植物生态学报 ›› 2010, Vol. 34 ›› Issue (1): 17-22.DOI: 10.3773/j.issn.1005-264x.2010.01.004
所属专题: 生态化学计量; 青藏高原植物生态学:群落生态学
杨阔1,2, 黄建辉1,*(), 董丹1,2, 马文红3,4, 贺金生4
收稿日期:
2009-11-17
接受日期:
2009-12-11
出版日期:
2010-11-17
发布日期:
2010-01-01
通讯作者:
黄建辉
作者简介:
* E-mail: jhhuang@ibcas.ac.cn
YANG Kuo1,2, HUANG Jian-Hui1,*(), DONG Dan1,2, MA Wen-Hong3,4, HE Jin-Sheng4
Received:
2009-11-17
Accepted:
2009-12-11
Online:
2010-11-17
Published:
2010-01-01
Contact:
HUANG Jian-Hui
摘要:
叶片氮(N)和磷(P)的化学计量学研究涉及到植物生态学的众多领域与多个尺度, 然而各个尺度上的化学计量学研究并未同步展开。通过对青藏高原47个草地样地连续3年的调查, 分析了当地群落水平上的植物叶片N、P含量及其化学计量学特征, 并结合温度和降水气候数据研究了N、P含量及N:P比值与这两个气候因子的相关关系。研究结果显示: 青藏高原草地群落水平的叶片N含量变化范围为14.8-36.7 mg·g-1, 平均为23.2 mg·g-1; P含量变化范围为0.8-2.8 mg·g-1, 平均为1.7 mg·g-1; N:P比值变化范围为6.8-25.6, 平均为13.5。群落叶片N含量与P含量呈显著正相关关系, 叶片的N:P比值与P含量呈显著负相关关系, N:P比值的变化主要由P含量变化决定。另外发现: 群落水平叶片N、P含量及N:P比值存在着显著的年际变化, 叶片的N、P含量及N:P比值与年平均气温之间存在着极显著的相关关系。通过该研究结果推测: P含量较高的变异系数及其与环境因子表现出的显著相关性, 在一定程度上体现了植物群落对当地气候条件的一种适应。
杨阔, 黄建辉, 董丹, 马文红, 贺金生. 青藏高原草地植物群落冠层叶片氮磷化学计量学分析. 植物生态学报, 2010, 34(1): 17-22. DOI: 10.3773/j.issn.1005-264x.2010.01.004
YANG Kuo, HUANG Jian-Hui, DONG Dan, MA Wen-Hong, HE Jin-Sheng. Canopy leaf N and P stoichiometry in grassland communities of Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 2010, 34(1): 17-22. DOI: 10.3773/j.issn.1005-264x.2010.01.004
年 Year | n | N (mg·g-1) | P (mg·g-1) | N:P | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AM/GM | SD | CV | AM/GM | SD | CV | AM/GM | SD | CV | ||||
2006 | 47 | 21.5/21.2 | 3.08 | 0.14 | 1.5/1.5 | 0.50 | 0.33 | 15.2/14.6 | 4.11 | 0.27 | ||
2007 | 43 | 26.2/25.7 | 4.85 | 0.18 | 1.5/1.7 | 0.37 | 0.21 | 15.4/15.2 | 2.46 | 0.16 | ||
2008 | 43 | 23.2/22.9 | 3.24 | 0.14 | 2.1/2.1 | 0.33 | 0.16 | 11.0/10.9 | 1.58 | 0.14 | ||
总计 Total | 133 | 23.5/23.2 | 3.24 | 0.18 | 1.9/1.7 | 0.48 | 0.28 | 13.9/13.5 | 3.55 | 0.26 |
表1 青藏高原草地群落水平叶片氮(N)、磷(P)含量及氮磷比值(N:P)化学计量学特征(2006-2008年)
Table 1 Statistical characteristics of leaf N, P concentrations and N:P ratios at the community level in the grassland of Qinghai-Tibetan Plateau (2006-2008)
年 Year | n | N (mg·g-1) | P (mg·g-1) | N:P | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AM/GM | SD | CV | AM/GM | SD | CV | AM/GM | SD | CV | ||||
2006 | 47 | 21.5/21.2 | 3.08 | 0.14 | 1.5/1.5 | 0.50 | 0.33 | 15.2/14.6 | 4.11 | 0.27 | ||
2007 | 43 | 26.2/25.7 | 4.85 | 0.18 | 1.5/1.7 | 0.37 | 0.21 | 15.4/15.2 | 2.46 | 0.16 | ||
2008 | 43 | 23.2/22.9 | 3.24 | 0.14 | 2.1/2.1 | 0.33 | 0.16 | 11.0/10.9 | 1.58 | 0.14 | ||
总计 Total | 133 | 23.5/23.2 | 3.24 | 0.18 | 1.9/1.7 | 0.48 | 0.28 | 13.9/13.5 | 3.55 | 0.26 |
P | N:P | MAT | AP | GST | GSP | |
---|---|---|---|---|---|---|
N | 0.446** | 0.210* | -0.265** | 0.205* | -0.249** | 0.243** |
P | -0.782** | -0.420** | 0.374** | -0.449** | 0.300** | |
N:P | 0.274** | -0.266** | 0.317** | -0.159 |
表2 叶片氮(N)、磷(P)含量和氮磷比值(N:P)之间及其与气候因子的相关性(Pearson检验)
Table 2 Correlations between leaf N, P concentrations, N:P ratios and climate factors (Pearson test)
P | N:P | MAT | AP | GST | GSP | |
---|---|---|---|---|---|---|
N | 0.446** | 0.210* | -0.265** | 0.205* | -0.249** | 0.243** |
P | -0.782** | -0.420** | 0.374** | -0.449** | 0.300** | |
N:P | 0.274** | -0.266** | 0.317** | -0.159 |
[1] | Aerts R, Chapin FS III (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[2] |
Braakhekke WG, Hooftman DAP (1999). The resource balance hypothesis of plant species diversity in grassland. Journal of Vegetation Science, 10, 187-200.
DOI URL |
[3] |
Chapin FS III (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233-260.
DOI URL |
[4] | Chapin FS III, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York. 298. |
[5] |
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
DOI URL |
[6] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI URL PMID |
[7] |
Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
URL PMID |
[8] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI URL |
[9] |
Güsewell S, Koerselman M (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology Evolution and Systematics, 5, 37-61.
DOI URL |
[10] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL |
[11] |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
URL PMID |
[12] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL PMID |
[13] |
Kerkhoff AJ, Enquist BJ (2006). Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters, 9, 419-427.
URL PMID |
[14] | Kimeldorf G, Wahba G (1971). Some results on tchebycheffian spline functions. Journal of Mathematical Analysis and Applications, 33, 82-95. |
[15] |
Körner C (1989). The nutritional-status of plants from high-altitudes—a worldwide comparison. Oecologia, 81, 379-391.
DOI URL PMID |
[16] |
McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C: N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology, 85, 2390-2401.
DOI URL |
[17] |
Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/ phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 8, 636-642.
DOI URL |
[18] |
Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999). Generality of leaf trait relationships: a test across six biomes. Ecology, 80, 1955-1969.
DOI URL |
[19] |
Reich PB, Hungate BA, Luo YQ (2006). Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution, and Systematics, 37, 611-636.
DOI URL |
[20] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI URL PMID |
[21] |
Thompson K, Parkinson JA, Band SR, Spencer RE (1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 136, 679-689.
DOI URL |
[22] |
Vitousek PM (1982). Nutrient cycling and nutrient use efficiency. The American Naturalist, 119, 553-572.
DOI URL |
[23] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[24] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[25] | Zhang LX, Bai YF, Han XG (2003). Application of N:P stoichiometry to ecology studies. Acta Botanica Sinica, 45, 1009-1018. |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[3] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[4] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[5] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[6] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[7] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[8] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[9] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[10] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[11] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[12] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[13] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[14] | 陈哲, 汪浩, 王金洲, 石慧瑾, 刘慧颖, 贺金生. 基于物候相机归一化植被指数估算高寒草地植物地上生物量的季节动态[J]. 植物生态学报, 2021, 45(5): 487-495. |
[15] | 刘攀, 王文颖, 周华坤, 毛旭锋, 刘艳方. 青藏高原人工草地土壤可溶性氮组分与植被生产力动态变化过程[J]. 植物生态学报, 2021, 45(5): 562-572. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19