0.05d | 4.22 ± 0.11h |
羊草-糙隐子草草地 L. chinensis - Cleistogenes squarrosa grassland | 23.44 ± 1.16cd | 2.54 ± 0.11def | 0.47 ± 0.01gh | 2.80 ± 0.36c | 3.19 ± 0.26de | 8.58 ± 0.45b | 7.27 ± 0.03c | 4.93 ± 0.18h |
大针茅草地 S. grandis grassland | 18.32 ± 0.34de | 2.10 ± 0.04defg | 0.37 ± 0.02i | 1.84 ± 0.15c | 4.56 ± 0.29de | 3.36 ± 0.22de | 6.88 ± 0.03d | 5.27 ± 0.18h |
羊草-狼针草草地 L. chinensis - S. baicalensis grassland | 34.50 ± 1.40c | 3.14 ± 0.12d | 0.54 ± 0.01fg | 3.58 ± 0.23c | 42.29 ± 3.10bc | 3.24 ± 0.27de | 6.48 ± 0.07e | 26.76 ± 0.93bcd |
狼针草草地 S. baicalensis grassland | 61.72 ± 1.81b | 5.77 ± 0.16ab | 0.89 ± 0.02b | 47.99 ± 11.17a | 40.09 ± 5.55c | 16.28 ± 1.32a | 6.54 ± 0.02e | 24.63 ± 0.81cde |
图2 不同草地类型丛枝菌根真菌群落组成和优势可操作分类单元(OTU)、稀有OTU占比。AA, 蕨麻草地; CN, 大花嵩草草地; CP, 沙生薹草草地; CP-BM, 高山嵩草-圆穗蓼草地; CP-EN, 高山嵩草-垂穗披碱草草地; CT, 西藏嵩草草地; EN, 垂穗披碱草草地; LC-CS, 羊草-糙隐子草草地; LC-SB, 羊草-短花针茅草地; LC-SBA, 羊草-狼针草草地; LL, 火绒草草地; PA, 高山早熟禾草地; SB, 狼针草草地; SB-AF, 短花针茅-冷蒿草地; SC, 丝颖针茅草地; SG, 大针茅草地; SP, 紫花针茅草地; SP-CM, 紫花针茅-青藏薹草草地。
Fig. 2 Arbuscular mycorrhizal fungi community composition and relative abundance of dominant operational taxonomic units (OTUs), rare OTUs in different grassland types. AA, Argentina anserina grassland; CN, Carex nudicarpa grassland; CP, C. praeclara grassland; CP-BM, C. parvulae - Bistorta macrophylla grassland; CP-EN, C. parvulae - Elymus nutans grassland; CT, C. tibetikobresia grassland; EN, E. nutans grassland; LC-CS, Leymus chinensis - Cleistogenes squarrosa grassland; LC-SB, L. chinensis - S. breviflora grassland; LC-SBA, L. chinensis - Stipa baicalensis grassland; LL, Leontopodium leontopodioides grassland; PA, Poa alpina grassland; SB, S. baicalensis grassland; SB-AF, S. breviflora - Artemisia frigida grassland; SC, S. capillacea grassland; SG, S. grandis grassland; SP, S. purpurea grassland; SP-CM, S. purpurea - C. moorcroftii grassland.
草地类型 Grassland type | 可操作分类单元 OTUs | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Simpson多样性指数 Simpson diversity index | Pielou均匀度指数 Pielou evenness index |
---|---|---|---|---|
高山嵩草-垂穗披碱草草地 Carex parvula - Elymus nutans grassland | 115.00 ± 9.59cdef | 2.82 ± 0.42bcd | 0.85 ± 0.06abcd | 0.59 ± 0.078def |
高山嵩草-圆穗蓼草地 C. parvula - Bistorta macrophylla grassland | 137.80 ± 3.26abc | 3.91 ± 0.03a | 0.96 ± 0.01a | 0.79 ± 0.01abc |
蕨麻草地 Argentina anserina grassland | 148.00 ± 2.28ab | 3.58 ± 0.33ab | 0.92 ± 0.04abc | 0.72 ± 0.07bcde |
高山早熟禾草地 Poa alpina grassland | 137.80 ± 14.98abc | 3.38 ± 0.24abc | 0.91 ± 0.02abc | 0.69 ± 0.05bcde |
西藏嵩草草地 C. tibetikobresia grassland | 147.40 ± 7.35ab | 4.05 ± 0.09a | 0.97 ± 0.01a | 0.81 ± 0.01ab |
垂穗披碱草草地 E. nutans grassland | 126.40 ± 14.80bcd | 2.75 ± 0.27cd | 0.86 ± 0.03abcd | 0.57 ± 0.05def |
火绒草草地 Leontopodium leontopodioides grassland | 112.40 ± 9.09cdef | 2.41 ± 0.19d | 0.84 ± 0.02bcd | 0.51 ± 0.03f |
紫花针茅草地 Stipa purpurea grassland | 161.40 ± 9.84a | 4.08 ± 0.06a | 0.97 ± 0.01a | 0.80 ± 0.01abc |
紫花针茅-青藏薹草草地 S. purpurea - C. moorcroftii grassland | 120.40 ± 3.91bcdef | 2.46 ± 0.12d | 0.83 ± 0.02cd | 0.51 ± 0.03f |
沙生薹草草地 C. praeclara grassland | 59.75 ± 19.40g | 3.02 ± 0.47cd | 0.84 ± 0.09d | 0.77 ± 0.13bcdef |
丝颖针茅草地 S. capillacea grassland | 140.00 ± 8.24abc | 2.73 ± 0.29cd | 0.87 ± 0.03abcd | 0.55 ± 0.06ef |
大花嵩草草地 C. nudicarpa grassland | 57.20 ± 13.63g | 2.97 ± 0.56abc | 0.85 ± 0.09abc | 0.80 ± 0.13a |
羊草-短花针茅草地 Leymus chinensis - S. breviflora grassland | 92.25 ± 8.29f | 2.78 ± 0.23bcd | 0.85 ± 0.03abcd | 0.62 ± 0.05cdef |
短花针茅-冷蒿草地 S. breviflora - Artemisia frigida grassland | 122.75 ± 7.81bcde | 3.99 ± 0.19a | 0.96 ± 0.01a | 0.83 ± 0.03ab |
羊草-糙隐子草草地 L. chinensis - Cleistogenes squarrosa grassland | 125.25 ± 3.00bcde | 3.84 ± 0.07a | 0.95 ± 0.01ab | 0.80 ± 0.02abc |
大针茅草地 S. grandis grassland | 106.00 ± 6.32def | 3.28 ± 0.14abc | 0.89 ± 0.02abc | 0.70 ± 0.03bcd |
羊草-狼针草草地 L. chinensis - S. baicalensis grassland | 94.25 ± 5.25ef | 3.67 ± 0.11a | 0.95 ± 0.01abc | 0.81 ± 0.01ab |
狼针草草地 S. baicalensis grassland | 114.75 ± 4.93cdef | 3.29 ± 0.17abc | 0.89 ± 0.02abc | 0.69 ± 0.04bcde |
表4 不同草地类型土壤丛枝菌根真菌群落α多样性 (平均值±标准差)
Table 4 Arbuscular mycorrhizal fungal community α-diversity of different grassland types (mean ± SD)
草地类型 Grassland type | 可操作分类单元 OTUs | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Simpson多样性指数 Simpson diversity index | Pielou均匀度指数 Pielou evenness index |
---|---|---|---|---|
高山嵩草-垂穗披碱草草地 Carex parvula - Elymus nutans grassland | 115.00 ± 9.59cdef | 2.82 ± 0.42bcd | 0.85 ± 0.06abcd | 0.59 ± 0.078def |
高山嵩草-圆穗蓼草地 C. parvula - Bistorta macrophylla grassland | 137.80 ± 3.26abc | 3.91 ± 0.03a | 0.96 ± 0.01a | 0.79 ± 0.01abc |
蕨麻草地 Argentina anserina grassland | 148.00 ± 2.28ab | 3.58 ± 0.33ab | 0.92 ± 0.04abc | 0.72 ± 0.07bcde |
高山早熟禾草地 Poa alpina grassland | 137.80 ± 14.98abc | 3.38 ± 0.24abc | 0.91 ± 0.02abc | 0.69 ± 0.05bcde |
西藏嵩草草地 C. tibetikobresia grassland | 147.40 ± 7.35ab | 4.05 ± 0.09a | 0.97 ± 0.01a | 0.81 ± 0.01ab |
垂穗披碱草草地 E. nutans grassland | 126.40 ± 14.80bcd | 2.75 ± 0.27cd | 0.86 ± 0.03abcd | 0.57 ± 0.05def |
火绒草草地 Leontopodium leontopodioides grassland | 112.40 ± 9.09cdef | 2.41 ± 0.19d | 0.84 ± 0.02bcd | 0.51 ± 0.03f |
紫花针茅草地 Stipa purpurea grassland | 161.40 ± 9.84a | 4.08 ± 0.06a | 0.97 ± 0.01a | 0.80 ± 0.01abc |
紫花针茅-青藏薹草草地 S. purpurea - C. moorcroftii grassland | 120.40 ± 3.91bcdef | 2.46 ± 0.12d | 0.83 ± 0.02cd | 0.51 ± 0.03f |
沙生薹草草地 C. praeclara grassland | 59.75 ± 19.40g | 3.02 ± 0.47cd | 0.84 ± 0.09d | 0.77 ± 0.13bcdef |
丝颖针茅草地 S. capillacea grassland | 140.00 ± 8.24abc | 2.73 ± 0.29cd | 0.87 ± 0.03abcd | 0.55 ± 0.06ef |
大花嵩草草地 C. nudicarpa grassland | 57.20 ± 13.63g | 2.97 ± 0.56abc | 0.85 ± 0.09abc | 0.80 ± 0.13a |
羊草-短花针茅草地 Leymus chinensis - S. breviflora grassland | 92.25 ± 8.29f | 2.78 ± 0.23bcd | 0.85 ± 0.03abcd | 0.62 ± 0.05cdef |
短花针茅-冷蒿草地 S. breviflora - Artemisia frigida grassland | 122.75 ± 7.81bcde | 3.99 ± 0.19a | 0.96 ± 0.01a | 0.83 ± 0.03ab |
羊草-糙隐子草草地 L. chinensis - Cleistogenes squarrosa grassland | 125.25 ± 3.00bcde | 3.84 ± 0.07a | 0.95 ± 0.01ab | 0.80 ± 0.02abc |
大针茅草地 S. grandis grassland | 106.00 ± 6.32def | 3.28 ± 0.14abc | 0.89 ± 0.02abc | 0.70 ± 0.03bcd |
羊草-狼针草草地 L. chinensis - S. baicalensis grassland | 94.25 ± 5.25ef | 3.67 ± 0.11a | 0.95 ± 0.01abc | 0.81 ± 0.01ab |
狼针草草地 S. baicalensis grassland | 114.75 ± 4.93cdef | 3.29 ± 0.17abc | 0.89 ± 0.02abc | 0.69 ± 0.04bcde |
图3 不同草地类型土壤丛枝菌根真菌群落β多样性。AA, 蕨麻草地; CN, 大花嵩草草地; CP, 沙生薹草草地; CP-BM, 高山嵩草-圆穗蓼草地; CP-EN, 高山嵩草-垂穗披碱草草地; CT, 西藏嵩草草地; EN, 垂穗披碱草草地; LC-CS, 羊草-糙隐子草草地; LC-SB, 羊草-短花针茅草地; LC-SBA, 羊草-狼针草草地; LL, 火绒草草地; PA, 高山早熟禾草地; SB, 狼针草草地; SB-AF, 短花针茅-冷蒿草地; SC, 丝颖针茅草地; SG, 大针茅草地; SP, 紫花针茅草地; SP-CM, 紫花针茅-青藏薹草草地。Stress, 应力值。
Fig. 3 Arbuscular mycorrhizal community β-diversity of different grassland types. AA, Argentina anserina grassland; CN, Carex nudicarpa grassland; CP, C. praeclara grassland; CP-BM, C. parvulae - Bistorta macrophylla grassland; CP-EN, C. parvulae - Elymus nutans grassland; CT, C. tibetikobresia grassland; EN, E. nutans grassland; LC-CS, Leymus chinensis - Cleistogenes squarrosa grassland; LC-SB, L. chinensis - S. breviflora grassland; LC-SBA, L. chinensis - Stipa baicalensis grassland; LL, Leontopodium leontopodioides grassland; PA, Poa alpina grassland; SB, S. baicalensis grassland; SB-AF, S. breviflora - Artemisia frigida grassland; SC, S. capillacea grassland; SG, S. grandis grassland; SP, S. purpurea grassland; SP-CM, S. purpurea - C. moorcroftii grassland.
图4 不同草地类型土壤丛枝菌根真菌群落特征的驱动因素。黑色实线为显著影响; 灰色虚线为不显著影响; 黑色实线上数字代表路径系数; *, p < 0.05; **, p < 0.01。Chi/df, 卡方/自由度; GFI, 适配度指数; RMSEA, 近似均方根误差。
Fig. 4 Final structural equation for arbuscular mycorrhizal fungal community diversity and composition affected by environmental variables. Black full lines represent significant affect paths; gray dotted lines represent unsignificant affect paths; the number on black full lines represent path coefficient; *, p < 0.05; **, p < 0.01. Chi/df, chi-square/degree of freedom; GFI, goodness of fit index; RMSEA, root mean square error of approximation.
[1] | Aguilera P, Cornejo P, Borie F, Barea JM, von Baer E, Oehl F (2014). Diversity of arbuscular mycorrhizal fungi associated with Triticum aestivum L. plants growing in an Andosol with high aluminum level. Agriculture, Ecosystems & Environment, 186, 178-184. |
[2] | Baar J (2010). Restoration of plant communities in the Netherlands through the application of arbuscular mycorrhizal fungi. Symbiosis, 52, 87-94. |
[3] | Bainard LD, Chagnon PL, Cade-Menun BJ, Lamb EG, LaForge K, Schellenberg M, Hamel C (2017). Plant communities and soil properties mediate agricultural land use impacts on arbuscular mycorrhizal fungi in the mixed prairie ecoregion of the North American Great Plains. Agriculture, Ecosystems & Environment, 249, 187-195. |
[4] | Barceló M, van Bodegom PM, Soudzilovskaia NA (2019). Climate drives the spatial distribution of mycorrhizal host plants in terrestrial ecosystems. Journal of Ecology, 107, 2564-2573. |
[5] |
Bever JD (2003). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157, 465-473.
DOI PMID |
[6] |
Bever JD, Platt TG, Morton ER (2012). Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annual Review of Microbiology, 66, 265-283.
DOI PMID |
[7] | Bever JD, Westover KM, Antonovics J (1997). Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology, 85, 561-573. |
[8] | Cavagnaro TR (2016). Soil moisture legacy effects: impacts on soil nutrients, plants and mycorrhizal responsiveness. Soil Biology & Biochemistry, 95, 173-179. |
[9] | Chaudhary VB, O’Dell TE, Rillig MC, Johnson NC (2014). Multiscale patterns of arbuscular mycorrhizal fungal abundance and diversity in semiarid shrublands. Fungal Ecology, 12, 32-43. |
[10] | Chen KY, Zhang J, Muneer MA, Xue K, Niu HS, Ji BM (2023). Plant community and soil available nutrients drive arbuscular mycorrhizal fungal community shifts during alpine meadow degradation. Fungal Ecology, 62, 101211. DOI: 10.1016/j.funeco.2022.101211. |
[11] |
Davison J, García de León D, Zobel M, Moora M, Bueno CG, Barceló M, Gerz M, León D, Meng YM, Pillar VD, Sepp SK, Soudzilovaskaia NA, Tedersoo L, Vaessen S, et al. (2020). Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. New Phytologist, 226, 1117-1128.
DOI PMID |
[12] |
Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, et al. (2015). Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 349, 970-973.
DOI PMID |
[13] | de la Sota-Ricaldi AM, Rengifo del Águila S, Blas Sevillano R, López-García Á, Corazon-Guivin MA (2023). Beta diversity of arbuscular mycorrhizal communities increases in time after crop establishment of Peruvian Sacha inchi (Plukenetia volubilis). Journal of Fungi, 9, 194. DOI: 10.3390/jof9020194. |
[14] |
Elliott AJ, Daniell TJ, Cameron DD, Field KJ (2021). A commercial arbuscular mycorrhizal inoculum increases root colonization across wheat cultivars but does not increase assimilation of mycorrhiza-acquired nutrients. Plants, People, Planet, 3, 588-599.
DOI PMID |
[15] |
Fei SL, Kivlin SN, Domke GM, Jo I, LaRue EA, Phillips RP (2022). Coupling of plant and mycorrhizal fungal diversity: its occurrence, relevance, and possible implications under global change. New Phytologist, 234, 1960-1966.
DOI PMID |
[16] | Frew A, Heuck MK, Aguilar-Trigueros CA (2023). Host filtering, not competitive exclusion, may be the main driver of arbuscular mycorrhizal fungal community assembly under high phosphorus. Functional Ecology, 37, 1856-1869. |
[17] |
Fuchs B, Haselwandter K (2004). Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza, 14, 277-281.
PMID |
[18] | Gao C, Kim YC, Zheng Y, Yang W, Chen L, Ji NN, Wan SQ, Guo LD (2016). Increased precipitation, rather than warming, exerts a strong influence on arbuscular mycorrhizal fungal community in a semiarid steppe ecosystem. Botany, 94, 459-469. |
[19] | Guo X, Wang Z, Zhang J, Wang P, Li YM, Ji BM (2021). Host-specific effects of arbuscular mycorrhizal fungi on two Caragana species in desert grassland. Journal of Fungi, 7, 1077. DOI: 10.3390/jof7121077. |
[20] | He YJ, Jiang CH, Yang H, Wang YJ, Zhong ZC (2017). Arbuscular mycorrhizal fungal composition affects the growth and nutrient acquisition of two plants from a karst area. Sains Malaysiana, 46, 1701-1708. |
[21] | Jamiołkowska A, Księżniak A, Gałązka A, Hetman B, Kopacki M, Skwaryło-Bednarz B (2018). Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a review. International Agrophysics, 32, 133-140. |
[22] |
Ji BM, Bentivenga SP, Casper BB (2010). Evidence for ecological matching of whole AM fungal communities to the local plant-soil environment. Ecology, 91, 3037-3046.
PMID |
[23] | Ji BM, Bever JD (2016). Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism. Ecosphere, 7, e01256. DOI: 10.1002/ecs2.1256. |
[24] |
Ji MK, Kong WD, Stegen J, Yue LY, Wang F, Dong XB, Cowan DA, Ferrari BC (2020). Distinct assembly mechanisms underlie similar biogeographical patterns of rare and abundant bacteria in Tibetan Plateau grassland soils. Environmental Microbiology, 22, 2261-2272.
DOI PMID |
[25] |
Johnson D, Martin F, Cairney JWG, Anderson IC (2012). The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New Phytologist, 194, 614-628.
DOI PMID |
[26] |
Kokkoris V, Li YL, Hamel C, Hanson K, Hart M (2019). Site specificity in establishment of a commercial arbuscular mycorrhizal fungal inoculant. Science of the Total Environment, 660, 1135-1143.
DOI |
[27] |
Koziol L, Bever JD (2019). Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. Journal of Ecology, 107, 622-632.
DOI |
[28] | Kytöviita MM, Ruotsalainen AL (2007). Mycorrhizal benefit in two low arctic herbs increases with increasing temperature. American Journal of Botany, 94, 1309-1315. |
[29] |
Lee J, Lee SS, Young JPW (2008). Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 65, 339-349.
DOI PMID |
[30] |
Lenoir I, Fontaine J, Lounès-Hadj Sahraoui A (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry, 123, 4-15.
DOI PMID |
[31] |
Liu M, Zheng R, Bai SL, Bai Y, Wang JG (2017). Slope aspect influences arbuscular mycorrhizal fungus communities in arid ecosystems of the Daqingshan Mountains, Inner Mongolia, North China. Mycorrhiza, 27, 189-200.
DOI PMID |
[32] |
Liu YJ, He JX, Shi GX, An LZ, Öpik M, Feng HY (2011). Diverse communities of arbuscular mycorrhizal fungi inhabit sites with very high altitude in Tibet Plateau. FEMS Microbiology Ecology, 78, 355-365.
DOI PMID |
[33] |
Liu YJ, Shi GX, Mao L, Cheng G, Jiang SJ, Ma XJ, An LZ, Du GZ, Johnson NC, Feng HY (2012). Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist, 194, 523-535.
DOI PMID |
[34] | López-García Á, Palenzuela J, Barea JM, Azcón-Aguilar C (2014). Life-history strategies of arbuscular mycorrhizal fungi determine succession into roots of Rosmarinus officinalis L., a characteristic woody perennial plant species from Mediterranean ecosystems. Plant and Soil, 379, 247-260. |
[35] | Lu XL, Lu XN, Liao YC (2018). Effect of tillage treatment on the diversity of soil arbuscular mycorrhizal fungal and soil aggregate-associated carbon content. Frontiers in Microbiology, 9, 2986. DOI: 10.3389/fmicb.2018.02986. |
[36] | Luan L, Jiang YJ, Dini-Andreote F, Crowther TW, Li PF, Bahram M, Zheng J, Xu QS, Zhang XX, Sun B (2023). Integrating pH into the metabolic theory of ecology to predict bacterial diversity in soil. Proceedings of the National Academy of Sciences of the United States of America, 120, e2207832120. DOI: 10.1073/pnas.2207832120. |
[37] | Luo X, Su XL, Cui JM, Lou Y, Li R, Luo XM, Zeng YQ, Xu YB, Dong JY (2016). Biodiversity of arbuscular mycorrhizal fungi in the drawdown zone of the Three Gorges Reservoir under different fertilization histories. Ecological Research, 31, 407-416. |
[38] | Luo YF, Wang ZK, He YL, Li GF, Lv XH, Zhuang L (2020). High-throughput sequencing analysis of the rhizosphere arbuscular mycorrhizal fungi (AMF) community composition associated with Ferula sinkiangensis. BMC Microbiology, 20, 335. DOI: 10.1186/s12866-020-02024-x. |
[39] | Ma XC, Xu X, Geng QH, Luo YQ, Ju CH, Li Q, Zhou Y (2023). Global arbuscular mycorrhizal fungal diversity and abundance decreases with soil available phosphorus. Global Ecology and Biogeography, 32, 1423-1434. |
[40] |
Martínez-García LB, Richardson SJ, Tylianakis JM, Peltzer DA, Dickie IA (2015). Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytologist, 205, 1565-1576.
DOI PMID |
[41] | Menzel A, Hempel S, Manceur AM, Götzenberger L, Moora M, Rillig MC, Zobel M, Kühn I (2016). Distribution patterns of arbuscular mycorrhizal and non-mycorrhizal plant species in Germany. Perspectives in Plant Ecology, Evolution and Systematics, 21, 78-88. |
[42] | Muneer MA, Wang P, Zhang J, Li YM, Munir MZ, Ji BM (2020). Formation of common mycorrhizal networks significantly affects plant biomass and soil properties of the neighboring plants under various nitrogen levels. Microrganisms, 8, 230. DOI: 10.3390/microorganisms8020230. |
[43] |
Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME, Liira J, Metsis M, Neshataeva V, Paal J, Phosri C, et al. (2013). Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza, 23, 411-430.
DOI PMID |
[44] |
Powell JR, Rillig MC (2018). Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist, 220, 1059-1075.
DOI PMID |
[45] | Ramana JV, Tylianakis JM, Ridgway HJ, Dickie IA (2023). Root diameter, host specificity and arbuscular mycorrhizal fungal community composition among native and exotic plant species. New Phytologist, 239, 301-310. |
[46] | Sarr PS, Sugiyama A, Begoude ADB, Yazaki K, Araki S, Nawata E (2019). Diversity and distribution of Arbuscular Mycorrhizal Fungi in cassava (Manihot esculenta Crantz) croplands in Cameroon as revealed by Illumina MiSeq. Rhizosphere, 10, 100147. DOI: 10.1016/j.rhisph.2019.100147. |
[47] | Sato K, Suyama Y, Saito M, Sugawara K (2005). A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassland Science, 51, 179-181. |
[48] | Staddon PL, Thompson K, Jakobsen I, Grime JP, Askew AP, Fitter AH (2003). Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Global Change Biology, 9, 186-194. |
[49] | Sun XF, Su YY, Zhang Y, Wu MY, Zhang Z, Pei KQ, Sun LF, Wan SQ, Liang Y (2013). Diversity of arbuscular mycorrhizal fungal spore communities and its relations to plants under increased temperature and precipitation in a natural grassland. Chinese Science Bulletin, 58, 4109-4119. |
[50] |
Thonar C, Frossard E, Šmilauer P, Jansa J (2014). Competition and facilitation in synthetic communities of arbuscular mycorrhizal fungi. Molecular Ecology, 23, 733-746.
DOI PMID |
[51] | Urcelay C, Díaz S (2003). The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letters, 6, 388-391. |
[52] | van Geel M, De Beenhouwer M, Lievens B, Honnay O (2016). Crop-specific and single-species mycorrhizal inoculation is the best approach to improve crop growth in controlled environments. Agronomy for Sustainable Development, 36, 37. DOI: 10.1007/s13593-016-0373-y. |
[53] |
Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111, 5266-5270.
DOI PMID |
[54] |
Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA (2011). Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology, 92, 1303-1313.
PMID |
[55] |
Wang B, Qiu YL (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299-363.
PMID |
[56] | Wang GM, Stribley DP, Tinker PB, Walker C (1993). Effects of pH on arbuscular mycorrhiza I. Field observations on the long-term liming experiments at Rothamsted and Woburn. New Phytologist, 124, 465-472. |
[57] | Wang J, Yang CX, Sun XM, Zhang HO, Guo Z, Cao TT, Li J (2021). Growth responses of Sorghum bicolor (L.) Moench to arbuscular mycorrhizal fungi under simulated nitrogen deposition. Bangladesh Journal of Botany, 50, 933-938. |
[58] | Wu E, Li ZX, Zhang Y, Wang CM, Yun JF (2009). Effect of grassland degradation on arbuscular mycorrhizal symbiosis of Leymus chinensis (Trin.) Tzvel. in typical steppe. Acta Agrestia Sinica, 17, 731-734. |
[乌恩, 李重祥, 张宇, 王聪明, 云锦凤 (2009). 草原退化对典型草原羊草菌根共生的影响. 草地学报, 17, 731-734.]
DOI |
|
[59] | Wu H, Yang J, Fu W, Rillig MC, Cao Z, Zhao A, Hao Z, Zhang X, Chen B, Han X (2023). Identifying thresholds of nitrogen enrichment for substantial shifts in arbuscular mycorrhizal fungal community metrics in a temperate grassland of Northern China. New Phytologist, 237, 279-294. |
[60] | Xiao D, Chen Y, He XY, Xu ZH, Hosseini Bai S, Zhang W, Cheng M, Hu PL, Wang KL (2021). Temperature and precipitation significantly influence the interactions between arbuscular mycorrhizal fungi and diazotrophs in karst ecosystems. Forest Ecology and Management, 497, 119464. DOI: 10.1016/j.foreco.2021.119464. |
[61] | Xiao D, Liu X, Yang R, Tan YJ, Zhang W, Deng CX, He XY, Wang KL (2020). Nitrogen input through chemical and biological pathway affects arbuscular mycorrhizal fungal communities in forage grass cultivation in southwest China. Applied Soil Ecology, 150, 103454. DOI: 10.1016/j.apsoil.2019.103454. |
[62] | Yang L, Liu Y, Sui X, Zhang T, Xu N, Ni H, Wu Y (2018). Effects of different land uses on community structure of soil arbuscular mycorrhizal fungi in sanjiang wetlands. Bangladesh Journal of Botany, 47, 689-697. |
[63] | Ye XH, Li JQ, Ma JH, Fan QF, Yu N, Zhang YL, Zou HT, Zhang YL (2023). Drip irrigation at a soil water suction of 30 kPa helps AMF and GRSP to enhance greenhouse macro-aggregates. Agronomy, 13, 522. DOI: 10.3390/agronomy13020522. |
[64] | Zhang L, Zhou J, George TS, Limpens E, Feng G (2022). Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends in Plant Science, 27, 402-411. |
[65] | Zhong R, Xia C, Ju YW, Zhang XX, Duan TY, Nan ZB, Li CJ (2021). A foliar Epichloë endophyte and soil moisture modified belowground arbuscular mycorrhizal fungal biodiversity associated with Achnatherum inebrians. Plant and Soil, 458, 105-122. |
[66] | Zhou ZH, Wang CK, Luo YQ (2020). Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 11, 3072. DOI: 10.1038/s41467-020-16881-7. |
[1] | 胡蝶, 蒋欣琪, 戴志聪, 陈戴一, 张雨, 祁珊珊, 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[2] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[3] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[4] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[5] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[6] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[7] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[8] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[9] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[10] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[11] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[12] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[13] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[14] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[15] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19