Chin J Plant Ecol ›› 2007, Vol. 31 ›› Issue (2): 320-325.DOI: 10.17521/cjpe.2007.0037
• Research Articles • Previous Articles Next Articles
ZHAO Wen-Fei(), WANG Hua-Tian(
), QI Li-Yun, ZHANG Ying-Hui
Received:
2006-03-24
Accepted:
2006-08-30
Online:
2007-03-24
Published:
2007-03-30
Contact:
WANG Hua-Tian
About author:
First author contact:The first author E-mail: wenfeizhao@163.com
ZHAO Wen-Fei, WANG Hua-Tian, QI Li-Yun, ZHANG Ying-Hui. SPATIAL VARIATION OF SAP FLOW OF QUERCUS ACUTISSIMA AND ITS LAG EFFECT DURING SPRING[J]. Chin J Plant Ecol, 2007, 31(2): 320-325.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2007.0037
日期 Date | 峰值出现时间 Peak time (点钟 O'clock) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
树干下部 Lower trunk (1.3 m) | 树干中部 Mid-trunk (4.5 m) | 树干上部 Upper trunk (8.0 m) | 太阳净辐射 Net solar radiation (TBB) | 空气温度 Air temperature (TPa) | 空气湿度 Air humidity (RHa) | |||||||||||
May 30 | 13:00 | 9:00 | 14:00 | 12:00 | 15:00 | 0:30 | ||||||||||
May 31 | 11:30 | 10:30 | 11:30 | 11:20 | 13:40 | 19:00 | ||||||||||
June 1 | 12:00 | 12:00 | 16:00 | 12:40 | 13:40 | 5:30 | ||||||||||
June 2 | 11:30 | 9:30 | 15:30 | 11:50 | 13:00 | 10:00 | ||||||||||
June 3 | 12:30 | 9:30 | 16:00 | 12:10 | 15:40 | 24:00 |
Table 1 The peaks and time of mean sap flow velocity and main environmental factors in different height of Quercus acutissima trunk
日期 Date | 峰值出现时间 Peak time (点钟 O'clock) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
树干下部 Lower trunk (1.3 m) | 树干中部 Mid-trunk (4.5 m) | 树干上部 Upper trunk (8.0 m) | 太阳净辐射 Net solar radiation (TBB) | 空气温度 Air temperature (TPa) | 空气湿度 Air humidity (RHa) | |||||||||||
May 30 | 13:00 | 9:00 | 14:00 | 12:00 | 15:00 | 0:30 | ||||||||||
May 31 | 11:30 | 10:30 | 11:30 | 11:20 | 13:40 | 19:00 | ||||||||||
June 1 | 12:00 | 12:00 | 16:00 | 12:40 | 13:40 | 5:30 | ||||||||||
June 2 | 11:30 | 9:30 | 15:30 | 11:50 | 13:00 | 10:00 | ||||||||||
June 3 | 12:30 | 9:30 | 16:00 | 12:10 | 15:40 | 24:00 |
滞后时间 Lag time (min) | 树干下部 Lower trunk (1.3 m) | 树干中部 Mid-trunk (4.5 m) | 树干上部 Upper trunk (8.0 m) | ||||||
---|---|---|---|---|---|---|---|---|---|
流速与 净辐射 V vs TBB | 流速与气温 V vs TPa | 流速与 空气湿度 V vs RHa | 流速与 净辐射 V vs TBB | 流速与气温 V vs TPa | 流速与 空气湿度 V vs RHa | 流速与 净辐射 V vs TBB | 流速与气温 V vs TPa | 流速与 空气湿度 V vs RHa | |
-100 | 0.878 | 0.487 | -0.165 | 0.810 | 0.409 | -0.159 | 0.936 | 0.613 | -0.243 |
-90 | 0.893 | 0.520 | -0.182 | 0.825 | 0.442 | -0.174 | 0.941 | 0.641 | -0.258 |
-80 | 0.906 | 0.553 | -0.198 | 0.839 | 0.475 | -0.189 | 0.944 | 0.668 | -0.273 |
-70 | 0.915 | 0.584 | -0.214 | 0.851 | 0.506 | -0.204 | 0.943 | 0.693 | -0.288 |
-60 | 0.922 | 0.615 | -0.230 | 0.862 | 0.537 | -0.219 | 0.939 | 0.717 | -0.302 |
-50 | 0.927 | 0.644 | -0.245 | 0.871 | 0.567 | -0.234 | 0.932 | 0.740 | -0.316 |
