Chin J Plant Ecol ›› 2007, Vol. 31 ›› Issue (3): 363-371.DOI: 10.17521/cjpe.2007.0044
• Articles • Previous Articles Next Articles
HAN Guang-Xuan1,2(), ZHOU Guang-Sheng1,*(
), XU Zhen-Zhu1, YANG Yang3, LIU Jing-Li3, SHI Kui-Qiao3
Received:
2006-06-05
Accepted:
2006-11-14
Online:
2007-06-05
Published:
2007-05-30
Contact:
ZHOU Guang-Sheng
HAN Guang-Xuan, ZHOU Guang-Sheng, XU Zhen-Zhu, YANG Yang, LIU Jing-Li, SHI Kui-Qiao. RESPONSES OF SOIL RESPIRATION TO THE COORDINATED EFFECTS OF SOIL TEMPERATURE AND BIOTIC FACTORS IN A MAIZE FIELD[J]. Chin J Plant Ecol, 2007, 31(3): 363-371.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2007.0044
Fig.1 Seasonal patterns of (A) soil temperature at 10 cm and 20 cm depth, (B) precipitation and soil water content at 10 cm and 20 cm and (C) seasonal variations of averaged shoot biomass, root biomass, total biomass and net primary productivity (NPP) of maize during the growth season in 2005
Fig.2 Diurnal variations of soil respiration on May 4, June 5, June 28, July 28, August 28 and September 22 during the growing season of maize in 2005 Data of soil respiration rate represent means±SE (n=15)
日期 Date | 10 cm深度土壤温度 T at 10 cm depth (℃) | 20 cm深度土壤温度 T at 20 cm depth (℃) | 30 cm深度土壤温度 T at 30 cm depth (℃) |
---|---|---|---|
5月4日 May 4 | 0.976** | 0.475 | 0.145 |
6月5日 June 5 | 0.955** | 0.682* | 0.483 |
6月28日 June 28 | 0.980** | 0.976** | 0.826** |
7月28日 July 28 | 0.979** | 0.923** | 0.693** |
8月28日 August 28 | 0.986** | 0.842** | 0.695** |
9月22日 September 22 | 0.929** | 0.877** | 0.427 |
Table 1 Correlation coefficients of soil respiration rate during daytime with soil temperatures (T)
日期 Date | 10 cm深度土壤温度 T at 10 cm depth (℃) | 20 cm深度土壤温度 T at 20 cm depth (℃) | 30 cm深度土壤温度 T at 30 cm depth (℃) |
---|---|---|---|
5月4日 May 4 | 0.976** | 0.475 | 0.145 |
6月5日 June 5 | 0.955** | 0.682* | 0.483 |
6月28日 June 28 | 0.980** | 0.976** | 0.826** |
7月28日 July 28 | 0.979** | 0.923** | 0.693** |
8月28日 August 28 | 0.986** | 0.842** | 0.695** |
9月22日 September 22 | 0.929** | 0.877** | 0.427 |
Fig.3 Relationships between measured soil respiration and the modeled soil respiration (A, B) for all data combined during the growing season in the maize ecosystem, using Equation (5) (A) and Equation (6) (B), respectively. The dotted lines are regression lines, and the other solid lines represent the 95% confidence and prediction levels, respectively
日期 Date | SR=αT+β | 10 cm深度土壤 温度T at 10 cm depth (℃) | 10 cm深度土壤 湿度W at 10 cm depth (%) | 生物量B (g·m-2) | NPP (g·m-2·d-1) | 土壤全碳 C (%) | 土壤全氮 N (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
α | β | R2 | p | |||||||
5月4日 May 4 | 0.075 7 | -0.061 7 | 0.95 | <0.000 1 | 18.2 | 23.6 | 0.0 | 0.0 | 7.84 (0.32) | 0.86 (0.05) |
6月5日 June 5 | 0.118 8 | -0.642 9 | 0.91 | <0.000 1 | 23.3 | 33.1 | 17.4 (1.5) | 0.7 (0.2) | 8.61 (0.33) | 0.91 (0.05) |
6月28日 June 28 | 0.345 6 | -4.776 8 | 0.96 | <0.000 1 | 25.1 | 34.8 | 174.3 (15.8) | 21.3 (1.5) | 8.44 (0.31) | 0.93 (0.02) |
7月28日 July 28 | 0.431 4 | -5.740 2 | 0.96 | <0.000 1 | 24.4 | 34.7 | 1034.5 (35.1) | 40.6 (3.2) | 9.10 (0.12) | 1.01 (0.02) |
8月28日 August 28 | 0.194 6 | -0.095 7 | 0.97 | <0.000 1 | 24.1 | 36.9 | 2110.1 (51.7) | 23.1 (2.2) | 7.98 (0.11) | 0.70 (0.02) |
9月22日 September 22 | 0.103 6 | 0.722 1 | 0.86 | <0.000 1 | 14.8 | 33.8 | 2477.2 (53.8) | 12.2 (1.4) | 8.46 (0.24) | 0.70 (0.03) |
Table 2 Values of coefficients α and β of the equation (SR=αT+β) and corresponding environmental factors including soil temperature (T) at 10 cm depth, soil moisture (W) at 10 cm depth, biomass (B), net primary productivity (NPP) of maize, total carbon (C) and soil nitrogen (N) for each of the six measurement dates during a maize growth season in 2005
日期 Date | SR=αT+β | 10 cm深度土壤 温度T at 10 cm depth (℃) | 10 cm深度土壤 湿度W at 10 cm depth (%) | 生物量B (g·m-2) | NPP (g·m-2·d-1) | 土壤全碳 C (%) | 土壤全氮 N (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
α | β | R2 | p | |||||||
5月4日 May 4 | 0.075 7 | -0.061 7 | 0.95 | <0.000 1 | 18.2 | 23.6 | 0.0 | 0.0 | 7.84 (0.32) | 0.86 (0.05) |
6月5日 June 5 | 0.118 8 | -0.642 9 | 0.91 | <0.000 1 | 23.3 | 33.1 | 17.4 (1.5) | 0.7 (0.2) | 8.61 (0.33) | 0.91 (0.05) |
6月28日 June 28 | 0.345 6 | -4.776 8 | 0.96 | <0.000 1 | 25.1 | 34.8 | 174.3 (15.8) | 21.3 (1.5) | 8.44 (0.31) | 0.93 (0.02) |
7月28日 July 28 | 0.431 4 | -5.740 2 | 0.96 | <0.000 1 | 24.4 | 34.7 | 1034.5 (35.1) | 40.6 (3.2) | 9.10 (0.12) | 1.01 (0.02) |
8月28日 August 28 | 0.194 6 | -0.095 7 | 0.97 | <0.000 1 | 24.1 | 36.9 | 2110.1 (51.7) | 23.1 (2.2) | 7.98 (0.11) | 0.70 (0.02) |
9月22日 September 22 | 0.103 6 | 0.722 1 | 0.86 | <0.000 1 | 14.8 | 33.8 | 2477.2 (53.8) | 12.2 (1.4) | 8.46 (0.24) | 0.70 (0.03) |
Fig.4 Seasonal variations of measured and modeled soil respiration during the growth season of maize Symbols represent mean and standard error of soil respiration on every sampling day. The solid line represents Equation (5), and the dotted line is Equation (6)
[1] | Boone RD, Nadelhoer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572. |
[2] | Buchmann N (2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry, 32, 1625-1635. |
[3] | Buyanovsky GA, Wagner GH 1995. Soil respiration and carbon dynamics in parallel native and cultivated ecosystems. In: Lal R, Kimble J, Levine E, Stewart BA eds. Soils and Global Change. CRC Pres, Boca Raton, FL, USA, 209-217. |
[4] | Cao GM, Tang YH, Mo WH, Wang YS, Li YN, Zhao XQ (2004). Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biology and Biochemistry, 36, 237-243. |
[5] | Chimner RA (2004). Soil respiration rates of tropical peat lands in Micronesia and Hawaii. Wetlands, 24, 51-56. |
[6] | Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
[7] |
Davidson EA, Trumbore SE, Amundson R (2000). Soil warming and carbon content. Nature, 408, 789-790.
DOI URL PMID |
[8] | Dilustro JJ, Collins B, Duncan L, Crawford C (2005). Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests. Forest Ecology and Management, 204, 85-95. |
[9] | Dong M(董鸣) (1996). Survey, Observation and Analysis of Terrestrial Biocommunities (陆地生物群落调查观测与分析). China Standards Press, Beijing, 66. (in Chinese) |
[10] | Epron D, Nouvellon Y, Roupsard O, Mouvondy W, Mabialab A, Laurent SA, Joffre R, Jourdan C, Bonnefond JM, Berbigier P, Hamel O (2004). Spatial and temporal variations of soil respiration in a Eucalyptus plantation in Congo. Forest Ecology and Management, 202, 149-160. |
[11] |
Fan SM, Goulden ML, Munger JW, Daube BC, Bakwin PS, Wofsy SC, Amthor JS, Fitzjarrald D, Moore KE, Moore TR (1995). Environmental controls on the photosynthesis and respiration of a boreal lichen woodland: a growing season of whole ecosystem exchange measurements by eddy-correlation. Oecologia, 102, 443-452.
DOI URL PMID |
[12] | Fang C, Moncrieff JB (2001). The dependence of soil CO2 efflux on temperature. Soil Biology and Biochemistry, 33, 155-165. |
[13] | Fang C, Moncrieff JB, Gholz HL, Clark KL (1998). Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant and Soil, 205, 135-146. |
[14] | Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007). Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biology and Biochemistry, 39, 418-425. |
[15] | Han GX(韩广轩), Zhu B(朱波), Jiang CS(江长胜) (2006). Soil respiration and its controlling factors in rice fields in the hill region of the central Sichuan Basin. Journal of Plant Ecology (formerly Acta Phytoecologica Sinica ) (植物生态学报), 30, 450-456. (in Chinese with English abstract) |
[16] | Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115-146. |
[17] |
Høgberg P, Nordgren A, ?gren GI (2002). Carbon allocation between tree root growth and root respiration in boreal pine forest. Oecologia, 132, 579-581.
DOI URL PMID |
[18] |
Høgberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Hogberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789-792.
DOI URL PMID |
[19] | Janssens IA, Pilegaard K (2003). Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology, 9, 911-918. |
[20] | Jenkinson DS (1990). The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society of London Series B, 329, 361-368. |
[21] | Jia BR(贾丙瑞), Zhou GS(周广胜), Wang FY(王风玉), Wang YH(王玉辉) (2005). Soil respiration and its influencing factors at grazing and fenced typical Leymus chinensis steppe, Nei Monggol. Environmental Science (环境科学), 26, 1-7. (in Chinese with English abstract) |
[22] |
Lee MS, Nakane K, Nakatsubo T, Koizumi H (2003). Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant and Soil, 255, 311-318.
DOI URL |
[23] |
Lee MS, Nakane K, Nakatsubo T, Mo WH, Koizumi H (2002). Effects of rainfall events on soil CO2 flux in a cool temperate deciduous broad-leaved forest. Ecological Research, 17, 401-409.
DOI URL |
[24] | Li ZF(李兆富), Lü XG(吕宪国), Yang Q(杨青), Gao JQ(高俊琴)(2003). Soil surface CO2 fluxes of Deyeuxia angustifolia wetland in Sanjiang plain. Journal of Nanjing Forestry University (Natural Sciences Edition) (南京林业大学学报(自然科学版)), 23, 51-54.(in Chinese with English abstract) |
[25] | Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323. |
[26] | Lohila A, Aurela M, Regina K, Laurila T (2003). Soil and total ecosystem respiration in agricultural fields: effect of soil and crop type. Plant and Soil, 251, 303-317. |
[27] | Maestre FT, Cortina J (2003). Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Applied Soil Ecology, 23, 199-209. |
[28] | Michelsen A, Andersson M, Jensen M, Kjϕller A, Gashew M (2004). Carbon stocks, soil respiration and microbial biomass in fire-prone tropical grassland, woodland and forest ecosystems. Soil Biology and Biochemistry, 36, 1707-1717. |
[29] | O'Connell KEB, Gower ST, Norman JM (2003). Net ecosystem production of two contrasting boreal black spruce forest communities. Ecosystems, 6, 248-260. |
[30] |
Pangle RE, Seiler J (2002). Influence of seedling roots, environmental factors and soil characteristics on soil CO2 efflux rates in a 2-year-old loblolly pine (Pinus taeda L.) plantation on the Virginia Piedmont. Environmental Pollution, 116, S85-S96.
DOI URL PMID |
[31] | Pumpanen J, Ilvesniemi H, Per⁉m⁉ki M, Hari P (2003). Seasonal patterns of soil CO2 efflux and soil air CO2 concentration in a Scots pine forest: comparison of two chamber techniques. Global Change Biology, 9, 371-382. |
[32] | Pypker TG, Fredeen AL (2003). Below ground CO2 efflux from cut blocks of varying ages in sub-boreal British Columbia. Forest Ecology Management, 172, 249-259. |
[33] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99. |
[34] | Raich JW, Potter CS (1995). Global patterns of carbon-dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23-36. |
[35] | Raich JW, Tufekcioglu A (2000). Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48, 71-90. |
[36] | Reth S, Gøckede M, Falge E (2004). CO2 efflux from agricultural soils in Eastern Germany—comparison of a closed chamber system with eddy covariance measurements. Theoretical and Applied Climatology, 85, 175-186. |
[37] | Rey A, Pegoraro E, Tedeschi V, Parri ID, Jarvis PG, Valentini R (2002). Annual variation in soil respiration and its components in a coppice oak forest in central Italy. Global Change Biology, 8, 851-866. |
[38] | Rodeghiero M, Cescatti A (2005). Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Global Change Biology, 11, 1024-1041. |
[39] | Samuelson LJ, Johnsen K, Stokes T, Lu W (2004). Intensive management modifies soil CO2 efflux in 6-year-old Pinus taeda L. stands. Forest Ecology and Management, 200, 335-345. |
[40] | Sánchez ML, Ozores MI, López MJ, Colle R, De Torre B, García MA, Pérez I (2003). Soil CO2 fluxes beneath barley on the central Spanish plateau. Agricultural and Forest Meteorology, 118, 85-95. |
[41] | Sotta ED, Meir P, Malhi Y, Donatonobre A, Hodnett M, Grace J (2004). Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biology, 10, 601-617. |
[42] | Tang JW, Baldocchi DD (2005). Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry, 73, 183-207. |
[43] | Tang JW, Dennis DB, Qi Y, Xu LK (2003). Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agricultural and Forest Meteorology, 118, 207-220. |
[44] | Thierron V, Laudelout H (1996). Contribution of root respiration to total CO2 efflux from the soil of a deciduous forest. Canadian Journal of Forest Research, 26, 1142-1148. |
[45] | Tufekcioglu A, Raich JW, Isenhart TM, Schultz RC (2001). Soil respiration within riparian buffers and adjacent crop fields. Plant and Soil, 229, 117-124. |
[46] | Yang J(杨晶), Huang JH(黄建辉), Zhan XM(詹学明), Li X(李鑫), Du LH(杜丽华), Li LH(李凌浩) (2004). The diurnal dynamic patterns of soil respiration for different plant communities in the agro-pastoral ecotone with reference to different measuring methods. Acta Phytoecologica Sinica (植物生态学报), 28, 318-325. (in Chinese with English abstract) |
[47] | Yuste JC, Janssens, Carrara A, Ceulemans R (2004). Annual Q10 of soil respiration reflects plant phonological patterns as well as temperature sensitivity. Global Change Biology, 10, 161-169. |
[48] | Xu M, Qi Y (2001). Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667-677. |
[49] | Wardle DA (2002). Communities and Ecosystems, Linking the Above-Ground and Belowground Components. Princeton University Press, Princeton, 392. |
[1] | Zhang fenghua fenghuaZhang Yaguang Zhao Bingnan Sun. Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus [J]. Chin J Plant Ecol, 2023, 47(1): 0-0. |
[2] |
Yuan-He YANG Dianye Zhang Wei Bin Liu Yang Feng Xuehui Mao Chao Xu Weijie He Mei Wang Lu Zheng Zhihu Wang Yuanyuan Lei-Yi CHEN.
Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 0-0. |
[3] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[4] | YUAN Chun-Yang, LI Ji-Hong, HAN Xin, HONG Zong-Wen, LIU Xuan, DU Ting, YOU Cheng-Ming, LI Han, TAN Bo, XU Zhen-Feng. Effects of tree species on soil microbial biomass carbon and nitrogen: a case study of common garden experiment [J]. Chin J Plant Ecol, 2022, 46(8): 882-889. |
[5] | YU Shui-Jin, WANG Juan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Impact and mechanism of maintaining biomass stability in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 632-641. |
[6] | MA He-Ping, WANG Rui-Hong, QU Xing-Le, YUAN Min, MU Jin-Yong, LI Jin-Hang. Effects of different habitats on the diversity and biomass of ground moss in the southeast Xizang, China [J]. Chin J Plant Ecol, 2022, 46(5): 552-560. |
[7] | WANG Zi-Long, HU Bin, BAO Wei-Kai, LI Fang-Lan, HU Hui, WEI Dan-Dan, YANG Ting-Hui, LI Xiao-Juan. Latitudinal patterns and underlying factors of component biomass in plant communities in the arid valley of southwest China [J]. Chin J Plant Ecol, 2022, 46(5): 539-551. |
[8] | ZHANG Yu-Lin, YIN Ben-Feng, TAO Ye, LI Yong-Gang, ZHOU Xiao-Bing, ZHANG Yuan-Ming. Effects of the first rainfall timing and amount on morphological characteristics and chlorophyll fluorescence of two ephemeral species in the Gurbantünggüt Desert, northwestern China [J]. Chin J Plant Ecol, 2022, 46(4): 428-439. |
[9] | CHEN Li, TIAN Xin-Min, REN Zheng-Wei, DONG Liu-Wen, XIE Chen-Di, ZHOU Xiao-Long. Effects of nutrient addition on plant diversity and above-ground biomass in alpine grasslands of Tianshan Mountains, China [J]. Chin J Plant Ecol, 2022, 46(3): 280-289. |
[10] | Kuaikuai Huang 刚 胡 Qingling Pang Bei Zhang Yeyong He Cong Hu Chaohao Xu. Effects of grazing on species composition and community structure of shrub tussock in the subtropical karst mountains, Southwest China [J]. Chin J Plant Ecol, 2022, 46(11): 1350-1363. |
[11] | GAO De-Cai, BAI E. Influencing factors of soil nitrous oxide emission during freeze-thaw cycles [J]. Chin J Plant Ecol, 2021, 45(9): 1006-1023. |
[12] | NIE Xiu-Qing, WANG Dong, ZHOU Guo-Ying, XIONG Feng, DU Yan-Gong. Soil microbial biomass carbon, nitrogen, phosphorus and their stoichiometric characteristics in alpine wetlands in the Three Rivers Sources Region [J]. Chin J Plant Ecol, 2021, 45(9): 996-1005. |
[13] | CHEN Zhe, WANG Hao, WANG Jin-Zhou, SHI Hui-Jin, LIU Hui-Ying, HE Jin-Sheng. Estimation on seasonal dynamics of alpine grassland aboveground biomass using phenology camera-derived NDVI [J]. Chin J Plant Ecol, 2021, 45(5): 487-495. |
[14] | WANG Yi, SUN Jian, YE Chong-Chong, ZENG Tao. Climatic factors drive the aboveground ecosystem functions of alpine grassland via soil microbial biomass nitrogen on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 434-443. |
[15] | WEI Chun-Xue, YANG Lu, WANG Jin-Song, YANG Jia-Ming, SHI Jia-Wei, TIAN Da-Shuan, ZHOU Qing-Ping, NIU Shu-Li. Effects of experimental warming on root biomass in terrestrial ecosystems [J]. Chin J Plant Ecol, 2021, 45(11): 1203-1212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn