Chin J Plant Ecol ›› 2011, Vol. 35 ›› Issue (3): 284-293.DOI: 10.3724/SP.J.1258.2011.00284
• Research Articles • Previous Articles Next Articles
Received:
2010-04-19
Accepted:
2010-12-10
Online:
2011-04-19
Published:
2011-03-02
Contact:
ZHOU Dao-Wei
LI Lei, ZHOU Dao-Wei. Density-dependent regulation of above- and below-ground modules in Allium cepa var. proliferum populations[J]. Chin J Plant Ecol, 2011, 35(3): 284-293.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2011.00284
Fig. 1 Effects of plant density on morphological characteristics of Allium cepa var. proliferum modules (mean ± SE). Different lowercase letters indicate significant differences among density treatments (p < 0.05).
x | y | 方程 Equation | 参数 Parameter | r | p | |
---|---|---|---|---|---|---|
a | b | |||||
密度 Density | 株高 Plant height | L | 35.72 | 0.06 | 0.85 | <0.001 |
叶片长 Leaf blade length | L | 17.05 | 0.03 | 0.92 | <0.001 | |
叶片数 Number of leaves | L | 38.34 | -0.37 | -0.96 | <0.001 | |
鳞茎直径 Bulb diameter | L | 6.95 | -0.01 | -0.84 | <0.001 | |
分蘖数 Number of tillers | L | 11.67 | -0.01 | -0.24 | 0.40 | |
分蘖重 Weight per tiller | P | 70.65 | -0.98 | -0.99 | <0.001 | |
根生物量 Root biomass | P | 22.14 | -0.78 | -0.98 | <0.001 | |
鳞茎生物量 Bulb biomass | P | 1 766.50 | -1.14 | -0.98 | <0.001 | |
鞘生物量 Sheath biomass | P | 12.50 | -0.49 | -0.92 | <0.001 | |
叶片生物量 Leaf blade biomass | P | 642.22 | -1.03 | -0.99 | <0.001 | |
地下生物量 Below-ground biomass | P | 1 855.60 | -1.13 | -0.97 | <0.001 | |
个体生物量 Individual biomass | P | 1 517.60 | -0.98 | -0.99 | <0.001 | |
地上生物量 Above-ground biomass | P | 608.47 | -0.95 | -0.99 | <0.001 |
Table 1 Simulated models on relationships between quantitative characters and plant density of Allium cepa var. proliferum
x | y | 方程 Equation | 参数 Parameter | r | p | |
---|---|---|---|---|---|---|
a | b | |||||
密度 Density | 株高 Plant height | L | 35.72 | 0.06 | 0.85 | <0.001 |
叶片长 Leaf blade length | L | 17.05 | 0.03 | 0.92 | <0.001 | |
叶片数 Number of leaves | L | 38.34 | -0.37 | -0.96 | <0.001 | |
鳞茎直径 Bulb diameter | L | 6.95 | -0.01 | -0.84 | <0.001 | |
分蘖数 Number of tillers | L | 11.67 | -0.01 | -0.24 | 0.40 | |
分蘖重 Weight per tiller | P | 70.65 | -0.98 | -0.99 | <0.001 | |
根生物量 Root biomass | P | 22.14 | -0.78 | -0.98 | <0.001 | |
鳞茎生物量 Bulb biomass | P | 1 766.50 | -1.14 | -0.98 | <0.001 | |
鞘生物量 Sheath biomass | P | 12.50 | -0.49 | -0.92 | <0.001 | |
叶片生物量 Leaf blade biomass | P | 642.22 | -1.03 | -0.99 | <0.001 | |
地下生物量 Below-ground biomass | P | 1 855.60 | -1.13 | -0.97 | <0.001 | |
个体生物量 Individual biomass | P | 1 517.60 | -0.98 | -0.99 | <0.001 | |
地上生物量 Above-ground biomass | P | 608.47 | -0.95 | -0.99 | <0.001 |
因变量 Dependent variable | 自变量 Independent variable | 分析类型 Analysis type | F | p | R2 |
---|---|---|---|---|---|
根生物量 Root biomass | 密度 Density | 方差分析 ANOVA | 19.4 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 4.4 | 0.031 | 0.86 | |
个体生物量 Individual biomass | 2.3 | 0.161 | |||
鳞茎生物量 Bulb biomass | 密度 Density | 方差分析 ANOVA | 2 651.7 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 82.8 | <0.001 | 1.000 | |
个体生物量 Individual biomass | 45.4 | <0.001 | |||
鞘生物量 Sheath biomass | 密度 Density | 方差分析 ANOVA | 18.3 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 0.6 | 0.696 | 0.833 | |
个体生物量 Individual biomass | 1.1 | 0.326 | |||
叶片生物量 Leaf blade biomass | 密度 Density | 方差分析 ANOVA | 302.3 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 16.8 | <0.001 | 0.989 | |
个体生物量 Individual biomass | 1.1 | 0.326 | |||
个体生物量 Individual biomass | 密度 Density | 方差分析 ANOVA | 3 241.3 | <0.001 | 0.996 |
地上生物量 Above-ground biomass | 密度 Density | 方差分析 ANOVA | 2 386.7 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 77.5 | <0.001 | 0.998 | |
个体生物量 Individual biomass | 0.1 | 0.725 | |||
地下生物量 Below-ground biomass | 密度 Density | 方差分析 ANOVA | 1 795.1 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 77.4 | <0.001 | 1.000 | |
个体生物量 Individual biomass | 95.7 | <0.001 |
Table 2 One-way ANOVA and ANCOVA of mean biomass of above- and below-ground parts of Allium cepa var. proliferum under different densities
因变量 Dependent variable | 自变量 Independent variable | 分析类型 Analysis type | F | p | R2 |
---|---|---|---|---|---|
根生物量 Root biomass | 密度 Density | 方差分析 ANOVA | 19.4 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 4.4 | 0.031 | 0.86 | |
个体生物量 Individual biomass | 2.3 | 0.161 | |||
鳞茎生物量 Bulb biomass | 密度 Density | 方差分析 ANOVA | 2 651.7 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 82.8 | <0.001 | 1.000 | |
个体生物量 Individual biomass | 45.4 | <0.001 | |||
鞘生物量 Sheath biomass | 密度 Density | 方差分析 ANOVA | 18.3 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 0.6 | 0.696 | 0.833 | |
个体生物量 Individual biomass | 1.1 | 0.326 | |||
叶片生物量 Leaf blade biomass | 密度 Density | 方差分析 ANOVA | 302.3 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 16.8 | <0.001 | 0.989 | |
个体生物量 Individual biomass | 1.1 | 0.326 | |||
个体生物量 Individual biomass | 密度 Density | 方差分析 ANOVA | 3 241.3 | <0.001 | 0.996 |
地上生物量 Above-ground biomass | 密度 Density | 方差分析 ANOVA | 2 386.7 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 77.5 | <0.001 | 0.998 | |
个体生物量 Individual biomass | 0.1 | 0.725 | |||
地下生物量 Below-ground biomass | 密度 Density | 方差分析 ANOVA | 1 795.1 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 77.4 | <0.001 | 1.000 | |
个体生物量 Individual biomass | 95.7 | <0.001 |
Fig. 2 Effects of plant density on mean biomass of modules (root, bulb, sheath and leaf blade) for Allium cepa var. proliferum (mean ± SE). Different lowercase letters indicate significant differences of different density treatments for identical module (p < 0.05).
Fig. 3 Effects of plant density on biomass allocation of Allium cepa var. proliferum modules (mean ± SE). Different lowercase letters indicate significant differences of different density treatments for identical module (p < 0.05).
[1] |
Antonovics J, Levin DA (1980). The ecological and genetic consequences of density-dependent regulation in plants. Annual Review of Ecology and Systematics, 11, 411-452.
DOI URL |
[2] |
Arenas F, Viejo RM, Fernández C (2002). Density-dependent regulation in an invasive seaweed: responses at plant and modular levels. Journal of Ecology, 90, 820-829.
DOI URL |
[3] |
Bonser SP, Aarssen LW (2003). Allometry and development in herbaceous plants: functional responses of meristem allocation to light and nutrient availability. American Journal of Botany, 90, 404-412.
DOI URL PMID |
[4] |
Cheplick GP (2006). A modular approach to biomass allocation in an invasive annual ( Microstegium vimineum; Poaceae). American Journal of Botany, 93, 539-545.
DOI URL PMID |
[5] |
Cipollini DF, Schultz JC (1999). Exploring cost constraints on stem elongation in plants using phenotypic manipulation. The American Naturalist, 153, 236-242.
DOI URL PMID |
[6] |
Damuth J (1981). Population density and body size in mammals. Nature, 290, 699-700.
DOI URL |
[7] |
Dudley SA, Schmitt J (1996). Testing the adaptive plasticity hypothesis: density-dependent selection on manipulated stem length in Impatiens capensis. The American Naturalist, 147, 445-456.
DOI URL |
[8] |
Enquist BJ, Brown JH, West GB (1999). Plant energetics and population density. Nature, 395, 163-165.
DOI URL |
[9] |
Enquist BJ, Niklas KJ (2001). Invariant scaling relations across tree-dominated communities. Nature, 410, 655-660.
DOI URL PMID |
[10] | Gaston KJ, Blackburn T (2000). Pattern and Process in Macroecology. lackwell Science, Oxford. |
[11] |
Gillis PR, Ratkowsky DA (1978). The behaviour of estimators of the parameters of various yield-density relationships. Biometrics, 34, 191-198.
DOI URL |
[12] |
Harper JL (1967). A Darwinian approach to plant ecology. Journal of Ecology, 55, 247-270.
DOI URL |
[13] | Harper JL (1977). Population Biology of Plants. Academic Press, London. |
[14] |
Hutchings MJ (1979). Weight-density relationships in ramet populations of clonal perennial herbs, with special reference to the -3/2 power law. Journal of Ecology, 67, 21-33.
DOI URL |
[15] | Hutchings MJ (1983). Ecology’s law in search of a theory. New Scientist, 98, 765-767. |
[16] |
Kays S, Harper JL (1974). The regulation of plant and tiller density in a grass sward. Journal of Ecology, 62, 97-105.
DOI URL |
[17] | Kira T, Ogawa H, Sakazaki N (1953). Intraspecific competition among higher plants. I. Competition-yield-density interrelationships in regularly dispersed populations. Journal of the Institute of Polytechnics Osaka City University, Series D, 7, 1-14. |
[18] |
Kerr G (2003). Effects of spacing on the early growth of planted Fraxinus excelsior L. Canadian Journal of Forest Research, 33, 1196-1207.
DOI URL |
[19] |
Lawton JH (1989). What is the relationship between population density and body size in animals? Oikos, 55, 429-534.
DOI URL |
[20] |
Li B, Watkinson AR, Hara T (1996). Dynamics of competition in populations of carrot ( Daucus carota). Annals of Botany, 78, 203-214.
DOI URL |
[21] | Li XL (李雪林), Zhang AF (张爱峰), Wu ZX (吴忠祥), Zhao YL (赵燕良) (2001). Characteristic investigation on community density restrain of Elymus sibiricus. Qinghai Prataculture (青海草业), 10(2), 9-12. (in Chinese with English abstract). |
[22] |
Lonsdale WM, Watkinson AR (1983). Plant geometry and self-thinning. Journal of Ecology, 71, 285-297.
DOI URL |
[23] | Niklas KJ, Midgley JJ, Enquist BJ (2003). A general model for mass-growth-density relations across tree-dominated communities. Evolutionary Ecology Research, 5, 459-468. |
[24] |
Ogawa K (2005). Relationships between mean shoot and root masses and density in an overcrowded population of hinoki (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) seedlings. Forest Ecology and Management, 213, 391-398.
DOI URL |
[25] | Preston KA, Ackerly DD (2004). The Evolution of Allometry in Modular Organisms. Oxford University Press, New York. |
[26] | Sachs T (1999). ‘Node counting’: an internal control of balanced vegetative and reproductive development. Plant, Cell & Environment, 22, 757-766. |
[27] |
Schmitt J, McCormac AC, Smith H (1995). A test of the adaptive plasticity hypothesis using transgenic and mutant plants disabled in phytochrome-mediated elongation responses to neighbors. The American Naturalist, 146, 937-953.
DOI URL |
[28] | Silvertown J, Charlesworth D (2001). Introduction to Plant Population Biology. Blackwell, London. |
[29] | Sun ZR (孙志蓉), Zhai MP (翟明普), Wang WQ (王文全) , Li YR (李玉蓉) (2007). Effects of density on seedling growth and glycyrrhizinic acid content in Glycyrrhiza uralensis. China Journal of Chinese Materia Medica (中国中药杂志), 32, 2222-2227. (in Chinese with English abstract) |
[30] | Vuorisalo T, Mutikainen P (1999). Modularity and Plant Life Histories. Kluwer, Dordrecht, The Netherlands. |
[31] |
Watkinson AR (1980). Density-dependence in single-species populations of plants. Journal of Theoretical Biology, 83, 345-357.
DOI URL |
[32] |
Watkinson AR (1984). Yield-density relationships: the influence of resource availability on growth and self-thinning in populations of Vulpia fasciculata. Annals of Botany, 53, 469-482.
DOI URL |
[33] |
Weiner J, Berntson GM, Thomas SC (1990). Competition and growth form in a woodland annual. Journal of Ecology, 78, 459-469.
DOI URL |
[34] |
Weiner J, Fishman L (1994). Competition and allometry in Kochia scoparia. Annals of Botany, 73, 263-271.
DOI URL |
[35] |
Weiner J, Thomas SC (1986). Size variability and competition in plant monocultures. Oikos, 47, 211-222.
DOI URL |
[36] |
Weiner J, Thomas SC (1992). Competition and allometry in three species of annual plants. Ecology, 73, 648-656.
DOI URL |
[37] | West-Eberhard MJ (2003). Developmental Plasticity and Evolution. Oxford University Press, New York. |
[38] | Westoby M (1984). The self-thinning rule. Advance in Ecological Research, 14, 167-225. |
[39] |
White J (1979). The plant as a metapopulation. Annual Review of Ecology and Systematics, 10, 109-145.
DOI URL |
[40] |
White J, Harper JL (1970). Correlated changes in plant size and number in plant populations. Journal of Ecology, 58, 467-485.
DOI URL |
[41] |
Xue L, Hagihara A (2008). Density effects on organs in self-thinning Pinus densiflora Sieb. et Zucc. stands. Ecological Research, 23, 689-695.
DOI URL |
[42] | Yang YF (杨允菲), Fu LQ (傅林谦) (1997). Density dependence of Phalaris aruandinacea clonal population on middel mountain region of subtropical zone of China. Chinese Journal of Applied Ecology (应用生态学报), 8, 77-82. (in Chinese with English abstract) |
[43] | Yoda K, Kira T, Ogawa H, Hozumi K (1963). Self-thinning in overcrowded pure stands under cultivated and natural conditions. Journal of the Institute of Polytechnics, Osaka City University, Series D, 14, 107-129. |
[1] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[2] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[3] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[4] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[5] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[6] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[7] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[8] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[9] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[10] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
[11] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[12] | DU Ying-Dong, YUAN Xiang-Yang, FENG Zhao-Zhong. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar [J]. Chin J Plant Ecol, 2023, 47(3): 348-360. |
[13] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[14] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[15] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn