植物生态学报 ›› 2025, Vol. 49 ›› Issue (6): 922-938.DOI: 10.17521/cjpe.2024.0160  cstr: 32100.14.cjpe.2024.0160

• 研究论文 • 上一篇    下一篇

黄河三角洲湿地入侵物种互花米草时空演化与景观格局分析

段俊丞, 王志勇*(), 高维聪, 张成凯, 高长宏, 刘晓彤, 李振今   

  1. 山东科技大学测绘与空间信息学院, 山东青岛 266590
  • 收稿日期:2024-05-16 接受日期:2024-09-28 出版日期:2025-06-20 发布日期:2024-09-29
  • 通讯作者: *王志勇(wzywlp@163.com)
  • 基金资助:
    国家自然科学基金(41876202);国家级大学生创新创业计划(202111031101)

Spatiotemporal evolution and landscape pattern analysis of the invasive species Spartina alterniflora in the Yellow River Delta wetland

DUAN Jun-Cheng, WANG Zhi-Yong*(), GAO Wei-Cong, ZHANG Cheng-Kai, GAO Chang-Hong, LIU Xiao-Tong, LI Zhen-Jin   

  1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
  • Received:2024-05-16 Accepted:2024-09-28 Online:2025-06-20 Published:2024-09-29
  • Contact: *WANG Zhi-Yong(wzywlp@163.com)
  • Supported by:
    Supported by the National Natural Science Foundation of China(41876202);National Undergraduate Innovation and Entrepreneurship Training(202111031101)

摘要: 近年来, 随着入侵物种——互花米草(Spartina alterniflora)的爆发, 黄河三角洲自然保护区的湿地生态系统的结构和功能受到了严重破坏, 分析长时序互花米草入侵特征及其景观格局变化具有重要生态价值。该研究以长时序Landsat光学遥感影像为数据源, 以黄河三角洲湿地为实验区, 基于支持向量机分类算法获取了2000-2022年的黄河三角洲湿地植被类型信息, 在此基础上揭示湿地的时空动态变化, 联合8种景观格局指数, 探究互花米草的爆发特征, 分析互花米草的空间格局、演变特点和生态因子。结果表明: (1)研究获取的23个时期的地物提取结果的平均总体精度为88.60%, 平均Kappa系数为0.85。支持向量机算法具有高于其他传统机器学习方法的分类精度, 其结果可以较好地满足湿地演化机理分析需求; (2)长时序湿地演化结果表明, 互花米草的扩张呈现出明显的阶段性特征: 2002-2010年, 互花米草扩张速度缓慢; 自2010年开始, 互花米草在黄河入海口两侧的扩张进入爆发期, 到2012年面积增长至22.63 km2, 2012-2021年间互花米草面积持续稳定增长, 至2021年, 互花米草的面积扩张至最大, 达到50.42 km2。景观格局指数的变化表明, 研究区内互花米草表现出较高的生态优势。破碎的互花米草斑块不断聚集连接, 逐渐入侵湿地本土植被并与其他植被群落形成了交错分布的空间格局; (3)黄河三角洲互花米草的扩张, 与水热条件、日照时间、地形与滩涂环境等多种自然因素表现出较高的相关性, 其中, 日照情况、离海距离与互花米草的生长极显著相关。研究结果可为相关部门在黄河三角洲自然保护区湿地合理利用以及互花米草治理和清除方面提供数据参考。

关键词: 互花米草, 长时序遥感监测, 黄河三角洲, 湿地分类, 演化机理分析

Abstract:

Aims In recent years, the invasion of Spartina alterniflora has caused significant damage to the structure and function of the wetland ecosystem in the Yellow River Delta Nature Reserve. Analyzing the invasion characteristics and landscape pattern changes of S. alterniflora over a long-term period holds considerable ecological importance.

Methods In this study, we use long-term Landsat optical remote sensing images as the primary data source, focusing on the wetlands of the Yellow River. Employing a support vector machine classification algorithm, we extracted wetland type information of the Yellow River Delta from 2000 to 2022. This allowed us to uncover the spatiotemporal dynamics of the wetlands. Additionally, we applied eight landscape pattern indices to examine the outbreak characteristics of S. alterniflora and conducted further analysis on its spatial pattern, evolution characteristics, and associated ecological factors.

Important findings The results revealed that: (1) The average overall accuracy of ground object extraction across 23 periods was 88.60%, with an average Kappa coefficient of 0.85. The Support Vector Machine algorithm demonstrated higher classification accuracy compared to other traditional machine learning methods, making it highly effective for analyzing wetland evolution mechanisms. (2) The long-term wetland evolution analysis showed distinct phases in the expansion of S. alterniflora. From 2002 to 2010, its expansion was slow. However, since 2010, the expansion on both sides of the Yellow River estuary entered an explosive phase. By 2012, its area had increased to 22.63 km2, continuing to grow steadily, reaching 50.42 km2 by 2021. The landscape pattern index indicated that S. alterniflora has a significant ecological advantage in the study area. Fragmented patches of S. alterniflora have progressively merged and connected, invading native wetland vegetation and creating a mosaic-like spatial pattern with other vegetation communities. (3) The expansion of S. alterniflora in the study area showed a high correlation with hydrothermal conditions, sunshine duration, topography, and the mudflat environment. Among these factors, the correlation between sunshine conditions, proximity to the sea, and the growth of S. alterniflora was particularly strong. These findings provide theoretical support for relevant departments in the sustainable management and utilization of wetlands in the Yellow River Delta Nature Reserve, as well as in the control and eradication of S. alterniflora.

Key words: Spartina alterniflora, long-term remote sensing monitoring, Yellow River Delta, wetland classification, evolution mechanism analysis