植物生态学报 ›› 2025, Vol. 49 ›› Issue (5): 788-800.DOI: 10.17521/cjpe.2024.0089 cstr: 32100.14.cjpe.2024.0089
上官瑶瑶1, 苏世平1, 顾雪丹1, 张正中1,*(), 赵祜2, 李毅1, 魏星宇1
收稿日期:
2024-04-01
接受日期:
2024-09-28
出版日期:
2025-05-20
发布日期:
2024-10-11
通讯作者:
*张正中(zhangzhengz@gsau.edu.cn)基金资助:
SHANGGUAN Yao-Yao1, SU Shi-Ping1, GU Xue-Dan1, ZHANG Zheng-Zhong1,*(), ZHAO Hu2, LI Yi1, WEI Xing-Yu1
Received:
2024-04-01
Accepted:
2024-09-28
Online:
2025-05-20
Published:
2024-10-11
Supported by:
摘要:
为更好地理解红砂幼苗生长和发育的调控机制, 为荒漠植物的培育与恢复提供一定的参考, 该研究以一年生红砂(Reaumuria songarica)幼苗为材料, 使用LED灯作为光源, 设置了3种光周期和6种光质配比进行交叉培养。通过测定红砂幼苗的株高、分枝数、生物量以及光合色素含量来评估其生长情况, 探究光周期和光质配比对其生长的影响。结果表明: 适当的光周期和光质配比对红砂幼苗的生长和发育具有重要作用。增加光照时间可以促进红砂生长。在红蓝光比为3:1光质配比下, 日光照时间14、16 h相较于12 h, 株高增长率分别增加了20.20%和88.47%。在红蓝光比为1:3光质配比下, 日光照时间为14、16 h, 一级枝的数量比光照12 h分别增加了6.67%和66.67%, 地下生物量分别增加了259.85%和551.82%。高比例红光和高比例蓝光处理会促进红砂幼苗生长, 但株高增长率和一级分枝数的变化趋势相反。在红蓝光比为4:1的光质配比下, 株高增长率随光周期呈增加趋势, 而一级分枝数则呈下降趋势; 而在红蓝光比为1:4的光质配比下, 株高增长率和一级分枝数量的变化趋势则相反。综合应用主成分分析法和隶属函数法, 显示12 h光周期、红蓝光比例为4:1和12 h光周期、红蓝光比例为1:4处理下红砂幼苗的生长状况较好。
上官瑶瑶, 苏世平, 顾雪丹, 张正中, 赵祜, 李毅, 魏星宇. 红砂幼苗对光周期和光质配比的响应. 植物生态学报, 2025, 49(5): 788-800. DOI: 10.17521/cjpe.2024.0089
SHANGGUAN Yao-Yao, SU Shi-Ping, GU Xue-Dan, ZHANG Zheng-Zhong, ZHAO Hu, LI Yi, WEI Xing-Yu. Response of Reaumuria songorica seedlings to photoperiod and light quality ratio. Chinese Journal of Plant Ecology, 2025, 49(5): 788-800. DOI: 10.17521/cjpe.2024.0089
图2 光周期和光质配比对红砂幼苗株高增长率的影响(平均值±标准误, n = 3)。L为光照处理时间(h·d-1), D为黑暗处理时间(h·d-1)。W代表白光, R代表红光, B代表蓝光。不同大写字母表示同一光周期处理下不同光质配比间的差异显著, 不同小写字母表示同一光质配比处理下不同光周期的差异显著(p < 0.05)。
Fig. 2 Effect of different photoperiod and light quality ratio on high growth rate of Reaumuria songorica seedlings (mean ± SE, n = 3). L is the light processing time and D is the dark processing time (h·d-1). W represents white light, R represents red light, B represents blue light. Different uppercase letters indicate significant difference between different light qualities under the same photoperiods treatment, and different lowercase letters indicate significant difference between different photoperiods under the same light quality treatment (p < 0.05).
图3 光周期和光质配比对红砂幼苗一级分枝数(A)和二级分枝数(B)的影响(平均值±标准误, n = 3)。L为光照处理时间(h·d-1), D为黑暗处理时间(h·d-1)。B代表蓝光, R代表红光, W代表白光。不同大写字母表示同一光周期处理下不同光质配比间的差异显著, 不同小写字母表示同一光质配比下处理不同光周期的差异显著(p < 0.05)。
Fig. 3 Effect of different photoperiod and light quality ratio on the number of primary branch (A) and secondary branch (B) of Reaumuria songorica seedlings (mean ± SE, n = 3). L is the light processing time and D is the dark processing time (h·d-1). B represents blue light, R represents red light, W represents white light. Different uppercase letters indicate significant difference between different light qualities under the same photoperiod treatment, and different lowercase letters indicate significant difference between different photoperiods under the same light quality treatment (p < 0.05).
图4 光周期和光质配比对红砂幼苗生物量分配的影响(平均值±标准误, n = 3)。L为光照处理时间(h·d-1), D为黑暗处理时间(h·d-1)。B代表蓝光, R代表红光, W代表白光。不同大写字母表示同一光周期处理下不同光质配比间的差异显著, 不同小写字母表示同一光质配比下处理不同光周期的差异显著(p < 0.05)。
Fig. 4 Effect of different photoperiod and light quality ratio on biomass distribution of Reaumuria songorica seedlings (mean ± SE, n = 3). L is the light processing time and D is the dark processing time (h·d-1). B represents blue light, R represents red light, W represents white light. Different uppercase letters indicate significant difference between different light qualities under the same photoperiod treatment, and different lowercase letters indicate significant difference between different photoperiods under the same light quality treatment (p < 0.05).
处理 Treatment | 光周期 Photoperiod (h·d-1) | 光质配比 Light quality ratio | 叶绿素a含量 Chlorophyll a content (mg·g-1) | 叶绿素b含量 Chlorophyll b content (mg·g-1) | 类胡萝卜素含量 Carotenoid content (mg·g-1) | 叶绿素a+b含量 Chlorophyll a+b content (mg·g-1) | 叶绿素a/b Chlorophyll a/b |
---|---|---|---|---|---|---|---|
T1 | 12 h (L)/12 h (D) | W | 1.325 ± 0.036Bb | 0.364 ± 0.012Aa | 0.316 ± 0.007Cb | 1.690 ± 0.048ABab | 3.644 ± 0.031Ca |
T2 | 12 h (L)/12 h (D) | R:B = 4:1 | 1.425 ± 0.019Bb | 0.592 ± 0.052ABb | 0.285 ± 0.030BCa | 2.017 ± 0.033Bb | 2.453 ± 0.263ABa |
T3 | 12 h (L)/12 h (D) | R:B = 3:1 | 0.997 ± 0.023Aa | 0.381 ± 0.009Aa | 0.218 ± 0.005Aa | 1.378 ± 0.032Aa | 2.618 ± 0.003ABab |
T4 | 12 h (L)/12 h (D) | R:B = 1:3 | 1.309 ± 0.027Bb | 0.453 ± 0.011Aa | 0.282 ± 0.006ABa | 1.762 ± 0.039ABb | 2.896 ± 0.015B |
T5 | 12 h (L)/12 h (D) | R:B = 1:4 | 1.387 ± 0.074Bb | 0.595 ± 0.136ABa | 0.249 ± 0.022ABa | 1.982 ± 0.209Bb | 2.500 ± 0.367AB |
T6 | 14 h (L)/10 h (D) | W | 1.020 ± 0.058Aa | 0.489 ± 0.172Aa | 0.159 ± 0.072Aa | 1.508 ± 0.115ABa | 2.634 ± 0.783Aa |
T7 | 14 h (L)/10 h (D) | R:B = 4:1 | 1.409 ± 0.015Cb | 0.467 ± 0.008Aab | 0.279 ± 0.024ABa | 1.876 ± 0.022Eb | 3.019 ± 0.025Ac |
T8 | 14 h (L)/10 h (D) | R:B = 3:1 | 1.356 ± 0.006Cc | 0.495 ± 0.011Ab | 0.288 ± 0.003Bb | 1.852 ± 0.004DEc | 2.741 ± 0.069Ab |
T9 | 14 h (L)/10 h (D) | R:B = 1:3 | 1.194 ± 0.031Bab | 0.442 ± 0.032Aa | 0.246 ± 0.020ABa | 1.636 ± 0.027BCab | 2.734 ± 0.233Aa |
T10 | 14 h (L)/10 h (D) | R:B = 1:4 | 1.057 ± 0.017Aa | 0.342 ± 0.009Aa | 0.244 ± 0.005ABa | 1.399 ± 0.009Aa | 3.094 ± 0.128Aa |
T11 | 16 h (L)/8 h (D) | W | 1.419 ± 0.047Cb | 0.464 ± 0.017ABa | 0.294 ± 0.016Bab | 1.883 ± 0.065Bb | 3.055 ± 0.012Ca |
T12 | 16 h (L)/8 h (D) | R:B = 4:1 | 1.180 ± 0.088ABa | 0.42 ± 0.0370ABa | 0.253 ± 0.021ABa | 1.605 ± 0.125Aa | 2.782 ± 0.038BCab |
T13 | 16 h (L)/8 h (D) | R:B = 3:1 | 1.101 ± 0.042Ab | 0.491 ± 0.020Bb | 0.211 ± 0.022Aa | 1.592 ± 0.022Ab | 2.260 ± 0.182Aa |
T14 | 16 h (L)/8 h (D) | R:B = 1:3 | 1.154 ± 0.060ABa | 0.402 ± 0.016Aa | 0.257 ± 0.012ABa | 1.556 ± 0.075Aa | 2.866 ± 0.073BCa |
T15 | 16 h (L)/8 h (D) | R:B = 1:4 | 1.322 ± 0.024BCb | 0.431 ± 0.012ABa | 0.285 ± 0.004Ba | 1.753 ± 0.036ABab | 3.068 ± 0.028Ca |
表1 光周期和光质配比对红砂幼苗光合色素的影响(平均值±标准误)
Table 1 Effect of different photoperiod and light quality ratio on photosynthetic pigment of Reaumuria songorica seedlings (mean ± SE)
处理 Treatment | 光周期 Photoperiod (h·d-1) | 光质配比 Light quality ratio | 叶绿素a含量 Chlorophyll a content (mg·g-1) | 叶绿素b含量 Chlorophyll b content (mg·g-1) | 类胡萝卜素含量 Carotenoid content (mg·g-1) | 叶绿素a+b含量 Chlorophyll a+b content (mg·g-1) | 叶绿素a/b Chlorophyll a/b |
---|---|---|---|---|---|---|---|
T1 | 12 h (L)/12 h (D) | W | 1.325 ± 0.036Bb | 0.364 ± 0.012Aa | 0.316 ± 0.007Cb | 1.690 ± 0.048ABab | 3.644 ± 0.031Ca |
T2 | 12 h (L)/12 h (D) | R:B = 4:1 | 1.425 ± 0.019Bb | 0.592 ± 0.052ABb | 0.285 ± 0.030BCa | 2.017 ± 0.033Bb | 2.453 ± 0.263ABa |
T3 | 12 h (L)/12 h (D) | R:B = 3:1 | 0.997 ± 0.023Aa | 0.381 ± 0.009Aa | 0.218 ± 0.005Aa | 1.378 ± 0.032Aa | 2.618 ± 0.003ABab |
T4 | 12 h (L)/12 h (D) | R:B = 1:3 | 1.309 ± 0.027Bb | 0.453 ± 0.011Aa | 0.282 ± 0.006ABa | 1.762 ± 0.039ABb | 2.896 ± 0.015B |
T5 | 12 h (L)/12 h (D) | R:B = 1:4 | 1.387 ± 0.074Bb | 0.595 ± 0.136ABa | 0.249 ± 0.022ABa | 1.982 ± 0.209Bb | 2.500 ± 0.367AB |
T6 | 14 h (L)/10 h (D) | W | 1.020 ± 0.058Aa | 0.489 ± 0.172Aa | 0.159 ± 0.072Aa | 1.508 ± 0.115ABa | 2.634 ± 0.783Aa |
T7 | 14 h (L)/10 h (D) | R:B = 4:1 | 1.409 ± 0.015Cb | 0.467 ± 0.008Aab | 0.279 ± 0.024ABa | 1.876 ± 0.022Eb | 3.019 ± 0.025Ac |
T8 | 14 h (L)/10 h (D) | R:B = 3:1 | 1.356 ± 0.006Cc | 0.495 ± 0.011Ab | 0.288 ± 0.003Bb | 1.852 ± 0.004DEc | 2.741 ± 0.069Ab |
T9 | 14 h (L)/10 h (D) | R:B = 1:3 | 1.194 ± 0.031Bab | 0.442 ± 0.032Aa | 0.246 ± 0.020ABa | 1.636 ± 0.027BCab | 2.734 ± 0.233Aa |
T10 | 14 h (L)/10 h (D) | R:B = 1:4 | 1.057 ± 0.017Aa | 0.342 ± 0.009Aa | 0.244 ± 0.005ABa | 1.399 ± 0.009Aa | 3.094 ± 0.128Aa |
T11 | 16 h (L)/8 h (D) | W | 1.419 ± 0.047Cb | 0.464 ± 0.017ABa | 0.294 ± 0.016Bab | 1.883 ± 0.065Bb | 3.055 ± 0.012Ca |
T12 | 16 h (L)/8 h (D) | R:B = 4:1 | 1.180 ± 0.088ABa | 0.42 ± 0.0370ABa | 0.253 ± 0.021ABa | 1.605 ± 0.125Aa | 2.782 ± 0.038BCab |
T13 | 16 h (L)/8 h (D) | R:B = 3:1 | 1.101 ± 0.042Ab | 0.491 ± 0.020Bb | 0.211 ± 0.022Aa | 1.592 ± 0.022Ab | 2.260 ± 0.182Aa |
T14 | 16 h (L)/8 h (D) | R:B = 1:3 | 1.154 ± 0.060ABa | 0.402 ± 0.016Aa | 0.257 ± 0.012ABa | 1.556 ± 0.075Aa | 2.866 ± 0.073BCa |
T15 | 16 h (L)/8 h (D) | R:B = 1:4 | 1.322 ± 0.024BCb | 0.431 ± 0.012ABa | 0.285 ± 0.004Ba | 1.753 ± 0.036ABab | 3.068 ± 0.028Ca |
图5 不同光周期和光质配比下红砂幼苗生长指标的相关性。AbB, 地上生物量; Car, 类胡萝卜素含量; Chl a, 叶绿素a含量; Chl a/b, 叶绿素a/b; Chl a+b, 总叶绿素含量; Chl b, 叶绿素b含量; FirB, 一级分枝数; LeB, 叶生物量; SecB, 二级分枝数; StB, 茎生物量; UnB, 地下生物量; ∆G, 株高增长率。*, p < 0.05; **, p < 0.01。
Fig. 5 Growth indices correlation of Reaumuria songorica seedlings under different photoperiod and light quality ratio. AbB, aboveground biomass; Car, carotenoid content; Chl a, chlorophyll a content; Chl a/b, chlorophyll a/b; Chl a+b, total chlorophyll content; Chl b, chlorophyll b content; FirB, first-order branching number; LeB, leaf biomass; SecB, second-order branching number; StB, stem biomass; UnB, underground biomass; ∆G, growth rate of plant height. *, p < 0.05; **, p < 0.01.
指标 Index | 主成分载荷系数 Loading coefficient of component | 主成分特征向量 Eigenvector component | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | PC1 | PC2 | PC3 | PC4 | PC5 | |
∆G | 0.098 | -0.055 | -0.115 | 0.052 | 0.953 | 0.045 | ||||
FirB | 0.536 | 0.334 | 0.463 | 0.154 | -0.004 | 0.247 | 0.220 | 0.365 | 0.154 | -0.004 |
SecB | 0.072 | 0.027 | 0.921 | 0.014 | -0.068 | 0.033 | 0.018 | 0.725 | 0.014 | -0.072 |
StB | 0.184 | 0.855 | -0.028 | 0.198 | 0.211 | 0.085 | 0.564 | -0.022 | 0.198 | 0.223 |
LeB | -0.008 | 0.595 | 0.744 | -0.006 | -0.116 | -0.004 | 0.392 | 0.586 | -0.006 | -0.122 |
AbB | 0.105 | 0.726 | 0.596 | 0.048 | -0.231 | 0.048 | 0.479 | 0.469 | 0.048 | -0.244 |
UnB | 0.220 | 0.675 | 0.258 | 0.192 | -0.295 | 0.101 | 0.445 | 0.203 | 0.192 | -0.311 |
Chl a | 0.752 | 0.076 | 0.374 | 0.487 | 0.124 | 0.347 | 0.050 | 0.294 | 0.488 | 0.131 |
Chl b | 0.894 | 0.180 | -0.052 | -0.300 | 0.056 | 0.412 | 0.119 | -0.041 | -0.301 | 0.059 |
Car | 0.288 | 0.102 | -0.033 | 0.921 | -0.094 | 0.133 | 0.067 | -0.026 | 0.923 | -0.099 |
Chl a+b | 0.923 | 0.103 | -0.002 | 0.332 | 0.016 | 0.426 | 0.068 | -0.002 | 0.333 | 0.017 |
Chl a/b | 0.067 | -0.204 | -0.065 | -0.882 | -0.129 | 0.031 | -0.135 | -0.051 | -0.884 | -0.136 |
特征值 Eigenvalue | 4.701 | 2.299 | 1.613 | 0.995 | 0.899 | |||||
方差贡献率 Variance contribution rate (%) | 39.176 | 19.157 | 13.443 | 8.294 | 7.491 | |||||
累积方差贡献率 Cumulative variance contribution rate (%) | 39.176 | 58.333 | 71.775 | 80.070 | 87.561 |
表2 红砂幼苗的生长指标主成分(PC)分析
Table 2 Principal component (PC) analysis of growth indexes of Reaumuria songorica seedlings
指标 Index | 主成分载荷系数 Loading coefficient of component | 主成分特征向量 Eigenvector component | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | PC1 | PC2 | PC3 | PC4 | PC5 | |
∆G | 0.098 | -0.055 | -0.115 | 0.052 | 0.953 | 0.045 | ||||
FirB | 0.536 | 0.334 | 0.463 | 0.154 | -0.004 | 0.247 | 0.220 | 0.365 | 0.154 | -0.004 |
SecB | 0.072 | 0.027 | 0.921 | 0.014 | -0.068 | 0.033 | 0.018 | 0.725 | 0.014 | -0.072 |
StB | 0.184 | 0.855 | -0.028 | 0.198 | 0.211 | 0.085 | 0.564 | -0.022 | 0.198 | 0.223 |
LeB | -0.008 | 0.595 | 0.744 | -0.006 | -0.116 | -0.004 | 0.392 | 0.586 | -0.006 | -0.122 |
AbB | 0.105 | 0.726 | 0.596 | 0.048 | -0.231 | 0.048 | 0.479 | 0.469 | 0.048 | -0.244 |
UnB | 0.220 | 0.675 | 0.258 | 0.192 | -0.295 | 0.101 | 0.445 | 0.203 | 0.192 | -0.311 |
Chl a | 0.752 | 0.076 | 0.374 | 0.487 | 0.124 | 0.347 | 0.050 | 0.294 | 0.488 | 0.131 |
Chl b | 0.894 | 0.180 | -0.052 | -0.300 | 0.056 | 0.412 | 0.119 | -0.041 | -0.301 | 0.059 |
Car | 0.288 | 0.102 | -0.033 | 0.921 | -0.094 | 0.133 | 0.067 | -0.026 | 0.923 | -0.099 |
Chl a+b | 0.923 | 0.103 | -0.002 | 0.332 | 0.016 | 0.426 | 0.068 | -0.002 | 0.333 | 0.017 |
Chl a/b | 0.067 | -0.204 | -0.065 | -0.882 | -0.129 | 0.031 | -0.135 | -0.051 | -0.884 | -0.136 |
特征值 Eigenvalue | 4.701 | 2.299 | 1.613 | 0.995 | 0.899 | |||||
方差贡献率 Variance contribution rate (%) | 39.176 | 19.157 | 13.443 | 8.294 | 7.491 | |||||
累积方差贡献率 Cumulative variance contribution rate (%) | 39.176 | 58.333 | 71.775 | 80.070 | 87.561 |
处理 Treatment | 在各个主成分中的得分 Scores in each principal component | 综合得分 Synthesis score | 名次 Rank | ||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F | ||
T1 | -0.168 | -0.072 | -0.451 | 2.236 | 0.034 | 0.054 | 7 |
T2 | 2.590 | 4.312 | 2.908 | 2.261 | -1.510 | 2.634 | 1 |
T3 | -1.830 | 0.032 | 0.163 | -1.790 | -2.192 | -1.144 | 12 |
T4 | -0.459 | -3.079 | -2.618 | 0.112 | -0.022 | -1.272 | 13 |
T5 | 2.687 | 1.565 | 2.817 | 1.114 | 0.744 | 2.146 | 2 |
T6 | -1.432 | -2.596 | -1.860 | -7.292 | -0.640 | -2.240 | 15 |
T7 | 0.986 | 0.529 | 2.373 | 1.533 | -0.833 | 0.995 | 4 |
T8 | 0.966 | 1.279 | 0.563 | 1.562 | -1.139 | 0.849 | 5 |
T9 | -0.675 | 0.190 | -0.083 | -0.500 | 0.219 | -0.302 | 8 |
T10 | -1.233 | 1.402 | 3.433 | 0.045 | -0.785 | 0.219 | 6 |
T11 | 1.260 | 0.755 | -0.113 | 2.292 | 2.127 | 1.111 | 3 |
T12 | -0.905 | -0.567 | -1.984 | -0.254 | 1.418 | -0.736 | 11 |
T13 | -0.843 | -2.171 | -3.161 | -2.123 | 2.786 | -1.300 | 14 |
T14 | -0.695 | -0.082 | -0.291 | 0.062 | -0.490 | -0.409 | 9 |
T15 | -0.249 | -1.496 | -1.696 | 0.740 | 0.284 | -0.604 | 10 |
表3 光周期及光质配比对红砂幼苗生长指标的主要得分及综合排名
Table 3 Main scores and comprehensive ranking of different photoperiod and light quality ratio on growth indexes of Reaumuria songorica seedlings
处理 Treatment | 在各个主成分中的得分 Scores in each principal component | 综合得分 Synthesis score | 名次 Rank | ||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F | ||
T1 | -0.168 | -0.072 | -0.451 | 2.236 | 0.034 | 0.054 | 7 |
T2 | 2.590 | 4.312 | 2.908 | 2.261 | -1.510 | 2.634 | 1 |
T3 | -1.830 | 0.032 | 0.163 | -1.790 | -2.192 | -1.144 | 12 |
T4 | -0.459 | -3.079 | -2.618 | 0.112 | -0.022 | -1.272 | 13 |
T5 | 2.687 | 1.565 | 2.817 | 1.114 | 0.744 | 2.146 | 2 |
T6 | -1.432 | -2.596 | -1.860 | -7.292 | -0.640 | -2.240 | 15 |
T7 | 0.986 | 0.529 | 2.373 | 1.533 | -0.833 | 0.995 | 4 |
T8 | 0.966 | 1.279 | 0.563 | 1.562 | -1.139 | 0.849 | 5 |
T9 | -0.675 | 0.190 | -0.083 | -0.500 | 0.219 | -0.302 | 8 |
T10 | -1.233 | 1.402 | 3.433 | 0.045 | -0.785 | 0.219 | 6 |
T11 | 1.260 | 0.755 | -0.113 | 2.292 | 2.127 | 1.111 | 3 |
T12 | -0.905 | -0.567 | -1.984 | -0.254 | 1.418 | -0.736 | 11 |
T13 | -0.843 | -2.171 | -3.161 | -2.123 | 2.786 | -1.300 | 14 |
T14 | -0.695 | -0.082 | -0.291 | 0.062 | -0.490 | -0.409 | 9 |
T15 | -0.249 | -1.496 | -1.696 | 0.740 | 0.284 | -0.604 | 10 |
处理 Treatment | 得分 Score | 隶属函数值 Membership function | D | 名次 Rank | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X(1) | X(2) | X(3) | X(4) | X(5) | μ(1) | μ(2) | μ(3) | μ(4) | μ(5) | |||
T1 | 0.068 | 0.477 | -1.245 | -0.259 | -0.229 | 0.470 | 0.759 | 0.000 | 0.492 | 0.420 | 0.459 | 7 |
T2 | 2.018 | -0.244 | 0.745 | 0.889 | -1.773 | 1.000 | 0.542 | 0.528 | 0.829 | 0.000 | 0.725 | 2 |
T3 | -0.550 | -1.665 | -0.641 | -0.124 | -1.041 | 0.302 | 0.114 | 0.160 | 0.531 | 0.199 | 0.252 | 15 |
T4 | -1.006 | 1.186 | -0.302 | -1.932 | -0.396 | 0.178 | 0.972 | 0.250 | 0.000 | 0.374 | 0.363 | 13 |
T5 | 1.409 | 0.544 | 1.637 | -0.507 | 1.333 | 0.835 | 0.779 | 0.765 | 0.419 | 0.845 | 0.773 | 1 |
T6 | -1.661 | -1.089 | 2.524 | -0.154 | -0.339 | 0.000 | 0.287 | 1.000 | 0.522 | 0.390 | 0.299 | 14 |
T7 | 0.791 | -0.154 | 0.086 | -1.659 | 0.839 | 0.667 | 0.569 | 0.353 | 0.080 | 0.710 | 0.545 | 4 |
T8 | 0.691 | 0.170 | -0.084 | -0.253 | -1.343 | 0.639 | 0.666 | 0.308 | 0.493 | 0.117 | 0.536 | 5 |
T9 | -0.190 | -0.416 | -0.313 | 0.734 | 0.174 | 0.400 | 0.490 | 0.247 | 0.783 | 0.529 | 0.444 | 9 |
T10 | 0.407 | -2.044 | -0.997 | 0.035 | 1.904 | 0.562 | 0.000 | 0.066 | 0.578 | 1.000 | 0.402 | 12 |
T11 | 0.598 | 1.279 | -0.124 | 1.018 | 0.768 | 0.614 | 1.000 | 0.297 | 0.867 | 0.691 | 0.680 | 3 |
T12 | -0.630 | 0.416 | -0.617 | 1.472 | -0.045 | 0.280 | 0.740 | 0.167 | 1.000 | 0.470 | 0.448 | 8 |
T13 | -1.230 | 0.998 | 0.451 | 1.423 | 0.828 | 0.117 | 0.915 | 0.450 | 0.986 | 0.708 | 0.476 | 6 |
T14 | -0.216 | -0.319 | -0.607 | 0.042 | -0.369 | 0.393 | 0.519 | 0.169 | 0.580 | 0.382 | 0.403 | 11 |
T15 | -0.498 | 0.860 | -0.515 | -0.725 | -0.311 | 0.316 | 0.874 | 0.194 | 0.355 | 0.398 | 0.430 | 10 |
权重 Weight | 0.447 | 0.219 | 0.154 | 0.095 | 0.086 |
表4 光周期及光质配比对红砂幼苗的光合生长指标综合指标值(X(x))、隶属函数值(μ(x))、权重和综合得分值(D)
Table 4 Comprehensive index value (X(x)), membership function value (μ(x)), weight and comprehensive score value (D) of photosynthetic growth index of Reaumuria songorica under different photoperiod and light quality ratio
处理 Treatment | 得分 Score | 隶属函数值 Membership function | D | 名次 Rank | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X(1) | X(2) | X(3) | X(4) | X(5) | μ(1) | μ(2) | μ(3) | μ(4) | μ(5) | |||
T1 | 0.068 | 0.477 | -1.245 | -0.259 | -0.229 | 0.470 | 0.759 | 0.000 | 0.492 | 0.420 | 0.459 | 7 |
T2 | 2.018 | -0.244 | 0.745 | 0.889 | -1.773 | 1.000 | 0.542 | 0.528 | 0.829 | 0.000 | 0.725 | 2 |
T3 | -0.550 | -1.665 | -0.641 | -0.124 | -1.041 | 0.302 | 0.114 | 0.160 | 0.531 | 0.199 | 0.252 | 15 |
T4 | -1.006 | 1.186 | -0.302 | -1.932 | -0.396 | 0.178 | 0.972 | 0.250 | 0.000 | 0.374 | 0.363 | 13 |
T5 | 1.409 | 0.544 | 1.637 | -0.507 | 1.333 | 0.835 | 0.779 | 0.765 | 0.419 | 0.845 | 0.773 | 1 |
T6 | -1.661 | -1.089 | 2.524 | -0.154 | -0.339 | 0.000 | 0.287 | 1.000 | 0.522 | 0.390 | 0.299 | 14 |
T7 | 0.791 | -0.154 | 0.086 | -1.659 | 0.839 | 0.667 | 0.569 | 0.353 | 0.080 | 0.710 | 0.545 | 4 |
T8 | 0.691 | 0.170 | -0.084 | -0.253 | -1.343 | 0.639 | 0.666 | 0.308 | 0.493 | 0.117 | 0.536 | 5 |
T9 | -0.190 | -0.416 | -0.313 | 0.734 | 0.174 | 0.400 | 0.490 | 0.247 | 0.783 | 0.529 | 0.444 | 9 |
T10 | 0.407 | -2.044 | -0.997 | 0.035 | 1.904 | 0.562 | 0.000 | 0.066 | 0.578 | 1.000 | 0.402 | 12 |
T11 | 0.598 | 1.279 | -0.124 | 1.018 | 0.768 | 0.614 | 1.000 | 0.297 | 0.867 | 0.691 | 0.680 | 3 |
T12 | -0.630 | 0.416 | -0.617 | 1.472 | -0.045 | 0.280 | 0.740 | 0.167 | 1.000 | 0.470 | 0.448 | 8 |
T13 | -1.230 | 0.998 | 0.451 | 1.423 | 0.828 | 0.117 | 0.915 | 0.450 | 0.986 | 0.708 | 0.476 | 6 |
T14 | -0.216 | -0.319 | -0.607 | 0.042 | -0.369 | 0.393 | 0.519 | 0.169 | 0.580 | 0.382 | 0.403 | 11 |
T15 | -0.498 | 0.860 | -0.515 | -0.725 | -0.311 | 0.316 | 0.874 | 0.194 | 0.355 | 0.398 | 0.430 | 10 |
权重 Weight | 0.447 | 0.219 | 0.154 | 0.095 | 0.086 |
[1] |
Alba R, Cordonnier-Pratt MM, Pratt LH (2000). Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. Plant Physiology, 123, 363-370.
DOI PMID |
[2] | Ali HE, Tong YX (2023). Volatile oil concentration and growth of thyme (Thymus vulgaris L.) plants responded to red to blue light ratios. Technology in Horticulture, 3, 1-7. |
[3] | Bimolata W, Bhattacharya R, Goswami A, Dey PK, Mitra A (2023). Spectral light treatment influenced morpho-physiological properties and carvacrol accumulation in Indian borage. Journal of Plant Growth Regulation, 42, 7515-7529. |
[4] |
Boccalandro HE, Giordano CV, Ploschuk EL, Piccoli PN, Bottini R, Casal JJ (2012). Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight. Plant Physiology, 158, 1475-1484.
DOI PMID |
[5] | Chen JC, Li Y, Zhang YM, Li CQ, Li M (2024). Pollen characteristics of Reaumuria songarica from different provenances. Journal of Northwest A&F University (Natural Science Edition), 52(5), 69-79. |
[ 陈君婵, 李毅, 张咏梅, 李超群, 李蒙 (2024). 不同种源红砂的花粉形态特征研究. 西北农林科技大学学报(自然科学版), 52(5), 69-79.] | |
[6] | Chu QW, Qin YM, Li CY, Cheng SB, Su LH, He ZQ, Zhou XT, Shao DL, Guo X (2023). Effects of different photoperiods on the growth and nutritional characteristics of two celery cultivars in plant factory. Agronomy, 13, 3039. DOI: 10.3390/agronomy13123039. |
[7] | Elkins C, van Iersel MW (2020). Longer photoperiods with the same daily light integral improve growth of Rudbeckia seedlings in a greenhouse. HortScience, 55, 1676-1682. |
[8] | Elmardy NA, Yousef AF, Lin K, Zhang XW, Ali MM, Lamlom SF, Kalaji HM, Kowalczyk K, Xu Y (2021). Photosynthetic performance of rocket (Eruca sativa. Mill.) grown under different regimes of light intensity, quality, and photoperiod. PLoS ONE, 16, e0257745. DOI: 10.1371/journal.pone.0257745. |
[9] | Fan XX, Yang YN, Xu ZG (2021). Effects of different ratio of red and blue light on flowering and fruiting of tomato. IOP Conference Series: Earth and Environmental Science, 705, 012002. DOI: 10.1088/1755-1315/705/1/012002. |
[10] |
Franklin KA, Larner VS, Whitelam GC (2005). The signal transducing photoreceptors of plants. International Journal of Developmental Biology, 49, 653-664.
DOI PMID |
[11] |
Gao YZ, Xiang J, Ye TC, Sun KX, Chen HZ, Zhang YP, Zhang YK, Wang YL, Zhang YB (2024). Effects of LED light supplementation with different light quality ratios on growth and development of the Machine-transplanted rice seedlings. China Rice, 30(1), 58-62.
DOI |
[12] | Gao Z, Lei HS, Wu YF, Wan JH, Dong F, Wang HQ (2016). Effects of different proportions red and blue light on the growth and photosynthetic characteristics of strawberry. Journal of China Agricultural University, 21(12), 20-27. |
[ 高振, 雷恒树, 吴雨霏, 万继花, 董飞, 王红清 (2016). 不同比例红蓝光对草莓生长和叶片光合特性的影响. 中国农业大学学报, 21(12), 20-27.] | |
[13] | Gu XD, Lv D, Zhao H, Chen G, Zhang T, Wang L, Chu M (2023a). Influence of shading on growth and photosynthetic characteristics of Reaumuria soongorica seedlings. Journal of Arid Land Resources and Environment, 37(8), 145-152. |
[ 顾雪丹, 吕东, 赵祜, 陈刚, 张涛, 王立, 褚敏 (2023a). 遮阴对红砂幼苗生长及光合特性的影响. 干旱区资源与环境, 37(8), 145-152.] | |
[14] | Gu XD, Zhang ZZ, Lyu D, Zhao H, Wang L, Che B, Cao R, Yan KL, Zhang HB (2023b). Effects of photoperiod and light quality on the growth and chlorophyll fluorescence of Reaumuria soongorica seedlings. Acta Agrestia Sinica, 31(6), 1720-1727. |
[ 顾雪丹, 张正中, 吕东, 赵祜, 王立, 车波, 曹蓉, 闫克林, 张宏斌 (2023b). 光周期和光质对红砂幼苗生长及光化学反应的影响. 草地学报, 31(6), 1720-1727.] | |
[15] | Guo XL, Xue XZ, Chen LL, Li JY, Wang ZM, Zhang YH (2023a). Effects of LEDs light spectra on the growth, yield, and quality of winter wheat (Triticum aestivum L.) cultured in plant factory. Journal of Plant Growth Regulation, 42, 2530-2544. |
[16] | Guo YX, Zhong YF, Mo LW, Zhang W, Chen YZ, Wang YC, Chen H, Wang ZF, Song XQ, Meng XY (2023b). Different combinations of red and blue LED light affect the growth, physiology metabolism and photosynthesis of in vitro-cultured Dendrobium nobile ‘Zixia’. Horticulture, Environment, and Biotechnology, 64, 393-407. |
[17] | Hernández-Adasme C, Palma-Dias R, Escalona VH (2023). The effect of light intensity and photoperiod on the yield and antioxidant activity of beet microgreens produced in an indoor system. Horticulturae, 9, 493. DOI: 10.3390/horticulturae9040493. |
[18] | Iqbal Z, Munir M, Sattar MN (2022). Morphological, biochemical, and physiological response of butterhead lettuce to photo-thermal environments. Horticulturae, 8, 515. DOI: 10.3390/horticulturae8060515. |
[19] | Izzo LG, Mickens MA, Aronne G, Gómez C (2021). Spectral effects of blue and red light on growth, anatomy, and physiology of lettuce. Physiologia Plantarum, 172, 2191-2202. |
[20] | Jin DZ, Su XF, Li YF, Shi MM, Yang BB, Wan WC, Wen X, Yang SJ, Ding XT, Zou J (2023). Effect of red and blue light on cucumber seedlings grown in a plant factory. Horticulturae, 9, 124. DOI: 10.3390/horticulturae9020124. |
[21] | Kim SJ, Hahn EJ, Heo JW, Paek KY (2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101, 143-151. |
[22] |
Kong Y, Schiestel K, Zheng YB (2019). Pure blue light effects on growth and morphology are slightly changed by adding low-level UVA or far-red light: a comparison with red light in four microgreen species. Environmental and Experimental Botany, 157, 58-68.
DOI |
[23] | Kreslavski VD, Lyubimov VY, Shirshikova GN, Shmarev AN, Kosobryukhov AA, Schmitt FJ, Friedrich T, Allakhverdiev SI (2013). Preillumination of lettuce seedlings with red light enhances the resistance of photosynthetic apparatus to UV-A. Journal of Photochemistry and Photobiology B: Biology, 122, 1-6. |
[24] | Li HS (2000). Principles and Techniques of Plant Physiological Biochemical Experiment. Higher Education Press, Beijing. |
[ 李合生 (2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京.] | |
[25] | Li WY, Zhang GH, Li YF, Liang XP, Yin J (2023). Effects of different light qualities and photoperiods on the growth, leaf pigment and color of Aglaonema commutatum. Guihaia, 43, 1725-1736. |
[ 李文杨, 张光辉, 李月凤, 梁祥鹏, 尹娟 (2023). 不同光质与光周期对粗肋草生长、叶片色素和颜色的影响. 广西植物, 43, 1725-1736.] | |
[26] | Li Y, Xin GF, Shi QH, Yang FJ, Wei M (2023). Response of photomorphogenesis and photosynthetic properties of sweet pepper seedlings exposed to mixed red and blue light. Frontiers in Plant Science, 13, 984051. DOI: 10.3389/fpls.2022.984051. |
[27] | Li YN, Liu N, Ji F, He DX (2022). Optimal red: blue ratio of full spectrum LEDs for hydroponic pakchoi cultivation in plant factory. International Journal of Agricultural and Biological Engineering, 15, 72-77. |
[28] | Liu HH, Chong PF, Liu ZH, Bao XG, Tan BB (2023). Exogenous hydrogen sulfide improves salt stress tolerance of Reaumuria soongorica seedlings by regulating active oxygen metabolism. PeerJ, 11, e15881. DOI: 10.7717/peerj.15881. |
[29] | Liu KZ, Gao MF, Jiang HZ, Ou SY, Li XP, He R, Li YM, Liu HC (2022). Light intensity and photoperiod affect growth and nutritional quality of Brassica microgreens. Molecules, 27, 883. DOI: 10.3390/molecules27030883. |
[30] | Liu Q, Lian HF, Liu SQ, Sun YL, Yu XH, Guo HP (2015). Effects of different LED light qualities on photosynthetic characteristics, fruit production and quality of strawberry. Chinese Journal of Applied Ecology, 26, 1743-1750. |
[ 刘庆, 连海峰, 刘世琦, 孙亚丽, 于新会, 郭会平 (2015). 不同光质LED光源对草莓光合特性, 产量及品质的影响. 应用生态学报, 26, 1743-1750.] | |
[31] | Park Y, Sethi R, Temnyk S (2023). Growth, flowering, and fruit production of strawberry ‘Albion’ in response to photoperiod and photosynthetic photon flux density of sole-source lighting. Plants, 12, 731. DOI: 10.3390/plants12040731. |
[32] | Pawłowska B, Żupnik M, Szewczyk-Taranek B, Cioć M (2018). Impact of LED light sources on morphogenesis and levels of photosynthetic pigments in Gerbera jamesonii grown in vitro. Horticulture, Environment, and Biotechnology, 59, 115-123. |
[33] | Popov VN, Deryabin AN (2023). Effect of photoperiod duration on efficiency of low-temperature hardening of Arabidopsis thaliana Heynh. (L.). Russian Journal of Plant Physiology, 70, 56. DOI: 10.1134/S1021443722603093. |
[34] | Rengasamy N, Othman RY, Che HS, Harikrishna JA (2022). Artificial lighting photoperiod manipulation approach to improve productivity and energy use efficacies of plant factory cultivated Stevia rebaudiana. Agronomy, 12, 1787. DOI: 10.3390/agronomy12081787. |
[35] | Shibaeva TG, Rubaeva AA, Sherudilo EG, Titov AF (2023). Continuous lighting increases yield and nutritional value and decreases nitrate content in Brassicaceae microgreens. Russian Journal of Plant Physiology, 70, 118. DOI: 10.31857/S0015330323600262. |
[36] | Silva LM, Cruz LP, Pacheco VS, Machado EC, Purquerio LFV, Ribeiro RV (2022). Energetic efficiency of biomass production is affected by photoperiod in indoor lettuce cultivation. Theoretical and Experimental Plant Physiology, 34, 265-276. |
[37] | Xie CJ, He FY, Liu L, Wei QM, Yang M (2023). Effects of light quality and photoperiod on growth and physiology of Michelia baillonii seedlings. Guihaia, 43, 2362-2373. |
[ 谢慈江, 何福英, 刘莉, 韦秋梅, 杨梅 (2023). 光质和光周期对山白兰苗木生长、生理的影响. 广西植物, 43, 2362-2373.] | |
[38] | Xu DQ, Gao W, Ruan J (2015). Effects of light quality on plant growth and development. Plant Physiology Journal, 51, 1217-1234. |
[ 许大全, 高伟, 阮军 (2015). 光质对植物生长发育的影响. 植物生理学报, 51, 1217-1234.] | |
[39] | Xu YY, Yang M, Cheng F, Liu SN, Liang YY (2020). Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata. BMC Plant Biology, 20, 269. DOI: 10.1186/s12870-020-02480-7. |
[40] | Yan SP, Chong PF, Zhao M, Liu HM (2022). Physiological response and proteomics analysis of Reaumuria soongorica under salt stress. Scientific Reports, 12, 2539. DOI: 10.1038/s41598-022-06502-2. |
[41] | Yan XF, Wang Y, Shang XH (2003). Effects of greenhouse light intensity and quality on biomass and salidroside content in roots of Rhodiola sachalinensis. Acta Ecologica Sinica, 23, 841-849. |
[ 阎秀峰, 王洋, 尚辛亥 (2003). 温室栽培光强和光质对高山红景天生物量和红景天甙含量的影响. 生态学报, 23, 841-849.] | |
[42] | Yang JW, Bao EC, Zhang KJ, Pan TH, Cao YF, Zhang J, Zou ZR (2018). Effects of different ratios of red and blue light on anatomic structure and photosynthetic characteristics of tomato leaf. Acta Agriculturae Boreali-occidentalis Sinica, 27, 716-726. |
[ 杨俊伟, 鲍恩财, 张珂嘉, 潘铜华, 曹晏飞, 张静, 邹志荣 (2018). 不同红蓝光比例对番茄幼苗叶片结构及光合特性的影响. 西北农业学报, 27, 716-726.] | |
[43] | Yang YT, Cheng RF, Yang QC, Xiao P (2010). Effects of LED light quality R/B ratio to quality of sweet potato plantlets in vitro and energy saving. Chinese Journal of Agrometeorology, 31, 546-550. |
[ 杨雅婷, 程瑞峰, 杨其长, 肖平 (2010). Led光源不同R/B处理对甘薯组培苗品质及节能效果的影响. 中国农业气象, 31, 546-550.] | |
[44] | Yao N, Liu JF, Jiang ZP, Chang EM, Zhao XL, Xie R, Wang Q (2022). Effects of photoperiod and light quality on seedling growth and chlorophyll fluorescence kinetics of Quercus L. Forestry Scientific Research, 35, 59-69. |
[45] |
Yorio NC, Goins GD, Kagie HR, Wheeler RM, Sager JC (2001). Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. Hortscience, 36, 380-383.
PMID |
[46] | Zha LY, Liu WK (2018). Effects of light quality, light intensity, and photoperiod on growth and yield of cherry radish grown under red plus blue LEDs. Horticulture, Environment, and Biotechnology, 59, 511-518. |
[47] | Zhang GW, Luo LP, Tian KL, Ning FJ, Wu D, Sun QF, Yu WJ, Yi SX, Hao YB (2024). Metabolomics analysis of Dendrobium officinale tissue-cultured seedlings under red-blue composed light by using HPLC and UPLC-Q/TOF-MS. Plant Cell, Tissue and Organ Culture (PCTOC), 156, 49. DOI: 10.1007/s11240-023-02678-1. |
[48] | Zhang T, Shi Y, Piao FZ, Sun ZQ (2018a). Effects of different LED sources on the growth and nitrogen metabolism of lettuce. Plant Cell, Tissue and Organ Culture (PCTOC), 134, 231-240. |
[49] | Zhang X, He DX, Niu GH, Yan ZN, Song JX (2018b). Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. International Journal of Agricultural and Biological Engineering, 11, 33-40. |
[50] | Zhang Y, Liang Y, Han J, Hu XH, Li XJ, Zhao HL, Bai LQ, Shi Y, Ahammed GJ (2023). Interactive effects of iron and photoperiods on tomato plant growth and fruit quality. Journal of Plant Growth Regulation, 42, 376-389. |
[51] | Zhang YT, Ji JZ, Song SW, Su W, Liu HC (2020). Growth, nutritional quality and health-promoting compounds in Chinese kale grown under different ratios of red: blue LED lights. Agronomy, 10, 1248. DOI: 10.3390/agronomy10091248. |
[52] | Zhou CB, Zhang X, Cui QQ, Li M, Zhang WD, Ai XZ, Bi HG, Liu BB, Li QM (2017). Effects of supplementary light quality on growth and photosynthesis of pakchoi (Brassica campestris). Plant Physiology Journal, 53, 1030-1038. |
[ 周成波, 张旭, 崔青青, 李曼, 张文东, 艾希珍, 毕焕改, 刘彬彬, 李清明 (2017). LED补光光质对小白菜生长及光合作用的影响. 植物生理学报, 53, 1030-1038.] |
[1] | 李欣怡, 张丽芳, 吴友贵, 郭静, 兰荣光, 吕洪飞, 于明坚. 不同海拔高度下百山祖冷杉幼苗的生长特征及其影响因素[J]. 植物生态学报, 2025, 49(4): 610-623. |
[2] | 徐子怡, 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[4] | 陶琼, 缪宁, 岳喜明, 罗建琼, 薛盼盼, 王晖. 川西亚高山岷江冷杉幼苗生物量积累与分配的影响因子[J]. 植物生态学报, 2024, 48(11): 1459-1470. |
[5] | 王燕玲, 招礼军, 朱栗琼, 莫若果, 林婷, 赵小雨. 广西天然红鳞蒲桃种群幼苗数量特征及动态分析[J]. 植物生态学报, 2023, 47(9): 1278-1286. |
[6] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
[7] | 陈奕竹, 郎伟光, 陈效逑. 中国北方树木秋季物候的过程模拟及其区域分异归因[J]. 植物生态学报, 2022, 46(7): 753-765. |
[8] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[9] | 秦江环, 张春雨, 赵秀海. 基于温带针阔混交林植物-土壤反馈的Janzen- Connell假说检验[J]. 植物生态学报, 2022, 46(6): 624-631. |
[10] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[11] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[12] | 韩大勇, 张维, 努尔买买提•依力亚斯, 杨允菲. 植物种群更新的补充限制[J]. 植物生态学报, 2021, 45(1): 1-12. |
[13] | 胡慧, 杨雨, 包维楷, 刘鑫, 李芳兰. 干旱河谷微生境变化对乡土植物幼苗定植的影响[J]. 植物生态学报, 2020, 44(10): 1028-1039. |
[14] | 苑丹阳, 朱良军, 张远东, 李宗善, 赵慧颖, 王晓春. 吉林老白山鱼鳞云杉树轮蓝光强度和轮宽指数与气候响应关系随海拔变化的对比[J]. 植物生态学报, 2019, 43(12): 1061-1078. |
[15] | 吴小琪, 杨圣贺, 黄力, 李笑寒, 杨超, 钱深华, 杨永川. 常绿阔叶林林冠环境对栲幼苗建成的影响[J]. 植物生态学报, 2019, 43(1): 55-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19