-40 | 0.929 | 0.671 | -0.260 | 0.878 | 0.596 | -0.249 | 0.922 | 0.761 | -0.328 |
-30 | 0.930 | 0.697 | -0.274 | 0.884 | 0.623 | -0.263 | 0.908 | 0.780 | -0.340 |
-20 | 0.928 | 0.722 | -0.288 | 0.887 | 0.650 | -0.278 | 0.891 | 0.798 | -0.351 |
-10 | 0.924 | 0.745 | -0.301 | 0.886 | 0.676 | -0.213 | 0.872 | 0.813 | -0.361 |
0 | 0.918 | 0.766 | -0.313 | 0.884 | 0.700 | -0.305 | 0.851 | 0.827 | -0.371 |
10 | 0.909 | 0.785 | -0.324 | 0.879 | 0.722 | -0.317 | 0.827 | 0.838 | -0.378 |
20 | 0.897 | 0.801 | -0.334 | 0.872 | 0.741 | -0.329 | 0.803 | 0.847 | -0.384 |
30 | 0.884 | 0.816 | -0.343 | 0.864 | 0.760 | -0.339 | 0.778 | 0.854 | -0.390 |
40 | 0.868 | 0.829 | -0.351 | 0.854 | 0.776 | -0.349 | 0.751 | 0.859 | -0.394 |
50 | 0.850 | 0.840 | -0.358 | 0.841 | 0.791 | -0.357 | 0.724 | 0.863 | -0.398 |
60 | 0.830 | 0.850 | -0.365 | 0.827 | 0.803 | -0.365 | 0.695 | 0.864 | -0.401 |
70 | 0.809 | 0.857 | -0.371 | 0.812 | 0.814 | -0.372 | 0.665 | 0.864 | -0.403 |
80 | 0.785 | 0.863 | -0.376 | 0.794 | 0.824 | -0.378 | 0.633 | 0.862 | -0.405 |
90 | 0.760 | 0.866 | -0.381 | 0.774 | 0.831 | -0.383 | 0.600 | 0.857 | -0.406 |
100 | 0.733 | 0.868 | -0.385 | 0.752 | 0.837 | -0.388 | 0.565 | 0.851 | -0.406 |
110 | 0.704 | 0.869 | -0.388 | 0.728 | 0.841 | -0.392 | 0.530 | 0.843 | -0.405 |
120 | 0.673 | 0.868 | -0.391 | 0.703 | 0.843 | -0.395 | 0.494 | 0.833 | -0.405 |
130 | 0.642 | 0.865 | -0.394 | 0.676 | 0.844 | -0.397 | 0.457 | 0.823 | -0.404 |
140 | 0.609 | 0.861 | -0.395 | 0.648 | 0.843 | -0.399 | 0.420 | 0.810 | -0.402 |
150 | 0.575 | 0.855 | -0.397 | 0.619 | 0.840 | -0.400 | 0.382 | 0.795 | -0.400 |
160 | 0.540 | 0.847 | -0.398 | 0.588 | 0.836 | -0.401 | 0.344 | 0.780 | -0.398 |
170 | 0.505 | 0.838 | -0.398 | 0.557 | 0.830 | -0.402 | 0.305 | 0.764 | -0.395 |
180 | 0.468 | 0.828 | -0.329 | 0.525 | 0.823 | -0.401 | 0.265 | 0.746 | -0.401 |
Table 2 Analysis of the lagging effect between sap flow and environmental factors
滞后时间 Lag time (min) | 树干下部 Lower trunk (1.3 m) | 树干中部 Mid-trunk (4.5 m) | 树干上部 Upper trunk (8.0 m) | ||||||
---|---|---|---|---|---|---|---|---|---|
流速与 净辐射 V vs TBB | 流速与气温 V vs TPa | 流速与 空气湿度 V vs RHa | 流速与 净辐射 V vs TBB | 流速与气温 V vs TPa | 流速与 空气湿度 V vs RHa | 流速与 净辐射 V vs TBB | 流速与气温 V vs TPa | 流速与 空气湿度 V vs RHa | |
-100 | 0.878 | 0.487 | -0.165 | 0.810 | 0.409 | -0.159 | 0.936 | 0.613 | -0.243 |
-90 | 0.893 | 0.520 | -0.182 | 0.825 | 0.442 | -0.174 | 0.941 | 0.641 | -0.258 |
-80 | 0.906 | 0.553 | -0.198 | 0.839 | 0.475 | -0.189 | 0.944 | 0.668 | -0.273 |
-70 | 0.915 | 0.584 | -0.214 | 0.851 | 0.506 | -0.204 | 0.943 | 0.693 | -0.288 |
-60 | 0.922 | 0.615 | -0.230 | 0.862 | 0.537 | -0.219 | 0.939 | 0.717 | -0.302 |
-50 | 0.927 | 0.644 | -0.245 | 0.871 | 0.567 | -0.234 | 0.932 | 0.740 | -0.316 |
-40 | 0.929 | 0.671 | -0.260 | 0.878 | 0.596 | -0.249 | 0.922 | 0.761 | -0.328 |
