植物生态学报 ›› 2006, Vol. 30 ›› Issue (2): 286-294.DOI: 10.17521/cjpe.2006.0038
所属专题: 生态系统碳水能量通量
接受日期:
2005-01-06
发布日期:
2006-03-30
基金资助:
YANG Jin_Yan, WANG Chuan_Kuan()
Accepted:
2005-01-06
Published:
2006-03-30
摘要:
东北地区森林生态系统因其面积大,碳贮量高而在本地区和我国碳平衡中占有重要的地位。土壤表面CO2通量(RS)作为陆地生态系统向大气圈释放的主要CO2源,其时空变化直接影响到区域碳循环。该研究采用红外气体分析法比较测定我国东北东部次生林区6个典型的森林生态系统的RS及其相关的土壤水热因子,并深入分析土壤水热因子对RS的影响。研究结果表明:影响RS的主要环境因子是土壤温度、土壤含水量及其交互作用,但其影响程度因生态系统类型和土壤深度而异。包括这些环境因子的综合RS模型解释了67.5%~90.6%的RS变异。在整个生长季中,不同生态系统类型的土壤温度差异不显著,而土壤湿度的差异显著(α = 0.05)。蒙古栎(Quercus mongolica)林、红松(Pinus koraiensis)林、落叶松(Larix gmelinii)林、硬阔叶林、杂木林和杨桦(Populus davidiana_Betula platyphylla)林的RS变化范围依次为:1.89~5.23 μmol CO 2·m-2·s-1,1.09~4.66 μmol CO 2·m-2·s-1,0.95~3.52 μmol CO 2·m-2·s-1,1.13~5.97 μmol CO 2·m-2·s-1,1.05~6.58 μmol CO 2·m-2·s-1和1.11~5.76 μmol CO 2·m-2·s-1。RS的季节动态主要受土壤水热条件的驱动而呈现单峰曲线,其变化趋势大致与土壤温度的变化相吻合。Q10从小到大依次为:蒙古栎林2.32,落叶松林2.57,红松林2.76,硬阔叶林2.94,杨桦林3.54和杂木林3.55。Q10随土壤湿度的升高而增大;但超过一定的阈值后,土壤湿度对Q10起抑制作用。该研究结果强调对该地区生态系统土壤表面CO2通量的估测应同时考虑土壤水热条件的综合效应。
杨金艳, 王传宽. 土壤水热条件对东北森林土壤表面CO2通量的影响. 植物生态学报, 2006, 30(2): 286-294. DOI: 10.17521/cjpe.2006.0038
YANG Jin_Yan, WANG Chuan_Kuan. EFFECTS OF SOIL TEMPERATURE AND MOISTURE ON SOIL SURFACE CO<sub>2</sub> FLUX OF FORESTS IN NORTHEASTERN CHINA. Chinese Journal of Plant Ecology, 2006, 30(2): 286-294. DOI: 10.17521/cjpe.2006.0038
生态系统类型 Forest ecosystem | 坡度 Slope | 坡向 Aspect | 植被组成 Vegetation composition | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
乔木(优势种) Overstory (Dominant species) | 下木 Understory | |||||||||||||
蒙古栎林Quercus mongolica forest | 23° | 南South | (1)、2、3、4、5、6 | 7、8、9、10 | ||||||||||
杨桦林Populus davidiana_Betula platyphylla forest | 16° | 西南Southwest | (6)、(5)、11、4、3、2 | 7、8、9、12、10、13、14 | ||||||||||
硬阔叶林Hard_wood forest | 7° | 北North | 4、3、2、11 | 7、9、13、15、16、17 | ||||||||||
杂木林Mixed forest | 15° | 西南Southwest | 2、11、4、3、5、6 | 7、9、15、13、18、19 | ||||||||||
落叶松人工林Larix gmelinii plantation | 2° | 西南Southwest | (20)、3、21 | 15、22、16、10、9、7、23 | ||||||||||
红松人工林Pinus koraiensis plantation | 12° | 西北Northwest | (24)、6、3、25、5、11、6 | 9、19 |
表1 样地的立地状况和植被组成
Table 1 The site features and vegetation composition of the sampled plots
生态系统类型 Forest ecosystem | 坡度 Slope | 坡向 Aspect | 植被组成 Vegetation composition | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
乔木(优势种) Overstory (Dominant species) | 下木 Understory | |||||||||||||
蒙古栎林Quercus mongolica forest | 23° | 南South | (1)、2、3、4、5、6 | 7、8、9、10 | ||||||||||
杨桦林Populus davidiana_Betula platyphylla forest | 16° | 西南Southwest | (6)、(5)、11、4、3、2 | 7、8、9、12、10、13、14 | ||||||||||
硬阔叶林Hard_wood forest | 7° | 北North | 4、3、2、11 | 7、9、13、15、16、17 | ||||||||||
杂木林Mixed forest | 15° | 西南Southwest | 2、11、4、3、5、6 | 7、9、15、13、18、19 | ||||||||||
落叶松人工林Larix gmelinii plantation | 2° | 西南Southwest | (20)、3、21 | 15、22、16、10、9、7、23 | ||||||||||
红松人工林Pinus koraiensis plantation | 12° | 西北Northwest | (24)、6、3、25、5、11、6 | 9、19 |
生态系统类型 Forest ecosystem | 土壤深度 Soil depth (cm) | 回归方程 Regression model | 决定系数 R2 | 显著水平 p |
---|---|---|---|---|
蒙古栎林 Quercus mongolica forest | 10 | ln(RS)=-0.294 5+0.073 4×T10+1.692 4×W10 | 0.675 | <0.001 |
2 | ln(RS)=-0.740 1+0.104 5×T2+1.804 5×W2-0.067 0×T2×W2 | 0.704 | <0.001 | |
杨桦林Populus davidiana_ Betula platyphylla forest | 10 | ln(RS)=-1.611+0.195 1×T10+3.190 2×W10-0.188 2×T10×W10 | 0.906 | <0.001 |
2 | ln(RS)=-1.068 6+0.147 2×T2+1.239×W2-0.063 6×T2×W2 | 0.855 | <0.001 | |
硬阔叶林 Hard_wood forest | 10 | ln(RS)=-1.161 0+0.175 4×T10+1.956 5×W10-0.1277×T10×W10 | 0.771 | <0.001 |
2 | ln(RS)=-0.078 4+0.094 7×T2 | 0.751 | <0.001 | |
杂木林 Mixed forest | 10 | ln(RS)=-1.730 2+0.203 0×T10+3.224 4×W10-0.1737×T10×W10 | 0.902 | <0.001 |
2 | ln(RS)=-0.202 6+0.108 8×T2 | 0.852 | <0.001 | |
红松人工林 Pinus koraiensis plantation | 10 | ln(RS)=-1.538 6+0.155 6×T10+3.199 0×W10-0.1304×T10×W10 | 0.855 | <0.001 |
2 | ln(RS)=-0.740 1+0.096 0×T2+0.822 9×W2 | 0.780 | <0.001 | |
落叶松人工林 Larix gmelinii plantation | 10 | ln(RS)=-0.831 9+0.099 1×T10+0.926 0×W10 | 0.846 | <0.001 |
2 | ln(RS)=-0.573 4+0.093 7×T2 | 0.809 | <0.001 |
表2 土壤表面CO2通量(RS)与土壤温度(T2和T10)和土壤湿度(W2和W10)的统计模型
Table 2 Models of soil surface CO2 flux (RS) against soil temperature (T2 and T10) and soil moisture (W2 and W10)
生态系统类型 Forest ecosystem | 土壤深度 Soil depth (cm) | 回归方程 Regression model | 决定系数 R2 | 显著水平 p |
---|---|---|---|---|
蒙古栎林 Quercus mongolica forest | 10 | ln(RS)=-0.294 5+0.073 4×T10+1.692 4×W10 | 0.675 | <0.001 |
2 | ln(RS)=-0.740 1+0.104 5×T2+1.804 5×W2-0.067 0×T2×W2 | 0.704 | <0.001 | |
杨桦林Populus davidiana_ Betula platyphylla forest | 10 | ln(RS)=-1.611+0.195 1×T10+3.190 2×W10-0.188 2×T10×W10 | 0.906 | <0.001 |
2 | ln(RS)=-1.068 6+0.147 2×T2+1.239×W2-0.063 6×T2×W2 | 0.855 | <0.001 | |
硬阔叶林 Hard_wood forest | 10 | ln(RS)=-1.161 0+0.175 4×T10+1.956 5×W10-0.1277×T10×W10 | 0.771 | <0.001 |
2 | ln(RS)=-0.078 4+0.094 7×T2 | 0.751 | <0.001 | |
杂木林 Mixed forest | 10 | ln(RS)=-1.730 2+0.203 0×T10+3.224 4×W10-0.1737×T10×W10 | 0.902 | <0.001 |
2 | ln(RS)=-0.202 6+0.108 8×T2 | 0.852 | <0.001 | |
红松人工林 Pinus koraiensis plantation | 10 | ln(RS)=-1.538 6+0.155 6×T10+3.199 0×W10-0.1304×T10×W10 | 0.855 | <0.001 |
2 | ln(RS)=-0.740 1+0.096 0×T2+0.822 9×W2 | 0.780 | <0.001 | |
落叶松人工林 Larix gmelinii plantation | 10 | ln(RS)=-0.831 9+0.099 1×T10+0.926 0×W10 | 0.846 | <0.001 |
2 | ln(RS)=-0.573 4+0.093 7×T2 | 0.809 | <0.001 |
生态系统类型 Forest ecosystems | 土壤呼吸速率 RS (μmol CO2·m-2·s-1) | 土壤温度 Soil temperature (℃) | 土壤湿度 Soil moisture (%) | |||
---|---|---|---|---|---|---|
均值 Mean | 标准差 SD | 均值 Mean | 标准差 SD | 均值 Mean | 标准差 SD | |
杂木林Mixed forest | 3.94A | 1.86 | 12.95A | 4.24 | 40.70B | 4.83 |
蒙古栎林Quercus mongolica forest | 3.79ABC | 1.07 | 13.81A | 3.95 | 30.19F | 7.05 |
杨桦林Populus davidiana- Betula platyphylla forest | 3.70B | 1.65 | 13.08A | 4.40 | 37.44D | 5.18 |
硬阔叶林 Hard_wood forest | 3.61C | 1.56 | 13.17A | 3.91 | 53.42A | 4.43 |
红松人工林 Pinus koraiensis plantation | 3.05D | 1.16 | 12.06A | 4.28 | 38.60C | 6.91 |
落叶松人工林 Larix gmelinii plantation | 2.35E | 0.85 | 11.14A | 4.55 | 32.02E | 6.67 |
表3 6个生态系统的土壤呼吸速率(RS)、土壤温度(T10)和湿度(W10)平均值多重比较
Table 3 Duncan's multiple_range test for the means of soil surface CO2 flux (RS), soil temperature (T10) and moisture (W10) for the six forest ecosystems
生态系统类型 Forest ecosystems | 土壤呼吸速率 RS (μmol CO2·m-2·s-1) | 土壤温度 Soil temperature (℃) | 土壤湿度 Soil moisture (%) | |||
---|---|---|---|---|---|---|
均值 Mean | 标准差 SD | 均值 Mean | 标准差 SD | 均值 Mean | 标准差 SD | |
杂木林Mixed forest | 3.94A | 1.86 | 12.95A | 4.24 | 40.70B | 4.83 |
蒙古栎林Quercus mongolica forest | 3.79ABC | 1.07 | 13.81A | 3.95 | 30.19F | 7.05 |
杨桦林Populus davidiana- Betula platyphylla forest | 3.70B | 1.65 | 13.08A | 4.40 | 37.44D | 5.18 |
硬阔叶林 Hard_wood forest | 3.61C | 1.56 | 13.17A | 3.91 | 53.42A | 4.43 |
红松人工林 Pinus koraiensis plantation | 3.05D | 1.16 | 12.06A | 4.28 | 38.60C | 6.91 |
落叶松人工林 Larix gmelinii plantation | 2.35E | 0.85 | 11.14A | 4.55 | 32.02E | 6.67 |
图1 不同生态系统土壤温度和湿度的季节变化 T10: 土深10 cm的温度 Soil temperature at 10 cm depth W10: 土深10 cm的湿度 Soil moisture at 10 cm depth A: 红松人工林 Pinus koraiensis plantation B: 落叶松人工林 Larix gmelinii plantation C: 硬阔叶林 Hard_wood forest D: 蒙古栎林 Quercus mongolica forest E: 杨桦林 Populus davidiana-Betula platyphylla forest F: 杂木林Mixed forest
Fig.1 Seasonality of soil temperature and soil moisture of the six ecosystem types
[1] | Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396,570-572. |
[2] | Chen QS (陈全胜), Li LH (李凌浩), Han XG (韩兴国), Yan ZD (阎志丹), Wang YF (王艳芬), Yuan ZY (袁志友) (2003). Influence of temperature and soil moisture on soil respiration of degraded steppe community in the Xilin River Basin of Inner Mongolia. Acta Phytoeclogica Sinica (植物生态学报), 27,202-209. (in Chinese with English abstract) |
[3] | Chen QS (陈全胜), Li LH (李凌浩), Han XG (韩兴国), Yan ZD (阎志丹), Wang YF (王艳芬), Zhang Y (张焱), Xiong XG (熊小刚), Chen SP (陈世苹), Zhang LX (张丽霞), Gao YZ (高英志), Tang F (唐芳), Yang J (杨晶), Dong YS (董云社) (2004). Temperature sensitivity of soil respiration in relation to soil moisture in 11 communities of typical temperate steppe in Inner Mongolia. Acta Ecologica Sinica (生态学报), 24,831-836. (in Chinese with English abstract) |
[4] | Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4,217-227. |
[5] | Fang C, Moncrief JB, Gholz HL, Clark KL (1998). Soil CO 2 efflux and its spatial variation in a Florida slash pine plantation . Plant and Soil, 205,135-146. |
[6] | Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996). Measurement of carbon sequestration by long_term eddy covariance, methods and a critical evaluation of accuracy. Global Change Biology, 2,169-182. |
[7] | Kang SY, Doh SY, Lee DS, Lee DW, Jin VL, Kimball JS (2003). Topographic and climatic controls on soil respiration in six temperate mixed_hardwood forest slopes, Korea. Global Change Biology, 9,1427-1437. |
[8] | Keith H, Jacobsen KL, Raison RJ (1997). Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest . Plant and Soil, 190,127-141. |
[9] | Landsberg JJ, Gower ST (1997). Applications of Physiological Ecology to Forest Management . Academic, San Diego, California, 354. |
[10] | Liu JJ (刘建军), Wang DX (王得祥), Lei RD (雷瑞德), Wu XQ (吴钦孝) (2003). Soil respiration and release of carbon dioxide from natural forest of Pinus tabulaeformis and Quercus aliena var. acuteserrata. Scientia Silvae Sinicae (林业科学), 39(2),8-13. (in Chinese with English abstract) |
[11] | Luo YQ, Wan SQ, Hui DF, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413,622-625. |
[12] | Ohashi M, Gyokusen K, Saito A (1999). Measurement of carbon dioxide evolution from a Japanese cedar (Cryptomeria japonica) forest floor using an open_flow chamber method . Forest Ecology and Management, 123,105-114. |
[13] | Post WM, Emanuel WR (1982). Soil carbon pools and world life zones. Nature, 298,156-159. |
[14] | Pypker TG, Fredeen AL (2003). Below ground CO 2 efflux from cut blocks of varying ages in sub_ boreal British Columbia . Forest Ecology and Management, 172,249-259. |
[15] | Raich JW, Potter CS (1995). Global patterns of carbon dioxide emissions from soils. Global Biochemical Cycles, 9,23-36. |
[16] | Raich JW, Tufekcioglu A (2000). Vegetation and soil respiration: correlation and controls. Biogeochemistry, 48,71-90. |
[17] | Raich JW, Schlesinger WH (1992). The global carbon dioxide efflux in soil respiration and its relationship to vegetation and climate. Tellus, 44B,81-90. |
[18] | Raich JW, Potter CS, Bhagawati D (2002). Interannual variability in global soil respiration, 1980-94. Global Change Biology, 8,800-812. |
[19] | Rayment MB, Jarvis PG (2000). Temporal and spatial variation of soil CO 2 efflux in a Canadian boreal forest . Soil Biology and Biochemistry, 32,35-45. |
[20] | Russell CA, Voroney RP (1998). Carbon dioxide efflux from the floor of a boreal aspen forest I. relationship to environmental variables and estimates of C respired. Canadian Journal of Soil Science, 78,301-310. |
[21] | Savin MC, Gorres JH, Neher DA (2001). Biogeophysical factors influencing soil respiration and mineral nitrogen content in an old field soil. Soil Biology and Biogeochemistry, 33,429-438. |
[22] | Scott_Denton LE, Sparks KL, Monson RK (2003). Spatial and temporal controls of soil respiration rate in a high_elevation, subalpine forest. Soil Biology and Biochemistry, 35,525-534. |
[23] | Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich J (1999). The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO 2 in the United States . Tellus, 51 B ,414-452. |
[24] |
Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Á, Berbigier P, Loustau D, Guemundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000). Respiration as the main determinant of carbon balance in European forests. Nature, 404,861-865.
URL PMID |
[25] | Wang CK, Bond_Lamberty B, Gower ST (2002). Soil surface CO 2 flux in a boreal black spruce fire chronosequence . Journal of Geophysical Research_Atmospheres, 108,8224. |
[26] | Wang M (王淼), Ji LZ (姬兰柱), Li QR (李秋荣), Liu YQ (刘延秋) (2003). Effects of soil temperature and moisture in different forest in Changbai Mountain. Chinese Journal of Applied Ecology (应用生态学报), 14,1234-1238. (in Chinese with English abstract) |
[27] | Wang M (王淼), Han SJ (韩士杰), Wang YS (王跃思) (2004). Important factors controlling CO 2 emission rates from forest soil . Chinese Journal of Ecology (生态学杂志), 23(5),24-29. (in Chinese with English abstract) |
[28] | Xu M, Qi Y (2001a). Soil_surface CO 2 efflux and its spatial andtemporal variations in a young ponderosa pine plantation in northern California . Global Change Biology, 7,667-677. |
[29] | Xu M, Qi Y (2001b). Spatial and seasonal variations of Q 10 determined by soil respiration measurements at a Sierra Nevadan forest . Global Biogeochemical Cycles, 15,687-696. |
[30] | The Chinese Forestry Ministry (中华人民共和国林业部) (1996). Statistics of National Forest Resources in China (全国森林资源统计), China Forestry Publishing House, Beijing. (in Chinese) |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[3] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[4] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[5] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[6] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[7] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[8] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[9] | 胡姝娅,刁华杰,王惠玲,薄元超,申颜,孙伟,董宽虎,黄建辉,王常慧. 北方农牧交错带温性盐碱化草地土壤呼吸对不同形态氮添加和刈割的响应[J]. 植物生态学报, 2020, 44(1): 70-79. |
[10] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[11] | 邹安龙,李修平,倪晓凤,吉成均. 模拟氮沉降对北京东灵山辽东栎林树木生长的影响[J]. 植物生态学报, 2019, 43(9): 783-792. |
[12] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[13] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[14] | 武启骞, 王传宽. 控雪处理下红松和蒙古栎凋落叶分解动态[J]. 植物生态学报, 2018, 42(2): 153-163. |
[15] | 朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19