Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (4): 430-441.doi: 10.17521/cjpe.2017.0135

• Research Articles • Previous Articles     Next Articles

Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China

Qian YANG1,2,Wei WANG2*(),Hui ZENG1,2*()   

  1. 1 Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China
    2 College of Urban and Environment, Peking University, Beijing 100871, China
  • Online:2018-03-21 Published:2018-04-20

Abstract:

Aims Anthropogenic disturbances and climate change have resulted in large scale degradation of grasslands across the landscapes in Nei Mongol. Fertilization, especially with nitrogen (N) addition, has been proposed and applied as an important management practice to promote primary production for these degraded grasslands. In this study, we examined the changes in plant diversity and biomass at three levels of degradations with N addition.

Methods Nitrogen addition experiment was installed in 2011. Six levels of N addition (0, 10, 20, 30, 40, and 50 g·m -2·a -1) were conducted at grasslands with three levels of degradations. Nitrogen was added at the beginning of each month from May to August each year. We investigated the changes in plant species richness and aboveground biomass by species in August, 2016. The total biomass of the community, as well as the biomass of each plant functional group (grasses and forbs) was calculated based on species composition.

Important findings We found that: (1) N addition decreased species richness and diversity at communities under moderate and severe degradations, but insignificant under extreme degradation. (2) N addition increased the aboveground biomass at communities under three levels of degradations. (3) N addition increased the aboveground biomass of the grasses and its proportion to the total biomass, but not on the total biomass of the forbs although it also decreased the proportion of aboveground biomass. These results indicate that the impacts of N addition on ecosystem function depended on plant function type. In addition, the fertilization effects should are examined at community level and by the degree of the degradation.

Key words: nitrogen addition, grassland degradation, species richness, species diversity, aboveground biomass, plant functional group

Fig. 1

Study area and the spatial distribution of study sites. EDG, extremely degraded grassland; MDG, moderately degraded grassland; SDG, severely degraded grassland."

Table 1

Plant and soil characteristics at the experimental sites"

名称 Term 极度退化草地 EDG 重度退化草地 SDG 中度退化草地 MDG
物种组成
Species composition
羊草、黄囊薹草、马唐、狗尾草、沙蓬藜等
Leymus chinensis; Carex korshinskyi; Digitaria sanguinalis; Setaria viridis; Agriophyllum squarrosum; Chenopodium acuminatum et al.
拂子茅、贝加尔针茅、硬质早熟禾、黄囊薹草、腺毛委陵菜、星毛委陵菜、冷蒿、紫羊茅、冰草、狼毒、糙隐子草、阿尔泰狗娃花等
Calamagrostis epigeios; Stipa baicalensis; Poa sphondylodes; Carex korshinskyi; Potentilla longifolia; Potentilla acaulis; Artemisia frigida; Festuca rubra; Agropyron cristatum; Stellera chamaejasme; Cleistogenes squarrosa; Heteropappus altaicus et al.
拂子茅、贝加尔针茅、羊草、硬质早熟禾、腺毛委陵菜、黄囊薹草、冷蒿、紫羊茅、冰草、糙隐子草、阴山胡枝子、阿尔泰狗娃花等
Calamagrostis epigeios; Stipa baicalensis; Leymus chinensis; Poa sphondylodes; Potentilla longifolia; Carex korshinskyi; Artemisia frigida; Festuca rubra; Agropyron cristatum; Cleistogenes squarrosa; Lespedeza inschanica; Heteropappus altaicus et al.
顶极种相对盖度
Relative coverage of
climax species (%)
34.48 39.53 54.05
退化指示种相对盖度
Relative coverage of
degradation indicators (%)
34.48 32.56 29.73
一年生植物相对盖度
Relative coverage of annuals (%)
31.04 27.91 16.22
土壤全碳 Soil total carbon (%) 0.83 1.67 2.06
土壤全氮 Soil total nitrogen (%) 0.06 0.14 0.17
砂粒含量 Sand content (%) 66.10 57.30 58.40
草地退化指数
Grassland degradation index
0.379 0.543 0.642

Table 2

Results of two-way ANOVA on the effects of nitrogen (N) on plant species richness, species diversity and aboveground biomass under different levels of degradations"

响应 Response 名称 Term df F p
物种丰富度 Species richness DT 2 40.64 <0.001
N 5 8.50 <0.001
DT × N 10 2.27 0.035
Shannon-Wiener指数
Shannon-Wiener index
DT 2 12.84 <0.001
N 5 5.06 0.001
DT × N 10 1.50 0.179
地上生物量 Aboveground biomass DT 2 42.08 <0.001
N 5 9.53 <0.001
DT×N 10 1.30 0.264

Fig. 2

Effects of nitrogen addition on plant species richness (A) and species diversity (B) at different degraded grasslands (mean ± SE). The letters indicted significant differences in Duncan’s multiple (p < 0.05) range tests based on one-way ANOVA; NS indicates non-significant (p > 0.05). For each site, regression confidents were estimated based on linear models with nitrogen treatment as the independent variables (species richness = Intercept + slope × nitrogen addition amount). NS, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. EDG, extremely degraded grassland; MDG, moderately degraded grassland; SDG, severely degraded grassland."

Fig. 3

Effects of nitrogen addition on aboveground biomass (A) and aboveground biomass response ratio (B) at different degraded communities (mean ± SE). The letters indicate significantly different in Duncan’s multiple (p < 0.05) range tests from one-way ANOVA. For each site, regression coefficients were estimated by using a linear model with N treatment as the independent variable (aboveground biomass = intercept + slope × nitrogen addition amount). *, p < 0.05; **, p < 0.01; ***, p < 0.001. EDG, extremely degraded grassland; MDG, moderately degraded grassland; SDG, severely degraded grassland."

Table 3

Results of two-way ANOVA on the effects of nitrogen (N)-treatment and degradation type on aboveground biomass of plant functional groups and their proportions of the community aboveground biomass"

响应 Response 名称 Term df F p
禾草生物量 Grass biomass DT 2 11.70 <0.001
N 5 11.76 <0.001
DT × N 10 0.72 0.696
禾草百分比 Grass percentage (%) DT 2 12.70 <0.001
N 5 7.34 <0.001
DT × N 10 0.81 0.616
杂类草生物量 Forb biomass DT 2 28.28 <0.001
N 5 1.13 0.358
DT × N 10 1.35 0.238
杂类草百分比 Forb percentage (%) DT 2 12.35 <0.001
N 5 7.01 <0.001
DT × N 10 0.80 0.738

Fig. 4

Change in aboveground biomass (mean ± SE) with nitrogen addition on aboveground biomass by plant function groups under three levels of degraded grassland. The different letters indicate significant differences in Duncan’s multiple (p < 0.05) range tests from one-way ANOVA, NS indicates non-significant (p > 0.05). EDG, extremely degraded grassland; MDG, moderately degraded grassland; SDG; severely degraded grassland."

Fig. 5

Proportion of aboveground biomass in the total biomass varied with nitrogen addition, plant functional groups (grass vs forb), and degradation level (mean ± SE). The different letters indicate the significant difference from the Duncan’s multiple (p < 0.05) range tests (one-way ANOVA). EDG, extremely degraded grassland; MDG, moderately degraded grassland; SDG, severely degraded grassland."

Fig. 6

Change in Gini coefficiesed on the asymmetry of plant functional groups height with nitrogen addition rate at grasslands under three different levels of degradations (mean ± SE). EDG, extremely degraded grassland; MDG, moderately degraded grassland; SDG, severely degraded grassland."

1 Asner GP , Elmore AJ , Olander LP , Martin RE , Harris AT ( 2004). Grazing systems, ecosystem response, and global change. Annual Review of Environment and Resources, 29, 261- 299.
doi: 10.1146/annurev.energy.29.062403.102142
2 Bai YF , Wu JG , Clark CM , Naeem S , Pan QM , Huang JH , Zhang LX , Han XG ( 2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Change Biology, 16, 358- 372.
doi: 10.1111/j.1365-2486.2009.02142.x
3 Bai YF , Wu JG , Xing Q , Pan QM , Huang JH , Yang DL , Han XG ( 2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140- 2153.
doi: 10.1890/07-0992.1 pmid: 18724724
4 Clark CM , Tilman D ( 2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712- 715.
doi: 10.1038/nature06503
5 Fang Y , Xun F , Bai WM , Zhang WH , Li LH ( 2012). Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe. PLOS ONE, 7, e4736. DOI: 10.1371/journal.pone.0047369.
6 Harpole WS , Sullivan LL , Lind EM , Firn J , Adler PB , Borer ET , Chase J , Fay PA , Hautier Y , Hillebrand H , MacDougallm AS , Seabloom EW , Williams R , Bakker JD , Cadotte MW , Chaneton EJ , Chu CJ , Cleland EE , D’Antonio C , Davies KF , Gruner DS , Hagenah N , Kirkman K , Knops JMH , La Pierre KJ , McCulley RL , Moore JL , Morgan JW , Prober SM , Risch AC , Schuetz M , Stevens CJ , Wragg PD ( 2016). Addition of multiple limiting resources reduces grassland diversity. Nature, 537, 93- 96.
doi: 10.1038/nature19324 pmid: 27556951
7 Hautier Y , Niklaus PA , Hector A ( 2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636- 638.
doi: 10.1126/science.1169640
8 He KJ , Qi Y , Huang YM , Chen HY , Sheng ZL , Xu X , Duan L ( 2016). Response of aboveground biomass and diversity to nitrogen addition a five-year experiment in semi-arid grassland of Inner Mongolia, China. Scientific Reports, 6, 31919. DOI: 10.1038/srep31919.
doi: 10.1038/srep31919 pmid: 27573360
9 Hooper DU , Johnson L ( 1999). Nitrogen limitation in dry land ecosystems: Responses to geographical and temporal variation in precipitation. Biogeochemistry, 46, 247- 293.
10 Isbell F , Reich PB , Tilman D , Hobbie SE , Polasky S , Binder S ( 2013). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America, 110, 11911- 11916.
doi: 10.1073/pnas.1310880110
11 Kang L , Han XG , Zhang ZB , Sun OJ ( 2007). Grassland ecosystems in China: Review of current knowledge and research advancement. Philosophical Transactions of the Royal Society of London Series B—Biological Sciences, 362, 997- 1008.
doi: 10.1098/rstb.2007.2029
12 Li CL , Li Q , Zhao L , Zhao XQ ( 2016). Responses of plant community biomass to nitrogen and phosphorus additions in natural and restored grasslands around Qinghai Lake Basin. Chinese Journal of Plant Ecology, 40, 1015- 1027.
[ 李春丽, 李奇, 赵亮, 赵新全 ( 2016). 环青海湖地区天然草地和退耕恢复草地植物群落生物量对氮、磷添加的响应. 植物生态学报, 40, 1015- 1027.]
13 Li LJ , Yu ZY , Zeng DH , Ai GY , Li JS ( 2010). Effects of fertilizations on species composition and diversity of grassland in Keerqin Sandy Lands. Acta Prataculturae Sinica, 19( 2), 109- 115.
[ 李禄军, 于占源, 曾德慧, 艾桂艳, 李晶石 ( 2010). 施肥对科尔沁沙质草地群落物种组成和多样性的影响. 草业学报, 19( 2), 109- 115.]
14 Liu BR , Wang CH , Zhang LH , Dong KH ( 2015). Effect of nitrogen addition and mowing on soil nitrogen mineralization in abandoned grasslands in Inner Mongolia. Acta Ecologica Sinica, 35, 6335- 6343.
doi: 10.5846/stxb201403040364
[ 刘碧荣, 王常慧, 张丽华, 董宽虎 ( 2015). 氮添加和刈割对内蒙古弃耕草地土壤氮矿化的影响. 生态学报, 35, 6335- 6343.]
doi: 10.5846/stxb201403040364
15 Liu HY , Yin Y , Tian YH , Ren J , Wang HY ( 2008). Climatic and anthropogenic controls of topsoil features in the semi-arid East Asian steppe. Geophysical Research Letters, 35( 4), L04401. DOI: 10.1029/2007GL032980.
doi: 10.1029/2007GL032980
16 Lü XT , Dijkstra FA , Kong DL , Wang ZW , Han XG ( 2014). Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland. Scientific Reports, 4, 4817. DOI: 10.1038/srep04817.
doi: 10.1038/srep04817 pmid: 24769508
17 Mountford JO , Lakhani KH , Kirkham FW ( 1993). Experimental assessment of the effects of nitrogen addition under hay-cutting and aftermath grazing on the vegetation of meadows on a Somerset peat moor. Journal of Applied Ecology, 30, 321- 332.
doi: 10.2307/2404634
18 Mu SJ , Zhu C , Zhou KX , Li JL ( 2017). The preventive strategies of degradation and the approaches to enhance carbon sequestration ability in Inner Mongolia Grassland. Acta Agrestia Sinica, 25( 2), 217- 225.
[ 穆少杰, 朱超, 周可新, 李建龙 ( 2017). 内蒙古草地退化防治对策及碳增汇途径研究. 草地学报, 25( 2), 217- 225.]
19 Niu DC , Yuan XB , Cease AJ , Wen HY , Zhang CP , Fu H , Elser JJ ( 2017). The impact of nitrogen enrichment on grassland ecosystem stability depends on nitrogen addition level. Science of the Total Environment, 9, 318. DOI: 10.1016/j.scitotenv.2017.09.318.
doi: 10.1016/j.scitotenv.2017.09.318 pmid: 29054613
20 Quan Q , He NP , Zhang Z , Zhang YH , Gao Y ( 2015). Nitrogen enrichment and grazing accelerate vegetation restoration in degraded grassland patches. Ecological Engineering, 72, 172- 177.
doi: 10.1016/j.ecoleng.2014.11.053
21 Rajaniemi TK , Allison VJ , Goldberg DE ( 2003). Root competition can cause a decline in diversity with increased productivity. Journal of Ecology, 91, 407- 416.
doi: 10.1046/j.1365-2745.2003.00768.x
22 Ren ZW , Li Q , Chu CJ , Zhao LQ , Zhang JQ , Ai DXC , Yang YB , Wang G ( 2010). Effects of resource additions on species richness and ANPP in an alpine meadow community. Journal of Plant Ecology, 3, 25- 31.
doi: 10.1093/jpe/rtp034
23 Scurlock JMO , Hall DO ( 1998). The global carbon sink: A grassland perspective. Global Change Biology, 4, 229- 233.
doi: 10.1046/j.1365-2486.1998.00151.x
24 Shen HH , Zhu YK , Zhao X , Geng XQ , Gao SQ , Fang JY ( 2016). Grassland area, biomass and productivity in China: A literature survey and model evaluation. Chinese Science Bulletin, 61, 139- 154.
[ 沈海花, 朱言坤, 赵霞, 耿晓庆, 高树琴, 方精云 ( 2016). 中国草地资源的现状分析. 科学通报, 61, 139- 154.]
25 Song L , Bao X , Liu X , Zhang Y , Christie P , Fangmeier A , Zhang F ( 2011). Nitrogen enrichment enhances the dominance of grasses. Biogeosciences, 8, 2341- 2350.
doi: 10.5194/bg-8-2341-2011
26 Song MH , Yu FH ( 2015). Reduced compensatory effects explain the nitrogen-mediated reduction in stability of an alpine meadow on the Tibetan Plateau. New Phytologist, 207, 70- 77.
doi: 10.1111/nph.13329 pmid: 25684547
27 Stevens CJ ( 2016). How long do ecosystems take to recover from atmospheric nitrogen deposition? Biological Conservation, 200, 160- 167.
doi: 10.1016/j.biocon.2016.06.005
28 Stevens CJ , Dise NB , Mountford JO , Gowing DJ ( 2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876- 1879.
doi: 10.1126/science.1094678 pmid: 15031507
29 Stevens CJ , Lind EM , Hautier Y , Harpole WS , Borer ET , Hobbie S , Seabloom EW , Ladwig L , Bakker JD , Chu CJ , Collins S , Davies KF , Firn J , Hillebrand H , La Pierre KJ , MacDougall A , Melbourne B , McCulley RL , Morgan J , Orrock JL , Prober SM , Risch AC , Schuetz M , Wragg PD ( 2015). Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 96, 1459- 1465.
doi: 10.1890/14-1902.1
30 Su YZ , Li YL , Cui JY , Zhao WZ ( 2005). Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena, 59, 267- 278.
doi: 10.1016/j.catena.2004.09.001
31 Tian QY , Liu NN , Bai WM , Li LH , Chen JQ , Reich PB , Yu Q , Guo DL , Smith MD , Knapp AK , Cheng WX , Lu P , Gao Y , Yang A , Wang TZ , Li X , Wang ZW , Ma YB , Han XG , Zhang WH ( 2016). A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97, 65- 74.
doi: 10.1890/15-0917.1 pmid: 27008776
32 Tian QY , Liu NN , Bai WM , Li LH , Zhang WH ( 2015). Disruption of metal ion homeostasis in soils is associated with nitrogen deposition-induced species loss in an Inner Mongolia steppe. Biogeosciences, 12, 3499- 3512.
doi: 10.5194/bg-12-3499-2015
33 Tilman D , Wedin D , Knops J ( 1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718- 720.
doi: 10.1038/379718a0
34 van de Koppel J , Rietkerk M , Weissing FJ ( 1997). Catastrophic vegetation shifts and soil degradation in terrestrial grazing systems. Trends Ecology & Evolution, 12, 352- 356.
doi: 10.1016/S0169-5347(97)01133-6 pmid: 21238102
35 Wang J , Wang SS , Qiao XG , Li A , Xue JG , Hasi M , Zhang XY , Huang JH ( 2016). Influence of nitrogen addition on the primary production in Nei Mongol degraded grassland. Chinese Journal of Plant Ecology, 40, 980- 990.
[ 王晶, 王珊珊, 乔鲜果, 李昂, 薛建国, 哈斯木其尔, 张学耀, 黄建辉 ( 2016). 氮添加对内蒙古退化草原生产力的短期影响. 植物生态学报, 40, 980- 990.]
36 Xu X , Niu SL , Sherry RA , Zhou XH , Zhou JH , Luo YQ ( 2012). Inter-annual variability in responses of belowground net primary productivity (NPP) and NPP partitioning to long-term warming and clipping in a tallgrass prairie. Global Change Biology, 17, 927- 942.
doi: 10.1111/j.1365-2486.2012.02651.x
37 Xu XT ( 2015). Growth and Restoration of Degraded Grasslands Under Control of Nitrogen and Water in Inner Mongolia, China. PhD dissertation, Peking University, Beijing.
[ 徐晓天 ( 2015). 养分和水分调控下内蒙古退化草原的生长与恢复. 博士学位论文, 北京大学, 北京.]
38 Xu XT , Liu HY , Song ZL , Wang W , Hu GZ , Qi ZH ( 2015). Response of aboveground biomass and diversity to nitrogen addition along a degradation gradient in the Inner Mongolian steppe, China. Scientific Reports, 5, 10284. DOI: 10.1038/srep10284.
doi: 10.1038/srep10284 pmid: 4508527
39 Yang HJ , Jiang L , Li LH , Li A , Wu MY , Wan SQ ( 2012). Diversity-dependent stability under mowing and nutrient addition: Evidence from a 7-year grassland experiment. Ecology Letters, 15, 619- 626.
doi: 10.1111/j.1461-0248.2012.01778.x pmid: 22487498
40 Yang XX , Ren F , Zhou HK , He JS ( 2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 159- 166.
doi: 10.3724/SP.J.1258.2014.00014
[ 杨晓霞, 任飞, 周华坤, 贺金生 ( 2014). 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 38, 159- 166.]
doi: 10.3724/SP.J.1258.2014.00014
41 Zhang TH , Zhao HL , Li YL , Cui JY , Han TB , Zhang H ( 2008). Effect of irrigation and fertilizer on grassland productivity in Horqin Sandy Land. Acta Prataculturae Sinica, 17( 1), 36- 42.
[ 张铜会, 赵哈林, 李玉霖, 崔建垣, 韩天宝, 张华 ( 2008). 科尔沁沙地灌溉与施肥对退化草地生产力的影响. 草业学报, 17( 1), 36- 42.]
42 Zhang YH , Feng JC , Isbell F , Lü XT , Han XG ( 2015). Productivity depends more on the rate than the frequency of N addition in a temperate grassland. Scientific Reports, 5, 12558. DOI: 10.1038/srep12558.
doi: 10.1038/srep12558
43 Zhang YH , Lü XT , Isbell F , Stevens C , Han X , He NP , Zhang GM , Yu Q , Huang JH , Han XG ( 2014). Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology, 20, 3520- 3529.
doi: 10.1111/gcb.12611 pmid: 24753127
[1] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[2] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[3] Hu Yifeng, Yu Wenhua, Yue Yang, Huang Zhenglanyi, Li Yuchun, Wu Yi. Species diversity and potential distribution of Chiroptera on Hainan Island, China [J]. Biodiv Sci, 2019, 27(4): 400-408.
[4] Yan Wenbo,Ji Shengnan,Shuai Lingying,Zhao Leigang,Zhu Dapeng,Zeng Zhigao. Spatial distribution patterns of mammal diversity in Yangxian County of Shaanxi Province on the southern slope of the Qinling Mountains [J]. Biodiv Sci, 2019, 27(2): 177-185.
[5] Chen Zuoyi, Xu Xiaojing, Zhu Suying, Zhai Mengyi, Li Yang. Species diversity and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China [J]. Biodiv Sci, 2019, 27(2): 149-158.
[6] LI Yang, XU Xiao-Hui, SUN Wei, SHEN Yan, REN Ting-Ting, HUANG Jian-Hui, WANG Chang-Hui. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(2): 174-184.
[7] Dong-Ting ZOU, Qing-Gang WANG, Ao LUO, Zhi-Heng WANG. Species richness patterns and resource plant conservation assessments of Rosaceae in China [J]. Chin J Plant Ecol, 2019, 43(1): 1-15.
[8] Bo Wang,Yong Huang,Jiatang Li,Qiang Dai,Yuezhao Wang,Daode Yang. Amphibian species richness patterns in karst regions in Southwest China and its environmental associations [J]. Biodiv Sci, 2018, 26(9): 941-950.
[9] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[10] DIAO Li-Wei,LI Ping,LIU Wei-Xing,XU Shan,QIAO Chun-Lian,ZENG Hui,LIU Ling-Li. Response of plant biomass to nitrogen addition and precipitation increasing under different climate conditions and time scales in grassland [J]. Chin J Plant Ecol, 2018, 42(8): 818-830.
[11] LIU Yuan-Yuan, MA Jin-Ze, BU Zhao-Jun, WANG Sheng-Zhong, ZHANG Xue-Bing, ZHANG Ting-Yu, LIU Sha-Sha, FU Biao, KANG Yuan. Effect of geographical sources and biochemical traits on plant litter decomposition in a peatland [J]. Chin J Plan Ecolo, 2018, 42(7): 713-722.
[12] Dexin Sun, Xiang Liu, Shurong Zhou. Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow [J]. Biodiv Sci, 2018, 26(7): 655-666.
[13] Xu Xiang, Zhang Huayong, Xie Ting, Sun Qingqing, Tian Yonglan. Elevational pattern of seed plant diversity in Xishuangbanna and its mechanisms [J]. Biodiv Sci, 2018, 26(7): 678-689.
[14] Yu Zhang, Gang Feng. Distribution pattern and mechanism of insect species diversity in Inner Mongolia [J]. Biodiv Sci, 2018, 26(7): 701-706.
[15] Zejin Zhang,Yanpei Guo,Jin-Sheng He,Zhiyao Tang. Conservation status of Wild Plant Species with Extremely Small Populations in China [J]. Biodiv Sci, 2018, 26(6): 572-577.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Chunpeng Yao;Na Li. Research Advances on Abscisic Acid Receptor[J]. Chin Bull Bot, 2006, 23(6): 718 -724 .
[2] Jie Liu, Mengjie Li, Qi Zhang, Xin Wei and Xuehui Huang. Exploring the molecular basis of heterosis for plant breeding[J]. J Integr Plant Biol, 0, (): 0 .
[3] Xiao Zhishu. Application of camera trapping to species inventory and assessment of wild animals across China’s protected areas[J]. Biodiv Sci, 2019, 27(3): 235 -236 .
[4] Liu Yang, Xiaoying Mu, Chao Liu, Jinghui Cai, Ke Shi, Wenjiao Zhu, and Qing Yang. Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection[J]. J Integr Plant Biol, 2015, 57(12): 1078 -1088 .
[5] Chen Zheng. Arabidopsis thaliana as a Model Species for Plant Molecular Biology Studies[J]. Chin Bull Bot, 1994, 11(01): 6 -11 .
[6] . [J]. Chin Bull Bot, 1994, 11(专辑): 65 .
[7] XIANG Yan-Ci, PENG Shao-Lin, CAI Xi-An, REN Hai, ZHOU Hou-Cheng. Changes in Plant Competition with the Development of Gaps[J]. Chin J Plan Ecolo, 2003, 27(1): 99 -102 .
[8] Guangbin Yu, Xiaodong Yang. Characteristics of litter and soil arthropod communities at different suc-cessional stages of tropical forests[J]. Biodiv Sci, 2007, 15(2): 188 -198 .
[9] YANG Yong. Ontogeny and Metamorphic Patterns of Female Reproductive Organs of Ephedra sinica Stapf (Ephedraceae)[J]. J Integr Plant Biol, 2001, 43(10): 1011 -1017 .
[10] CHEN Xiao-Yong, LU Hui-Ping, SHEN Lang, LI Yuan-Yuan. Identifying populations for priority conservation of important species[J]. Biodiv Sci, 2002, 10(3): 332 -338 .