-30 | 0.930 | 0.697 | -0.274 | 0.884 | 0.623 | -0.263 | 0.908 | 0.780 | -0.340 |
-20 | 0.928 | 0.722 | -0.288 | 0.887 | 0.650 | -0.278 | 0.891 | 0.798 | -0.351 |
-10 | 0.924 | 0.745 | -0.301 | 0.886 | 0.676 | -0.213 | 0.872 | 0.813 | -0.361 |
0 | 0.918 | 0.766 | -0.313 | 0.884 | 0.700 | -0.305 | 0.851 | 0.827 | -0.371 |
10 | 0.909 | 0.785 | -0.324 | 0.879 | 0.722 | -0.317 | 0.827 | 0.838 | -0.378 |
20 | 0.897 | 0.801 | -0.334 | 0.872 | 0.741 | -0.329 | 0.803 | 0.847 | -0.384 |
30 | 0.884 | 0.816 | -0.343 | 0.864 | 0.760 | -0.339 | 0.778 | 0.854 | -0.390 |
40 | 0.868 | 0.829 | -0.351 | 0.854 | 0.776 | -0.349 | 0.751 | 0.859 | -0.394 |
50 | 0.850 | 0.840 | -0.358 | 0.841 | 0.791 | -0.357 | 0.724 | 0.863 | -0.398 |
60 | 0.830 | 0.850 | -0.365 | 0.827 | 0.803 | -0.365 | 0.695 | 0.864 | -0.401 |
70 | 0.809 | 0.857 | -0.371 | 0.812 | 0.814 | -0.372 | 0.665 | 0.864 | -0.403 |
80 | 0.785 | 0.863 | -0.376 | 0.794 | 0.824 | -0.378 | 0.633 | 0.862 | -0.405 |
90 | 0.760 | 0.866 | -0.381 | 0.774 | 0.831 | -0.383 | 0.600 | 0.857 | -0.406 |
100 | 0.733 | 0.868 | -0.385 | 0.752 | 0.837 | -0.388 | 0.565 | 0.851 | -0.406 |
110 | 0.704 | 0.869 | -0.388 | 0.728 | 0.841 | -0.392 | 0.530 | 0.843 | -0.405 |
120 | 0.673 | 0.868 | -0.391 | 0.703 | 0.843 | -0.395 | 0.494 | 0.833 | -0.405 |
130 | 0.642 | 0.865 | -0.394 | 0.676 | 0.844 | -0.397 | 0.457 | 0.823 | -0.404 |
140 | 0.609 | 0.861 | -0.395 | 0.648 | 0.843 | -0.399 | 0.420 | 0.810 | -0.402 |
150 | 0.575 | 0.855 | -0.397 | 0.619 | 0.840 | -0.400 | 0.382 | 0.795 | -0.400 |
160 | 0.540 | 0.847 | -0.398 | 0.588 | 0.836 | -0.401 | 0.344 | 0.780 | -0.398 |
170 | 0.505 | 0.838 | -0.398 | 0.557 | 0.830 | -0.402 | 0.305 | 0.764 | -0.395 |
180 | 0.468 | 0.828 | -0.329 | 0.525 | 0.823 | -0.401 | 0.265 | 0.746 | -0.401 |
Fig.3 The scatter-plot between sap flow in the height 8.0 m of the trunk and air temperature (TPa) (a),relative humidity (RHa) (b),wind speed (Ws) (c), net solar radiation (TBB) (d)
[1] | Alarcón JJ, Domingo R, Green MJ, Sánchez-Blano, Rodríguez P, Torrecillas A (2000). Sap flow as an indicator of transpiration and the water status of young apricot trees. Plant and Soil, 227,77-85. |
[2] | Chang XX (常学向), Zhao WZ (赵文智) (2004). Sap flow of Gansu poplar in farmland shelter forest during the growing season in desert oasis. Acta Ecologica Sinica (生态学报), 24,1436-1441. (in Chinese with English abstract) |
[3] | Dünish O, Morais RR (2002). Regulation of xylem sap flow in an evenergreen,a semi-deciduous,and a deciduous Meliaceae species from the Amazon. Trees, 16,404-416. |
[4] | Granier A (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3,309-319. |
[5] | Li HT (李海涛), Chen LZ (陈灵芝) (1998). A study on the volume and velocity of stem-sapflow of Betula dahurica and Acer mono forests by the heat-pulse technique. Journal of Beijing Forestry University(北京林业大学学报), 20(1),1-6. (in Chinese with English abstract) |
[6] | Ma LY (马李一), Sun PS (孙鹏森), Ma LY (马履一) (2001). Sap wood area calculation and water use scaling up from individual trees to stands of Chinese pine and black locust. Journal of Beijing Forestry University(北京林业大学学报), 23(4),1-5. (in Chinese with English abstract) |
[7] | Ma LY (马履一), Wang HT (王华田) (2002). Spatial and chronic fluctuation of sapwood flow and its relevant variables of Pinus tubulaeformis. Journal of Beijing Forestry University (北京林业大学学报), 24(3),23-27. (in Chinese with English abstract) |
[8] | Marshall DC (1958). Measurement of sap flow in conifers by heat transport. Plant Physiology, 33,385-396. |
[9] | Nakai T, Abe H (2005). The relationship between sap flow rate and diurnal change of tangential strain on inner bark in Cryptomeria japonica saplings. Journal of Wood Science, 51,441-447. |
[10] | Sun PS (孙鹏森) (2000). Layout and Different Scale Water Use Characteristic of Water Conservation Tree in North Beijing Mountain Area (京北水源保护林格局及不同尺度树种耗水特性研究). PhD dissertation, Beijing Forestry University, 97-112. (in Chinese with English abstract) |
[11] | Swanson RH (1994). Water transpired by trees is indicated by heat pulse velocity. Agricultural Meteorology, 72,113-132. |
[12] | Tognetti R, Raschi A (1996). Comparison of sap flow, cavitation and water status of Quercus petraea and Quercus cerris trees with special reference to computer tomography. Plant, Cell and Environment, 19,928-938. |
[13] | Vertessy RA, Benyon R, O'Sullivan SK, Gribben PR (1995). Relationship between diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiology, 15,559-568. |
[14] | Wang HT (王华田), Ma LY (马履一) (2002). Measurement of whole tree's water consumption with thermal dissipation sap flow probe (TDP). Acta Phytoecologica Sinica(植物生态学报), 26,661-667. (in Chinese with English abstract) |
[15] | Wang HT (王华田), Ma LY (马履一), Xu JL (徐军亮) (2004). Water potential and its impact on sapwood flow velocity. Acta Phytoecologica Sinica (植物生态学报), 28,637-643. (in Chinese with English abstract) |
[16] | Wang HT (王华田), Ma LY (马履一), Sun PS (孙鹏森) (2002). Sap flow fluctuations of Pinus tabulaeformis and Platycladus orientalis in late autumn. Scientia Silvae Sinicae(林业科学), 38(5),31-37. (in Chinese with English abstract) |
[17] | Wu LP (吴丽萍), Wang XD (王学东), Wei QN (尉全恩), Shi F (史福), Chen ZX (陈正新), Zhu ZH (朱智宏), Zhang YE (张云娥) (2003). Study on spatial and temporal variability for stem-sap flow of Pinus sylvestris var. mongolica. Research of Soil and Water Conservation(水土保持研究), 10(4),66-68. (in Chinese with English abstract) |
[18] | Wullschleger SD, Meinzer FC, Vertessy RA (1998). A review of whole-plant water use studies in trees. Tree Physiology, 18(8/9),499-512. |
[19] | Xiao YH (肖以华), Chen BF (陈步峰), Chen JJ (陈嘉杰), Chen Y (陈勇), Li DW (李东文), Wu TG (吴统贵) (2005). A study on the stem sap flow of Acacia mangium.Forest Research(林业科学研究), 18,331-335. (in Chinese with English abstract) |
[20] | Xiong W (熊伟), Wang YH (王彦辉), Xu DY (徐德应) (2003). Regulations of water use for transpiration of Larix principi-rupprechtii plantation and its response on environmental factors in Southern Ningxia hilly area. Scientia Silvae Sinicae(林业科学), 39(2),1-7. (in Chinese with English abstract) |
[21] | Zhou GY (周国逸), Huang ZH (黄志宏), Morris J, Li ZA (李志安), Collopy J, Zhang NN (张宁南), Bai JY (白嘉雨) (2002). Radial variation in sap flux density as a funtion of sapwood thickness in two eucalyptus ( Eucalyptus urophylla) plantations. Acta Botanica Sinica(植物学报), 44,1418-1424. (in English with Chinese abstract). |
[1] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[2] | YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees [J]. Chin J Plant Ecol, 2024, 48(4): 496-507. |
[3] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
[4] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[5] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[6] | FAN Yun-Xiang, DI Nan, LIU Yang, ZHANG Yu-Wen, DUAN Jie, LI Xin, WANG Hai-Hong, XI Ben-Ye. Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors [J]. Chin J Plant Ecol, 2023, 47(2): 262-274. |
[7] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[8] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[9] | MIAO Li-Juan, ZHANG Yu-Yang, CHUAI Xiao-Wei, BAO Gang, HE Yu, ZHU Jing-Wen. Effects of climatic factors and their time-lag on grassland NDVI in Asian drylands [J]. Chin J Plant Ecol, 2023, 47(10): 1375-1385. |
[10] | LIU Yang, MA Xu, DI Nan, ZENG Zi-Hang, FU Hai-Man, LI Xin, XI Ben-Ye. Root sap flow and hydraulic redistribution of Populus tomentosa [J]. Chin J Plant Ecol, 2023, 47(1): 123-133. |
[11] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
[12] | PENG Xin, JIN Guang-Ze. Effects of plant characteristics and environmental factors on the dark diversity in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 656-666. |
[13] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[14] | Ning LIU, Shou-Zhang PENG, Yun-Ming CHEN. Temporal effects of climate factors on vegetation growth on the Qingzang Plateau, China [J]. Chin J Plant Ecol, 2022, 46(1): 18-26. |
[15] | HUANG Jie, LI Xiao-Ling, WANG Xue-Song, YANG Jin, HUANG Cheng-Ming. Characteristics of Distylium chinense communities and their relationships with soil environmental factors in different water level fluctuation zones of the Three Gorges Reservoir, China [J]. Chin J Plant Ecol, 2021, 45(8): 844-859. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn