Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (1): 116-125.doi: 10.17521/cjpe.2017.0297

• Research Articles • Previous Articles     Next Articles

Effects of short-term experimental warming on soil microbes in a typical alpine steppe

WANG Jun1,2,WANG Guan-Qin1,2,LI Fei1,2,PENG Yun-Feng1,YANG Gui-Biao1,2,YU Jian-Chun1,2,ZHOU Guo-Ying3,YANG Yuan-He1,2,*()   

  1. 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

    2 University of Chinese Academy of Sciences, Beijing 100049, China

    3 Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
  • Online:2018-03-08 Published:2018-01-20
  • Contact: Yuan-He YANG E-mail:yhyang@ibcas.ac.cn
  • Supported by:
    Supported by National Natural Science Foundation of China(31670482)

Abstract:

Aims Soil microbe plays key role in mediating terrestrial carbon cycles. It has been suggested that climate warming may affect the microbial community, which may accelerate carbon release and induce a positive feedback to soil climate warming. However, there is still controversy on how microbial community responds to experimental warming, especially in cold and drought environment.

Methods We conducted an open top chambers (OTCs) experiment to explore the effects of warming on soil microbial community in an alpine steppe on Qinghai-Xizang Plateau. During the maximum of the growing seasons (August) of 2015 and 2016, we monitored the biomass and structure of soil microbial community in warming and control plots using phospholipid fatty acids (PLFA) as biomarkers.

Important findings Short-term warming treatment significantly increased the soil temperature by 1.6 and 1.6 oC and decreased soil moisture by 3.4% and 2.4% (volume fraction) respectively, but did not alter either soil properties or normalized difference vegetation index (NDVI) during the growing season (from May to October) in 2015 and 2016. During the maximum of growing seasons (August) of 2015 and 2016, the magnitude of microbial biomass carbon (MBC) were 749.0 and 844.3 mg·kg-1, microbial biomass nitrogen (MBN) were 43.1 and 102.1 mg·kg-1, and the microbial biomass C:N ranged between 17.9 and 8.4. Moreover, all three showed no significant differences between warming and control treatments. The abundance of bacteria was the most in microbial community, while arbuscular mycorrhizal fungi was the least, and warming treatment did not alter the abundance of different microbial group and the microbial community structure. Nonetheless, our result revealed that warming-induced changes in MBC had significant positive correlation with changes in soil temperature and soil moisture. These patterns indicate that, microbial community in this alpine steppe may not respond substantially to future climate warming due to the limitation of soil drought. Therefore, estimation of microbial community response to climate change calls for consideration on the combined effect of warming and drought.

Key words: climate warming, phospholipid fatty acids (PLFA), microbial community, Qinghai-Xizang Plateau, alpine steppe

Table 1

Short-term warming effects on soil physicochemical properties and standing vegetation"

土壤因子
Soil factors
2015年 2016年
对照 Control 增温 Warming 对照 Control 增温 Warming
土壤温度 Soil temperature (℃) 12.80 ± 0.30 14.40 ± 0.20** 13.90 ± 0.20 15.40 ± 0.30**
土壤含水量(体积分数) Soil moisture (volume fraction) 13.20 ± 1.80 9.80 ± 1.10** 15.60 ± 1.80 13.30 ± 1.20*
有机碳含量 Soil organic carbon content (%) 3.20 ± 0.20 3.20 ± 0.20 3.30 ± 0.10 3.32 ± 0.10
总碳含量 Total carbon content (%) 4.50 ± 0.20 4.40 ± 0.20 4.20 ± 0.10 4.50 ± 0.10
全氮含量 Total nitrogen content (%) 0.38 ± 0.02 0.38 ± 0.02 0.38 ± 0.01 0.38 ± 0.01
碳氮比 8.50 ± 0.20 8.60 ± 0.20 8.70 ± 0.20 8.80 ± 0.20
归一化植被指数 Normalized difference vegetation index 0.27 ± 0.01 0.26 ± 0.01 0.18 ± 0.02 0.19 ± 0.02

Fig. 1

Microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass C:N under control and warming treatment during the growing season (August) in 2015 (A) and 2016 (B), as well as the relationships between MBC and MBN (mean ± SD). The gray bars and cycles represent warming treatments. The white bars and cycles represent control treatments."

Fig. 2

Effects of short-term experimental warming on different soil microbial groups (mean ± SD). A, In 2015. B, In 2016. AMF, arbuscular mycorrhizal fungi; G+, gram-positive bacteria; G-, gram-negative bacteria; F/B, ratio of fungi and bacteria; G+/G-, ratio of gram-positive bacteria and gram-negative bacteria; S/M, ratio of saturated PLFAs and monosaturated PLFAs."

Table 2

Results (F values) of two-way ANOVA on the effects of short-term warming (W), sampling date (T), and their interactions (W × T) on microbial community"

微生物群落 Microbial community T W W × T
细菌 Bacteria 159.90** 0.11 4.30*
革兰氏阳性菌 Gram-positive bacteria 173.66** 0.93 2.56
革兰氏阴性菌 Gram-negative bacteria 67.70** 0.00 2.50
丛枝菌根真菌 Arbuscular mycorrhizal fungi 7.20* 8.49* 0.03
真菌 Fungi 2.12 0.18 2.13
放线菌 Actinomycetes 24.28** 5.37* 0.02
真菌细菌比 Fungi/Bacteria 123.85** 0.15 0.01
G+/G-
Gram-positive bacteria/Gram-negative bacteria
0.27 0.45 0.28
饱和与不饱和脂肪酸比
Saturated PLFAs / Monosaturated PLFAs
7.13* 2.24 0.86
磷脂脂肪酸总量 Total phospholipid fatty acids 157.39** 1.67 1.08

Fig. 3

Effects of short-term experimental warming on soil microbial community structure (mean ± SE). A, In 2015. B, In 2016."

Fig. 4

Redundancy analysis of soil microbial community to soil environmental parameters. AMF, arbuscular mycorrhizal fungi; G+, gram-positive bacteria; G-, gram-negative bacteria; F/B, ratio of fungi and bacteria; G+/G-, ratio of gram-positive bacteria and gram-negative bacteria; SM, soil moisture; ST, soil temperature; TN, total nitrogen content."

Fig. 5

Relationships among warming-induced changes (warming-control) in microbial biomass carbon, soil temperature (A) and soil moisture (B), and the effects of short-term warming on soil temperature and moisture."

[1] Birgander J, Rousk J, Olsson PA ( 2017). Warmer winters increase the rhizosphere carbon flow to mycorrhizal fungi more than to other microorganisms in a temperate grassland. Global Change Biology, 23, 5372-5382.
doi: 10.1111/gcb.13803 pmid: 28675677
[2] Bossio DA, Scow KM, Gunapala N, Graham KJ ( 1998). Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology, 36, 1-12.
doi: 10.1007/s002489900087 pmid: 9622559
[3] Brockett BFT, Prescott CE, Grayston SJ ( 2012). Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogelimatic zones in western Canada. Soil Biology & Biochemistry, 44, 9-20.
doi: 10.1016/j.soilbio.2011.09.003
[4] Brookes PC, Landman A, Pruden G, Jenkinson DS ( 1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837-842.
doi: 10.1016/0038-0717(85)90144-0
[5] Chen H, Zhu Q, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR, Zhao XQ, Gong P, Yao TD, Wu JH ( 2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19, 2940-2955.
doi: 10.1111/gcb.12277 pmid: 23744573
[6] Chen YL, Ding JZ, Peng YF, Li F, Yang GB, Liu L, Qin SQ, Fang K, Yang YH ( 2016). Patterns and drivers of soil microbial communities in Tibetan alpine and global terrestrial ecosystems. Journal of Biogeography, 43, 2027-2039.
doi: 10.1111/jbi.12806
[7] Cheng L, Zhang NF, Yuan MT, Xiao J, Qin YJ, Deng Y, Tu QC, Xue K, Van Nostrand JD, Wu LY, He ZL, Zhou XH, Leigh MB, Konstantinidis KT, Schuur EA, Luo YQ, Tiedje JM, Zhou JZ ( 2017). Warming enhances old organic carbon decomposition through altering functional microbial communities. The ISME Journal, 11, 1825-1835.
doi: 10.1038/ismej.2017.48 pmid: 28430189
[8] Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK ( 2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. DOI: 10.1038/ncomms10541.
doi: 10.1038/ncomms10541 pmid: 4738359
[9] Ding JZ, Li F, Yang GB, Chen LY, Zhang B, Liu L, Fang K, Qin SQ, Chen YL, Peng YF, Ji C, He H, Smith P, Yang YH ( 2016). The permafrost carbon inventory on the Tibetan Plateau: A new evaluation using deep sediment cores. Global Change Biology, 22, 2688-2701.
doi: 10.1111/gcb.13257 pmid: 26913840
[10] Duan MJ, Gao QZ, Wan YF, Li Y, Guo YQ, Danjiu LB, Luosang JS ( 2010). Effect of grazing on community characteristics and species diversity of Stipa purpurea alpine grassland in Northern Tibet. Acta Ecologica Sinica, 30, 3892-3900.
[ 段敏杰, 高清竹, 万运帆, 李玉娥, 郭亚奇, 旦久罗布, 洛桑加措 ( 2010). 放牧对藏北紫花针茅高寒草原植物群落特征的影响. 生态学报, 30, 3892-3900.]
[11] Friedlingstein P ( 2015). Carbon cycle feedbacks and future climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, DOI: 10.1098/rsta.2014.0421.
doi: 10.1098/rsta.2014.0421 pmid: 26438284
[12] Frosteg?rd A, B??th E ( 1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology & Fertility of Soils, 22, 59-65.
doi: 10.1007/BF00384433
[13] Frosteg?rd A, B??th E, Tunlio A ( 1993). Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology & Biochemistry, 25, 723-730.
doi: 10.1016/0038-0717(93)90113-P
[14] Frosteg?rd A, Tunlid A, B??th E ( 2011). Use and misuse of PLFA measurements in soils. Soil Biology & Biochemistry, 43, 1621-1625.
doi: 10.1016/j.soilbio.2010.11.021
[15] Griffiths BS, Philippot L ( 2013). Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews, 37, 112-129.
doi: 10.1111/j.1574-6976.2012.00343.x pmid: 22568555
[16] He JZ, Li J, Zheng YM ( 2013). Thoughts on the microbial diversity-stability relationship in soil ecosystems. Biodiversity Science, 21, 411-420.
doi: 10.3724/SP.J.1003.2013.10033
[ 贺纪正, 李晶, 郑袁明 ( 2013). 土壤生态系统微生物多样性-稳定性关系的思考. 生物多样性, 21, 411-420.]
doi: 10.3724/SP.J.1003.2013.10033
[17] Hicks PCE, Castanha C, Porras R, Torn MS ( 2017). The whole-soil carbon flux in response to warming. Science, 355, 1420-1423.
doi: 10.1126/science.aal1319 pmid: 28280251
[18] Hopkins FM, Filley TR, Gleixner G, Lange M, Top SM, Trumbore SE ( 2014). Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses. Soil Biology & Biochemistry, 76, 57-69.
doi: 10.1016/j.soilbio.2014.04.028
[19] IPCC (Intergovernmental Panel on Climate Change) ( 2013). Climate Change 2013: the Scientific Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
[20] Kroppenstedt RM ( 1985). Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin D eds. Chemical Methods in Bacterial Systematics. Academic Press, London, UK.
[21] Lehmann J, Kleber M ( 2015). The contentious nature of soil organic matter. Nature, 528, 60.
doi: 10.1038/nature16045 pmid: 26633767
[22] Li SQ, Ren SJ, Li SX ( 2004). Seasonal change of soil microbial biomass and the relationship between soil microbial biomass and soil moisture and temperature. Plant Nutrition and Fertilizer Science, 10, 18-23.
[ 李世清, 任书杰, 李生秀 ( 2004). 土壤微生物体氮的季节性变化及其与土壤水分和温度的关系. 植物营养与肥料学报, 10, 18-23.]
[23] Liu XD, Chen BD ( 2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729-1742.
doi: 10.1002/(ISSN)1097-0088
[24] Luo YQ, Sherry R, Zhou XH, Wan SQ ( 2009). Terrestrial carbon-cycle feedback to climate warming: Experimental evidence on plant regulation and impacts of biofuel feedstock harvest. GCB Bioenergy, 1, 62-74.
doi: 10.1111/gcbb.2009.1.issue-1
[25] Margesin R, Jud M, Tscherko D, Schinner F ( 2009). Microbial communities and activities in alpine and subalpine soils. FEMS Microbiology Ecology, 67, 208-218.
doi: 10.1111/j.1574-6941.2008.00620.x pmid: 19049494
[26] Miller DJ ( 2005). The Tibetan Steppe. In: Suttie JM, Reynolds SG, Batello C eds. Grasslands of the World. UN Food and Agriculture Organization, Rome.
[27] Moore-Kucera J, Dick RP ( 2008). PLFA profiling of microbial community structure and seasonal shifts in soils of a douglas-fir chronosequence. Microbial Ecology, 55, 500-511.
doi: 10.1007/s00248-007-9295-1
[28] Nazaries L, Tottey W, Robinson L, Khachane A, Abu Al-Soud W, Sorensen S, Singh BK ( 2015). Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming. Soil Biology & Biochemistry, 89, 123-134.
doi: 10.1016/j.soilbio.2015.06.027
[29] Olsson PA ( 1999). Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology, 29, 303-310.
doi: 10.1111/j.1574-6941.1999.tb00621.x
[30] Pailler A, Vennetier M, Torre F, Ripert C, Guiral D ( 2014). Forest soil microbial functional patterns and response to a drought and warming event: Key role of climate-plant-soil interactions at a regional scale. Soil Biology & Biochemistry, 70, 1-4.
doi: 10.1016/j.soilbio.2013.12.003
[31] Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, Yang YH ( 2017). Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe. Global Change Biology, 23, 5249-5259.
doi: 10.1111/gcb.13789 pmid: 28614594
[32] Rinnan R, Michelsen A, Baath E, Jonasson S ( 2007). Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biology, 13, 28-39.
doi: 10.1111/gcb.2007.13.issue-1
[33] Romero-Olivares AL, Allison SD, Treseder KK ( 2017). Soil microbes and their response to experimental warming over time: A meta-analysis of field studies. Soil Biology & Biochemistry, 107, 32-40.
doi: 10.1016/j.soilbio.2016.12.026
[34] Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE ( 2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.
doi: 10.1038/nature10386 pmid: 21979045
[35] Sheik CS, Beasley WH, Elshahed MS, Zhou XH, Luo YQ, Krumholz LR ( 2011). Effect of warming and drought on grassland microbial communities. The ISME Journal, 5, 1692-1700.
doi: 10.1038/ismej.2011.32 pmid: 3176507
[36] Shen JP, He JZ ( 2011). Responses of microbes-mediated carbon and nitrogen cycles to global climate change. Acta Ecologica Sinica, 31, 2957-2967.
[ 沈菊培, 贺纪正 ( 2011). 微生物介导的碳氮循环过程对全球气候变化的响应. 生态学报, 31, 2957-2967.]
[37] Smith P, Fang C ( 2010). Carbon cycle: A warm response by soils. Nature, 464, 499-500.
doi: 10.1038/464499a pmid: 20336128
[38] Tischer A, Potthast K, Hamer U ( 2014). Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia, 175, 375-393.
doi: 10.1007/s00442-014-2894-x pmid: 24532178
[39] Vance ED, Brookes PC, Jenkinson DS ( 1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.
doi: 10.1016/0038-0717(87)90052-6
[40] Wang WL, Kong WD, Zeng H ( 2015). A meta-analysis of responses of soil microbes to warming. Journal of Agro-Environment Science, 34, 2169-2175.
doi: 10.11654/jaes.2015.11.019
[ 王文立, 孔维栋, 曾辉 ( 2015). 土壤微生物对增温响应的Meta分析. 农业环境科学学报, 34, 2169-2175.]
doi: 10.11654/jaes.2015.11.019
[41] Weedon JT, Kowalchuk GA, Aerts R, Hal VJ, Logtestijn VR, Ta? N, R?ling WFM, Bodegom VPM ( 2012). Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Global Change Biology, 18, 138-150.
doi: 10.1111/j.1365-2486.2011.02548.x
[42] Wolf S, Keenan TF, Fisher JB, Baldocchi DD, Desai AR, Richardson AD, Scott RL, Law BE, Litvak ME, Brunsell NA ( 2016). Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proceedings of the National Academy of Sciences of the United States of America, 113, 5880-5885.
doi: 10.1073/pnas.1519620113 pmid: 27114518
[43] Wu JS, Lin QM, Huang QY, Xiao HA ( 2006). Soil Microbial Biomass—Methods and Application. China Meteorological Press, Beijing.
[ 吴金水, 林启美, 黄巧云, 肖和艾 ( 2006). 土壤微生物生物量测定方法及其应用. 气象出版社, 北京.]
[44] Xue K, Yuan MT, Shi ZJ, Qin YJ, Deng Y, Cheng L, Wu LY, He ZL, Van Nostrand JD, Bracho R, Natali S, Schuur EAG, Luo CW, Konstantinidis KT, Wang Q, Cole JR, Tiedje JM, Luo YQ, Zhou JZ ( 2016 a). Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Climate Change, 6, 595-600.
doi: 10.1038/nclimate2940
[45] Xue K, Yuan MT, Xie JP, Li DJ, Qin YJ, Hale L, Wu LY, Deng Y, He ZL, Van Nostrand JD ( 2016 b). Annual removal of aboveground plant biomass alters soil microbial responses to warming. mBio, 7. e00976-16, DOI: 10.1128/ mBio.00976-16.
doi: 10.1128/ mBio.00976-16 pmid: 27677789
[46] Yang L, Chen YM, He RL, Deng CC, Liu JW, Liu Y ( 2016). Responses of soil microbial community structure and function to simulated warming in alpine forest. Chinese Journal of Applied Ecology, 27, 2855-2863.
[ 杨林, 陈亚梅, 和润莲, 邓长春, 刘军伟, 刘洋 ( 2016). 高山森林土壤微生物群落结构和功能对模拟增温的响应. 应用生态学报, 27, 2855-2863.]
[47] Yang YQ, Li XL, Kong XX, Ma L, Hu XY, Yang YP ( 2015). Transcriptome analysis reveals diversified adaptation of Stipa purpurea along a drought gradient on the Tibetan Plateau. Functional & Integrative Genomics, 15, 295-307.
doi: 10.1007/s10142-014-0419-7 pmid: 25471470
[48] Zeglin LH, Bottomley PJ, Jumpponen A, Rice CW, Arango M, Lindsley A, Mcgowan A, Mfombep P, Myrold DD ( 2013). Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales. Ecology, 94, 2334.
doi: 10.1890/12-2018.1 pmid: 24358718
[49] Zhang NL, Wan SQ, Guo JX, Han GD, Gutknecht J, Schmid B, Yu L, Liu WX, Bi J, Wang Z, Ma KP ( 2015 a). Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biology & Biochemistry, 89, 12-23.
doi: 10.1016/j.soilbio.2015.06.022
[50] Zhang XZ, Shen ZX, Fu G ( 2015 b). A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 87, 32-38.
doi: 10.1016/j.apsoil.2014.11.012
[51] Zhou JZ, Xue K, Xie JP, Deng Y, Wu LY, Cheng XL, Fei SF, Deng SP, He ZL, van Nostrand JD, Luo YQ ( 2011). Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2, 106-110.
doi: 10.1038/nclimate1331
[1] Yang Bai,Shengwen Chen,Haiyuan Qian,Shunhai Yu,Yiming Xu,Zhixin Zhang,Chao Shen,Yuqi Chen,Meiqi Zhang,Jianping Yu,Ruiliang Zhu. Species diversity of epiphyllous liverworts in Qianjiangyuan National Park, Zhejiang [J]. Biodiv Sci, 2020, 28(2): 231-237.
[2] ZHANG Chan, AN Yu-Meng, Yun JÄSCHKE, WANG Lin-Lin, ZHOU Zhi-Li, WANG Li-Ping, YANG Yong-Ping, DUAN Yuan-Wen. Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands [J]. Chin J Plant Ecol, 2020, 44(1): 1-21.
[3] CAI Qin, DING Jun-Xiang, ZHANG Zi-Liang, HU Jun, WANG Qi-Tong, YIN Ming-Zhen, LIU Qing, YIN Hua-Jun. Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China [J]. Chin J Plant Ecol, 2019, 43(12): 1048-1060.
[4] SHEN Jia-Yan, LI Shuai-Feng, HUANG Xiao-Bo, LEI Zhi-Quan, SHI Xing-Quan, SU Jian-Rong. Radial growth responses to climate warming and drying in Pinus yunnanensis in Nanpan River Basin [J]. Chin J Plant Ecol, 2019, 43(11): 946-958.
[5] MOU Jing, BIN Zhen-Jun, LI Qiu-Xia, BU Hai-Yan, ZHANG Ren-Yi, XU Dang-Hui. Effects of nitrogen and silicon addition on soil nitrogen mineralization in alpine meadows of Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(1): 77-84.
[6] Xueming Lei,Fangfang Shen,Xuechen Lei,Wenfei Liu,Honglang Duan,Houbao Fan,Jianping Wu. Assessing influence of simulated canopy nitrogen deposition and understory removal on soil microbial community structure in a Cunninghamia lanceolata plantation [J]. Biodiv Sci, 2018, 26(9): 962-971.
[7] ZHANG Yun, YIN Ding-Cai, TIAN Kun, ZHANG Wei-Guo, HE Rong-Hua, HE Wen-Qing, SUN Jiang-Mei, LIU Zhen-Ya. Radial growth responses of Picea likiangensis to climate variabilities at different altitudes in Yulong Snow Mountain, southwest China [J]. Chin J Plan Ecolo, 2018, 42(6): 629-639.
[8] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
[9] GENG Xiao-Dong, Xu Ri, LIU Yong-Wen. Responses of ecosystem carbon exchange to multi-level water addition in an alpine meadow in Namtso of Qinghai-Xizang Plateau, China [J]. Chin J Plan Ecolo, 2018, 42(3): 397-405.
[10] Zhonghua Zhang,Huakun Zhou,Xinquan Zhao,Buqing Yao,Zhen Ma,Quanmin Dong,Zhenhua Zhang,Wenying Wang,Yuanwu Yang. Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau [J]. Biodiv Sci, 2018, 26(2): 111-129.
[11] SHI Guo-Xi, WANG Wen-Ying, JIANG Sheng-Jing, CHENG Gang, YAO Bu-Qing, FENG Hu-Yuan, ZHOU Hua-Kun. Effects of the spreading of Ligularia virgaurea on soil physicochemical property and microbial functional diversity [J]. Chin J Plan Ecolo, 2018, 42(1): 126-132.
[12] WANG Guan-Qin, LI Fei, PENG Yun-Feng, CHEN Yong-Liang, HAN Tian-Feng, YANG Gui-Biao, LIU Li, ZHOU Guo-Ying, YANG Yuan-He. Responses of soil N2O emissions to experimental warming regulated by soil moisture in an alpine steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 105-115.
[13] GOU Xiao-Lin, ZHOU Qing-Ping, CHEN You-Jun, WEI Xiao-Xing, TU Wei-Guo. Characteristics of nutrients in two dominant plant species and rhizospheric soils in alpine desert of the Qinghai-Xizang Plateau under contrasting climates [J]. Chin J Plan Ecolo, 2018, 42(1): 133-142.
[14] CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(1): 6-19.
[15] Yong-Xing CHANG, Zhen-Ju CHEN, Xian-Liang ZHANG, Xue-Ping BAI, Xue-Peng ZHAO, Jun-Xia LI, Xu LU. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming [J]. Chin J Plan Ecolo, 2017, 41(3): 279-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wenxia Wang;Shuguang Li;Xiaoming Zhao;Bingcheng Lin;Yuguang Du. Effects of Oligochitosan on Transcription of Genes Involved in Jasmonic Acid Biosynthesis in Tobacco Suspension Cells[J]. Chin Bull Bot, 2008, 25(05): 526 -532 .
[2] Yuan Gao;Li Tian;Song Qin* . Positive Selection in Plant Evolution[J]. Chin Bull Bot, 2008, 25(04): 401 -406 .
[3] Lei Zhang Baoshi Zhang. Mapping and Cloning of Quantitative Trait Genes in Plants[J]. Chin Bull Bot, 2007, 24(04): 553 -560 .
[4] Cai Ji-jing. Scanning Electron Microscopy Method for the Direct Observation of Fresh Plant Specimen[J]. Chin Bull Bot, 1983, 1(02): 55 -56 .
[5] LI AI-Fen;CHEN Min and ZHOU Bai-Cheng. Studies on Characterization of Fluorescence Emission Spectra of Brown Algae at 77K[J]. Chin Bull Bot, 1999, 16(03): 274 -279 .
[6] Huan Feng, Shuli Yi, Jiaheng Xie, Mengqi Lei, Xuan Huang. Callus Induction and Plant Regeneration of Rosa hybrida[J]. Chin Bull Bot, 2014, 49(5): 595 -602 .
[7] Meishan Zhang, Bao Liu. Epigenetic Regulation in Plant Endosperm Development[J]. Chin Bull Bot, 2012, 47(2): 101 -110 .
[8] Zhangxiong Han, Li Li, Xinwen Xu, Xiangfang Lü, Hongxia Yue, Zhen Bian, Lizheng Li. Effect of NaCl on Physiological Features of 4 Legume Seedlings in Desert Areas of Xinjiang, China[J]. Chin Bull Bot, 2012, 47(5): 491 -499 .
[9] Jin Guo, Xiaoyan Yang, Hongping Deng, Qin Huang, Yunting Li, Huayu Zhang. Sex Expression and Reproduction Allocation in Eurya loquaiana[J]. Chin Bull Bot, 2017, 52(2): 202 -209 .
[10] Liao Lan-yu, Ding Ming-mao, Zhang Zhu-ping, Yi Wei-min, Guo Gui-zhong, Huang Zhong-liang. Root Biomass and its Nitrogen Dynamic of Some Communities in Dinghushan[J]. Chin J Plan Ecolo, 1993, 17(1): 56 -60 .