植物生态学报 ›› 2005, Vol. 29 ›› Issue (3): 403-410.DOI: 10.17521/cjpe.2005.0053
接受日期:
2004-11-18
发布日期:
2005-05-30
通讯作者:
王政权
作者简介:
*E-mail: wzqsilv@mial.nefu.edu.cn基金资助:
CHENG Yun-Huan1, HAN You-Zhi1,2, WANG Qing-Cheng1, WANG Zheng-Quan1,*()
Accepted:
2004-11-18
Published:
2005-05-30
Contact:
WANG Zheng-Quan
摘要:
树木细根在森林生态系统C和养分循环中具有重要的作用。由于温带土壤资源有效性具有明显的季节变化, 导致细根生物量、根长密度 (Rootlengthdensity, RLD) 和比根长 (Specificrootlength, SRL) 的季节性变化。以 17年生落叶松 (Larixgmelini) 人工林为研究对象, 采用根钻法从 5月到 10月连续取样, 研究了不同土层细根 (直径≤ 2mm) 生物量、RLD和SRL的季节动态, 以及这些根系指标动态与土壤水分、温度和N有效性的关系。结果表明 :1) 落叶松细根年平均生物量 (活根 +死根 ) 为 189.1g·m-2 ·a-1, 其中 5 0 %分布在表层 (0~ 10cm), 33%分布在亚表层 (11~ 2 0cm), 17%分布在底层 (2 1~ 30cm) 。活根和死根生物量在 5~ 7月以及 9月较高, 8月和 10月较低。从春季 (5月 ) 到秋季 (10月 ), 随着活细根生物量的减少, 死细根生物量增加 ;2 ) 土壤表层 (0~ 10cm) 具有较高的RLD和SRL, 而底层 (2 1~ 30cm) 最低。春季 (5月 ) 总RLD和SRL最高, 分别为 10 6 2 1.4 5m·m-3 和 14.83m·g-1, 到秋季 (9月 ) 树木生长结束后达到最低值, 分别为 2 198.2 0m·m-3 和 3.77m·g-1;3) 细根生物量、RLD和SRL与土壤水分、温度和有效N存在不同程度的相关性。从单因子分析来看, 土壤水分和有效N对细根的影响明显大于温度, 对活根的影响大于死根。由于土壤资源有效性的季节变化, 使得C的地下分配格局发生改变。各土层细根与有效性资源之间的相关性反映了细根功能季节性差异。细根 (生物量、RLD和SRL) 的季节动态 (5 8%~ 73%的变异 ) 主要由土壤资源有效性的季节变化引起。
程云环, 韩有志, 王庆成, 王政权. 落叶松人工林细根动态与土壤资源有效性关系研究. 植物生态学报, 2005, 29(3): 403-410. DOI: 10.17521/cjpe.2005.0053
CHENG Yun-Huan, HAN You-Zhi, WANG Qing-Cheng, WANG Zheng-Quan. SEASONAL DYNAMICS OF FINE ROOT BIOMASS, ROOT LENGTH DENSITY, SPECIFIC ROOT LENGTH AND SOIL RESOURCE AVAILABILITY IN A LARIX GMELINI PLANTATION. Chinese Journal of Plant Ecology, 2005, 29(3): 403-410. DOI: 10.17521/cjpe.2005.0053
图1 落叶松人工林 (17年) 不同土层总细根 (a) 、活细根 (b) 及 死细根 (c) (直径≤2 mm) 生物量动态 土层 Soil depth: △ 0~30 cm ● 0~10 cm ○ 11~20 cm ▲ 21~30 cm 图2、图3图例同图1
Fig.1 Dynamics of total (a), live (b) and dead (c) fine root biomass (≤2 mm in diameter) of larch plantation (17 years) in different soil depths through months The legend of Fig.2, Fig.3 are the same as that of Fig.1
土层 Soil depth (cm) | 相关系数 Correlation coefficients (r) | ||||||
---|---|---|---|---|---|---|---|
rw | rT | rNH4 | rNO3 | rNH4-NO3 | r2W+TW+Τ2 | r2W+T+N | |
总细根生物量 Total fine root biomass | |||||||
0~10 | -0.37 | 0.001 | 0.36 | 0.33 | -0.85* | 0.40 | 0.79 |
11~20 | 0.01 | 0.03 | 0.48 | 0.52 | 0.78 | 0.04 | 0.61 |
21~30 | -0.44 | 0.47 | 0.67 | 0.07 | -0.59 | 0.89* | 0.82* |
0~30 | -0.44 | 0.16 | 0.20 | 0.61 | 0.21 | 0.16 | 0.71 |
活细根生物量 Live fine root biomass | |||||||
0~10 | 0.31 | 0.04 | -0.19 | 0.13 | -0.39 | 0.11 | 0.54 |
11~20 | 0.35 | -0.16 | 0.56 | 0.62 | 0.91* | 0.10 | 0.88* |
21~30 | -0.81* | 0.07 | -0.13 | 0.06 | 0.07 | 0.79 | 0.79 |
0~30 | 0.33 | 0.08 | 0.04 | 0.61 | 0.57 | 0.11 | 0.58 |
死细根生物量 Dead fine root biomass | |||||||
0~10 | -0.69 | 0.10 | 0.01 | 0.08 | 0.08 | 0.56 | 0.67 |
11~20 | -0.70 | 0.31 | 0.24 | 0.29 | -0.41 | 0.51 | 0.62 |
21~30 | 0.61 | 0.50 | 0.43 | 0.01 | -0.43 | 0.43 | 0.46 |
0~30 | -0.78 | 0.24 | 0.23 | 0.31 | -0.60 | 0.61 | 0.38 |
活细根根密度 Root length density (RLD) | |||||||
0~10 | 0.50 | 0.05 | 0.10 | 0.07 | -0.20 | 0.25 | 0.52 |
11~20 | 0.39 | 0.05 | 0.36 | 0.59 | 0.74 | 0.15 | 0.68 |
21~30 | -0.90* | -0.20 | 0.18 | 0.30 | 0.10 | 0.89* | 0.92* |
0~30 | 0.36 | -0.14 | 0.02 | 0.60 | 0.49 | 0.13 | 0.73 |
活细根比根长 Specific root length (SRL) | |||||||
0~10 | 0.98* | 0.01 | 0.01 | 0.01 | 0.04 | 0.96* | 0.98* |
11~20 | 0.42 | -0.21 | 0.09 | 0.20 | 0.23 | 0.28 | 0.33 |
21~30 | -0.90* | -0.15 | 0.09 | 0.01 | 0.08 | 0.92* | 0.96* |
0~30 | 0.30 | 0.05 | 0.03 | 0.55 | 0.43 | 0.1 | 0.73 |
表1 落叶松人工林细根 (直径≤2 mm) 生物量、根长密度 (RLD) 和比根长 (SRL) 与土壤水分、温度、硝态氮、氨态氮的相关关系
Table 1 Correlation coefficients of fine root (≤2 mm in diameter) biomass, root length density (RLD) and specific root length (SRL) with soil moisture, temperature, NH+4 and NO-3 in larch plantation
土层 Soil depth (cm) | 相关系数 Correlation coefficients (r) | ||||||
---|---|---|---|---|---|---|---|
rw | rT | rNH4 | rNO3 | rNH4-NO3 | r2W+TW+Τ2 | r2W+T+N | |
总细根生物量 Total fine root biomass | |||||||
0~10 | -0.37 | 0.001 | 0.36 | 0.33 | -0.85* | 0.40 | 0.79 |
11~20 | 0.01 | 0.03 | 0.48 | 0.52 | 0.78 | 0.04 | 0.61 |
21~30 | -0.44 | 0.47 | 0.67 | 0.07 | -0.59 | 0.89* | 0.82* |
0~30 | -0.44 | 0.16 | 0.20 | 0.61 | 0.21 | 0.16 | 0.71 |
活细根生物量 Live fine root biomass | |||||||
0~10 | 0.31 | 0.04 | -0.19 | 0.13 | -0.39 | 0.11 | 0.54 |
11~20 | 0.35 | -0.16 | 0.56 | 0.62 | 0.91* | 0.10 | 0.88* |
21~30 | -0.81* | 0.07 | -0.13 | 0.06 | 0.07 | 0.79 | 0.79 |
0~30 | 0.33 | 0.08 | 0.04 | 0.61 | 0.57 | 0.11 | 0.58 |
死细根生物量 Dead fine root biomass | |||||||
0~10 | -0.69 | 0.10 | 0.01 | 0.08 | 0.08 | 0.56 | 0.67 |
11~20 | -0.70 | 0.31 | 0.24 | 0.29 | -0.41 | 0.51 | 0.62 |
21~30 | 0.61 | 0.50 | 0.43 | 0.01 | -0.43 | 0.43 | 0.46 |
0~30 | -0.78 | 0.24 | 0.23 | 0.31 | -0.60 | 0.61 | 0.38 |
活细根根密度 Root length density (RLD) | |||||||
0~10 | 0.50 | 0.05 | 0.10 | 0.07 | -0.20 | 0.25 | 0.52 |
11~20 | 0.39 | 0.05 | 0.36 | 0.59 | 0.74 | 0.15 | 0.68 |
21~30 | -0.90* | -0.20 | 0.18 | 0.30 | 0.10 | 0.89* | 0.92* |
0~30 | 0.36 | -0.14 | 0.02 | 0.60 | 0.49 | 0.13 | 0.73 |
活细根比根长 Specific root length (SRL) | |||||||
0~10 | 0.98* | 0.01 | 0.01 | 0.01 | 0.04 | 0.96* | 0.98* |
11~20 | 0.42 | -0.21 | 0.09 | 0.20 | 0.23 | 0.28 | 0.33 |
21~30 | -0.90* | -0.15 | 0.09 | 0.01 | 0.08 | 0.92* | 0.96* |
0~30 | 0.30 | 0.05 | 0.03 | 0.55 | 0.43 | 0.1 | 0.73 |
[1] | Anderson LJ, Comas LH, Lakso AN, Eissenstat DM (2003). Mul tipleriskfactorsinrootsurvivorship:afour_yearstudyinConcordgrape. NewPhytologist, 158,489-501. |
[2] | Bloomfield JK, Vogt KA, Wargo PM (1996). TreerootturnoverandSenescence.In:WaiselY, EshelA, KaafkafiUeds. PlantRoots:theHiddenHalf.2ndedn. MarcelDekker, NewYork,363-381. |
[3] | Burke MK, Raynai DJ, Mrrchell MJ (1991). Soilnitrogenavail abilityinfluencesseasonalcarbonallocationpatternsinsugarmaple (Acersaccharum). CanadianJournalofForestResearch, 22,447-456. |
[4] |
Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationshipsbe tweenfinerootdynamicsandnitrogenavailabilityinMichigannorthernhardwoodforest. Oecologia, 125,389-399.
DOI PMID |
[5] |
Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996). Maximumrootingdepthofvegetationtypesattheglobalscale. Oecologia, 108,583-595.
DOI PMID |
[6] | Domisch T, Finér L, Lehto T (2002). Growth, carbohydrateandnutrientallocationofScotspineseedlingsafterexposuretosimu latedlowsoiltemperatureinspring. PlantandSoil, 246,75-86. |
[7] | Eissenstat DM, vanRees KCJ (1994). Thegrowthandfunctionofpineroots. EcologicalBulletins, 43,76-91. |
[8] | Eissenstat DM, Yanai RD (1997). Theecologyofrootlifespan. AdvancesinEcologicalResearch, 27,2-59. |
[9] | Eissenstat EM (1991). Ontherelationshipbetweenspecificrootlengthandtherateofrootproliferation:afieldstudyusingcitrusrootstocks. NewPhytologist, 118,63-68. |
[10] | Espeleta JF, Donovan LA (2002). Finerootdemographyandmor phologyinresponsetosoilresourcesavailabilityamongxericandmesicsandhilltreespecies. FunctionalEcology, 16,113-121. |
[11] | Fahey TJ, Hughes JW (1994). Finerootdynamicsinnorthernhardwoodforestecosystem, HubbardBrookexperimentalforest, NH. JournalofEcology, 82,533-548. |
[12] |
Gaudinski JB, Trumbore SE, Davidson EA, Cook AC, Markewitz D, Richter D (2001). Theageoffine_rootcarboninthreeforestsoftheeasternUnitedStatesmeasuredbyradiocarbon. Oecologia, 129,420-429.
DOI PMID |
[13] | Gill RA, Jackson RB (2000). Globalpatternsofrootturnoverforterrestrialecosystems. NewPhytologist, 147,13-31. |
[14] | Gower ST, Vogt KA, Grier CC (1992). CarbondynamicsofRockyMountainDouglas_fir:influenceofwaterandnutrientavailability. EcologicalMonographs, 62,43-65. |
[15] |
Hendrick RL, Pregitzer KS (1992). Thedemographyoffinerootinanorthernhardwoodforest. Ecology, 73,1094-1104.
DOI URL |
[16] |
Hendrick RL, Pregitzer KS (1993). Patternsoffinerootmortalityintwosugarmapleforests. Nature, 361,59-61.
DOI URL |
[17] | Hendrick RL, Pregitzer KS (1996). Temporalanddepth_relatedpatternsoffinerootdynamicsinnorthernhardwoodforests. JournalofEcology, 84,167-176. |
[18] | Huang JH (黄建辉), Han XG (韩兴国), Chen LZ (陈灵芝) (1999). Advancesintheresearchof (fine) rootbiomassinforestecosystems. ActaEcologicaSinica (生态学报), 19,270-277. (inChinesewithEnglishabstract). |
[19] | Hutchings MJ, John EA (2003). Distributionofrootsinsoil, androotforagingactivity.In:KroonHD, VisserEJWeds.RootE cology. Springer_Verlag, NewYork,61-83. |
[20] | King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty P (2002). Below_groundcarboninputtosoiliscontrolledbynu trientavailabilityandfinerootdynamicsinloblollypine. NewPhytologist, 154,389-398. |
[21] | Körner C (2003). Carbonlimitationintrees. JournalofEcology, 91,4-17. |
[22] | Lauenroth WK, Gill R (2003). Turnoverofrootsystems.In:KroonHD, VisserEJWeds. RootEcology.Springer_Verlag, NewYork,61-83. |
[23] | Li LH (李凌浩), Ling P (林鹏), Xing XR (邢雪荣) (1998). FinerootbiomassandproductionofCastanopsiseyreiforestsinWuyiMountains. ChineseJournalofAppliedEcology (应用生态学报), 9,337-340. (inChinesewithEnglishabstract). |
[24] | López B, Sabat S, Gracia CA (2001). AnnualandseasonalchangesinfinerootbiomassofaQuercusilexL.forest. PlantandSoil, 230,125-134. |
[25] | Majdi H (2001). ChangesinfinerootproductionandlongevityinrelationtowaterandnutrientavailabilityinaNorwaysprucestandinnorthernSweden. TreePhysiology, 21,1057-1061. |
[26] | Nadelhoffer KJ (2000). Researchreview:thepotentialeffectsofnitrogendepositiononfine_rootproductioninforestecosystems. NewPhytologist, 147,131-139. |
[27] |
Nepstad DC, deCarvalbo CR, Davidson EA, Jipp PH, Lefevre PA, Negreiros GH, daSilva ED, Stone TA, Trumbore SE, Vieira S (1994). TheroleofdeeprootsinthehydrologicalandcarboncyclesofAmazonianforestsandpastures. Nature, 372,666-669.
DOI URL |
[28] | Pregitzer KS (2003). Woodyplants, carbonallocationandfineroots.NewPhytologist, 158,421-423. |
[29] | Pregitzer KS, King JS, Burton AJ (2000). Responseoftreefinerootstotemperature. NewPhytologist, 147,105-115. |
[30] | Pregizer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hen drich RL (2002). FinerootarchitectureofninenorthAmericantrees. EcologicalMonographs, 72,293-309. |
[31] | Schenk HJ, Jackson RB (2002). Theglobalbiogeographyofroots. EcologicalMonographs, 72,311-328. |
[32] |
Schulze ED, Bauer G, Buchmann N, Canadell J, Ehleringer JR, Jackson RB, Jobbagy E, Loreti J, Mooney HA, Oesterbeld M, Sala O (1996). Wateravailability, rootingdepth, andvegetationzonesalonganariditygradientinPatagonia. Oecologia, 108,503-511.
DOI PMID |
[33] | Shipley B, Meziane D (2002). Thebalanced_growthhypothesisandtheallometryofleafandrootbiomassallocation. FunctionalE cology, 16,326-331. |
[34] | Smit AL, George E, Groenwold J (1999). Rootobservationsandmeasurementsat (transparent) interfaceswithsoil. In:SmitAL, BengoughAG, EngelsC, NoordwijkMV, PellerinS, vandeGeijnSCeds.RootMethods.Springer_Verlag, NewYork,236-266. |
[35] | Steele SJ, Gower ST, Vogel JG, Norman JM (1997). Rootmass, netprimaryproductionandturnoverinaspen, jackpineandblackspruceforestsinSaskatchewanandManitovaCanada. TreePhysiology, 17,577-587. |
[36] | Usman S, Singh SP, Rawat YS (1999). FinerootproductionandturnoverintwoevergreencentralHimalayanforests. AnnalsofBotany, 84,87-94. |
[37] | Vogt KA, Vogt DJ, Palmiotto PA, Boon P, HaraJO', Absbjornsen H (1996). Reviewofrootdynamicsinforestecosystemsgroupedbyclimate, climaticforesttypeandspecies. PlantandSoil, 187,159-219. |
[38] |
Wang ZQ, Burch WH, Mou P, Jones RH, Mitchell RJ (1995). Accuracyofvisibleandultravioletlightforestimationliverootproportionswithminirhizotrons. Ecology, 76,2330-2334.
DOI URL |
[39] | Wen DZ (温达志), Wei P (魏平), Kong GH (孔国辉), Ye WH (叶万辉) (1999). ProductionandturnoverrateoffinerootsintwolowersubtropicalforestsitesatDinghushan. ActaPhytoe cologicaSinica (植物生态学报), 23,361-369. (inChinesewithEnglishabstract). |
[40] | Zhang XQ (张小全) (2001). Finerootbiomass, productionandturnoveroftreesinrelationstoenvironmentalconditions. ForestResearch (林业科学研究), 14,566-573. (inChinesewithEnglishabstract). |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[5] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[6] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[7] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[8] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[9] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[10] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[11] | 方文静, 蔡琼, 朱江玲, 吉成均, 岳明, 郭卫华, 张峰, 高贤明, 唐志尧, 方精云. 华北地区落叶松林的分布、群落结构和物种多样性[J]. 植物生态学报, 2019, 43(9): 742-752. |
[12] | 焦亮, 王玲玲, 李丽, 陈晓霞, 闫香香. 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应[J]. 植物生态学报, 2019, 43(4): 320-330. |
[13] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[14] | 温晓示, 陈彬杭, 张树斌, 徐凯, 叶新宇, 倪伟杰, 王襄平. 不同林龄、树种落叶松人工林径向生长与气候变化的关系[J]. 植物生态学报, 2019, 43(1): 27-36. |
[15] | 张鑫, 邢亚娟, 闫国永, 王庆贵. 细根对降水变化响应的meta分析[J]. 植物生态学报, 2018, 42(2): 164-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19