植物生态学报 ›› 2006, Vol. 30 ›› Issue (3): 441-449.DOI: 10.17521/cjpe.2006.0059
所属专题: 青藏高原植物生态学:植物-土壤-微生物
王长庭1,2, 龙瑞军1,3,*(), 曹广民1, 王启兰1, 丁路明1, 施建军4
接受日期:
2005-12-06
发布日期:
2006-05-30
通讯作者:
龙瑞军
作者简介:
*E-mail: longuijun@sina.com基金资助:
WANG Chang-Ting1,2, LONG Run-Jun1,3,*(), CAO Guang-Min1, WANG Qi-Lan1, DING Lu-Ming1, SHI Jian-Jun4
Accepted:
2005-12-06
Published:
2006-05-30
Contact:
LONG Run-Jun
摘要:
以三江源地区主要草地类型为研究对象,分析了不同草地类型土壤有机碳和全氮的变化特征及其与环境因子、土壤特征等的相互关系。结果表明:沿着海拔的逐渐升高,土壤有机碳和全氮含量均呈现出 “V"字形变化规律,即土壤有机碳氮含量在海拔最高处(5 120 m)和最低处(4 176 m)比较高,而在中间海拔梯度较低,土壤有机碳与全氮含量极显著相关( r=0.905)且高寒草甸土壤碳、氮含量高于高山草原土壤碳、氮含量;土壤中有机碳含量和全氮含量均随着土壤含水量的增加而增加,偏相关分析结果表明:对0~30 cm土层中土壤有机碳和土壤全氮影响最大的是土壤含水量,偏相关系数为0.946 5、0.905 9(p<0.01);土壤有机碳含量和全氮含量与植被盖度和草地生产力存在正相关趋势;土壤有机碳含量和全氮含量与土壤pH值和全盐量存在负相关趋势。
王长庭, 龙瑞军, 曹广民, 王启兰, 丁路明, 施建军. 三江源地区主要草地类型土壤碳氮沿海拔变化特征及其影响因素. 植物生态学报, 2006, 30(3): 441-449. DOI: 10.17521/cjpe.2006.0059
WANG Chang-Ting, LONG Run-Jun, CAO Guang-Min, WANG Qi-Lan, DING Lu-Ming, SHI Jian-Jun. SOIL CARBON AND NITROGEN CONTENTS ALONG ELEVATION GRADIENTS IN THE SOURCE REGION OF YANGTZE, YELLOW AND LANTSANG RIVERS. Chinese Journal of Plant Ecology, 2006, 30(3): 441-449. DOI: 10.17521/cjpe.2006.0059
样地号 Plot No. | 植物群落类型 Plant community types | 海拔 Elevation (m) | 纬度 Latitudes | 经度 Longitudes | 植被类型 Vegetation type | 降水量 Precipitation (mm) | 土壤类型 Soil type | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 甘肃苔草+异针茅 Carex kansuensis+Stipa aliena | 4 176 | 32°53.247' N | 96°46.526' E | 高寒草甸 Alpine meadow | 452 | 高寒草甸土 Alpine meadow soil | ||||||
2 | 小嵩草 Kobresia pygmaea | 4 218 | 37°57.357' N | 96°35.456' E | 高寒草甸 Alpine meadow | 400.2 | 高寒草甸土 Alpine meadow soil | ||||||
3 | 小嵩草 Kobresia pygmaea | 4 273 | 33°26.068' N | 97°17.296' E | 高寒草甸 Alpine meadow | 410 | 高寒草甸土 Alpine meadow soil | ||||||
4 | 青藏苔草+紫花针茅 Carex moorcroftii+Stipa purpurea | 4 285 | 35°04.756' N | 97°44.003' E | 高山草原 Alpine steppe | 350 | 高山草原土 Alpine steppe soil | ||||||
5 | 青藏苔草+紫花针茅 Carex moorcroftii+Stipa purpurea | 4 298 | 34°54.911' N | 98°12.519' E | 高山草原 Alpine steppe | 350 | 高山草原土 Alpine steppe soil | ||||||
6 | 线叶嵩草 Kobresia capillifolia | 4 435 | 34°26.154' N | 100°22.794' E | 高寒草甸 Alpine meadow | 404.7 | 高山寒漠土 Alpine desert soil | ||||||
7 | 小嵩草 Kobresia pygmaea | 4 601 | 34°54.279' N | 97°31.876' E | 高寒草甸 Alpine meadow | 503.6 | 高山寒漠土 Alpine desert soil | ||||||
8 | 青藏苔草 Carex moorcroftii | 5 120 | 34°07.632' N | 97°39.487' E | 高寒草甸 Alpine meadow | 542 | 高山寒漠土 Alpine desert soil |
表1 各观测样地的基本情况
Table 1 General conditions of sample plots
样地号 Plot No. | 植物群落类型 Plant community types | 海拔 Elevation (m) | 纬度 Latitudes | 经度 Longitudes | 植被类型 Vegetation type | 降水量 Precipitation (mm) | 土壤类型 Soil type | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 甘肃苔草+异针茅 Carex kansuensis+Stipa aliena | 4 176 | 32°53.247' N | 96°46.526' E | 高寒草甸 Alpine meadow | 452 | 高寒草甸土 Alpine meadow soil | ||||||
2 | 小嵩草 Kobresia pygmaea | 4 218 | 37°57.357' N | 96°35.456' E | 高寒草甸 Alpine meadow | 400.2 | 高寒草甸土 Alpine meadow soil | ||||||
3 | 小嵩草 Kobresia pygmaea | 4 273 | 33°26.068' N | 97°17.296' E | 高寒草甸 Alpine meadow | 410 | 高寒草甸土 Alpine meadow soil | ||||||
4 | 青藏苔草+紫花针茅 Carex moorcroftii+Stipa purpurea | 4 285 | 35°04.756' N | 97°44.003' E | 高山草原 Alpine steppe | 350 | 高山草原土 Alpine steppe soil | ||||||
5 | 青藏苔草+紫花针茅 Carex moorcroftii+Stipa purpurea | 4 298 | 34°54.911' N | 98°12.519' E | 高山草原 Alpine steppe | 350 | 高山草原土 Alpine steppe soil | ||||||
6 | 线叶嵩草 Kobresia capillifolia | 4 435 | 34°26.154' N | 100°22.794' E | 高寒草甸 Alpine meadow | 404.7 | 高山寒漠土 Alpine desert soil | ||||||
7 | 小嵩草 Kobresia pygmaea | 4 601 | 34°54.279' N | 97°31.876' E | 高寒草甸 Alpine meadow | 503.6 | 高山寒漠土 Alpine desert soil | ||||||
8 | 青藏苔草 Carex moorcroftii | 5 120 | 34°07.632' N | 97°39.487' E | 高寒草甸 Alpine meadow | 542 | 高山寒漠土 Alpine desert soil |
样地号 Plot No. | 植被类型 Vegetation type | 土壤有机碳 Soil organic C (%) | 土壤全氮 Soil total N (%) |
---|---|---|---|
1 | 甘肃苔草+异针茅Carex kansuensis+Stipa aliena | 7.72±0.18a | 1.15±0.06a |
2 | 小嵩草 Kobresia pygmaea | 7.46±0.20a | 0.43±0.02a |
3 | 小嵩草 Kobresia pygmaea | 5.02±0.14a | 0.35±0.01a |
4 | 青藏苔草+紫花针茅Carex moorcroftii+Stipapurpurea | 2.08±0.13b | 0.19±0.01b |
5 | 青藏苔草+紫花针茅Carex moorcroftii+Stipapurpurea | 1.87±0.04b | 0.13±0.01b |
6 | 线叶嵩草 Kobresia capillifolia | 3.99±0.02a | 0.37±0.01a |
7 | 小嵩草 Kobresia pygmaea | 5.52±0.02a | 0.50±0.01a |
8 | 青藏苔草 Carex moorcroftii | 6.48±0.10a | 1.02±0.01a |
表2 三江源地区主要草地类型土壤碳氮含量
Table 2 Contents of organic C and total N in major grassland in the source region of Yangtze, Yellow and Lantsang Rivers
样地号 Plot No. | 植被类型 Vegetation type | 土壤有机碳 Soil organic C (%) | 土壤全氮 Soil total N (%) |
---|---|---|---|
1 | 甘肃苔草+异针茅Carex kansuensis+Stipa aliena | 7.72±0.18a | 1.15±0.06a |
2 | 小嵩草 Kobresia pygmaea | 7.46±0.20a | 0.43±0.02a |
3 | 小嵩草 Kobresia pygmaea | 5.02±0.14a | 0.35±0.01a |
4 | 青藏苔草+紫花针茅Carex moorcroftii+Stipapurpurea | 2.08±0.13b | 0.19±0.01b |
5 | 青藏苔草+紫花针茅Carex moorcroftii+Stipapurpurea | 1.87±0.04b | 0.13±0.01b |
6 | 线叶嵩草 Kobresia capillifolia | 3.99±0.02a | 0.37±0.01a |
7 | 小嵩草 Kobresia pygmaea | 5.52±0.02a | 0.50±0.01a |
8 | 青藏苔草 Carex moorcroftii | 6.48±0.10a | 1.02±0.01a |
全N Total N (%) | 有机碳 Organic C (%) | pH | 全盐量 Total salt (%) | C/N | |
---|---|---|---|---|---|
全N Total N (%) | 1.000 | ||||
有机碳 Organic C (%) | 0.905** | 1.000 | |||
pH | -0.366 | -0.244 | 1.000 | ||
全盐量 Total salt (%) | -0.515 | -0.407 | 0.773* | 1.000 | |
C/N | -0.571 | -0.262 | 0.098 | 0.132 | 1.000 |
表3 三江源地区0~30 cm土壤pH值、全盐量、有机碳、全氮及碳/氮比的相关系数矩阵
Table 3 Matrix of correlation coefficients of pH, total salt, organic C, total N and C/N in 0-30 cm soil of the source region of Yangtze, Yellow and Lancang Rivers
全N Total N (%) | 有机碳 Organic C (%) | pH | 全盐量 Total salt (%) | C/N | |
---|---|---|---|---|---|
全N Total N (%) | 1.000 | ||||
有机碳 Organic C (%) | 0.905** | 1.000 | |||
pH | -0.366 | -0.244 | 1.000 | ||
全盐量 Total salt (%) | -0.515 | -0.407 | 0.773* | 1.000 | |
C/N | -0.571 | -0.262 | 0.098 | 0.132 | 1.000 |
图3 轻牧与重牧草地群落生产力的变化 A和B为两样地生产力间差异显著性检验(即达到显著性水平) A, B indicate significant test on productivity different (p<0.01)
Fig.3 Changes in productivity of light graze and weighty graze grassland
[1] | Agriculture Resource District Office of Qinghai Province (青海省农业资源区划办公室) (1997). Spatial distribution characteristics and ecological effects of carbon and nitrogen of soil in Huolin River catchment wetland. Qinghai Soils (青海土壤),China Agriculture Press, Beijing,55-114. |
[2] | Andrew EP, Ralph EJ, Boerner JL (1987). Relative nitrogen mineralization and nitrification in soils of two contrasting hardwood forests: effects of site microclimate and initial soil chemistry. Forest Ecology Management, 21,21-36. |
[3] | Bai JH (白军红), Deng W (邓伟), Zhu YM (朱颜明), Luan ZJ (栾兆擎), Zhang YX (张玉霞) (2003). Spatial distribution characteristics and ecological effects of carbon and nitrogen of soil in Huolin River catchment wetland. Chinese Journal of Applied Ecology (应用生态学报), 14,1494-1498. (in Chinese with English abstract) |
[4] | Berendse F (1990). Organic matter accumulation and nitrogen mineralization during secondary succession in health land ecosystem. Journal of Ecology, 78,413-427. |
[5] | Burke IC, Lauenroth WK, Parton WJ (1997). Regional and temporal variation in net primary production and nitrogen mineralization in grasslands. Ecology, 78,1330-1340. |
[6] | Calderon JF, Louise EJ, Scow KM (2000). Microbial response to simulated tillage in cultivated and uncultivated soils. Soil Biology Biochemistry, 32,1547-1559. |
[7] | Dao TH (1998). Tillage and crop residue effects on carbon dioxide evolution and carbon storage in a Paleustoll. Soil Science Society of American Journal, 62,250-256. |
[8] | Estavillo JM, Merino P, Pinto M, Yamulki S, Gebauer G, Sapek A, Corre W (2002). Short term effect of ploughing a permanent pasture on N2O production from nitrification and denitrification . Plant and Soil, 239,253-265. |
[9] | Fang JY (方精云), Ke JH (柯金虎), Tang ZY (唐志尧), Chen AP (陈安平) (2001). Implications and estimations of four terrestrial productivity parameters. Acta Phytoecologica Sinica (植物生态学报), 25,414-419. (in Chinese with English abstract) |
[10] | Fu H (傅华), Chen YM (陈亚明), Wang YR (王彦荣), Wan CG (万长贵) (2004). Organic carbon content in major grassland types in Alex, Inner Mongolia. Acta Ecologica Sinica (生态学报), 24,469-476. (in Chinese with English abstract) |
[11] | Hachl E, Zechmeister-Boltenstern S, Kandeler E (2000). Nitrogen dynamics in different types of pasture in the Austrian Alps. Biology and Fertility of Soils, 32,321-327. |
[12] | Hadi A, Inubushi K, Purnomo E, Razie F, Yamakawa K, Tsuruta H (2000). Effect of land-use changes on nitrous oxide emission from tropical peatlands. Chemosphere-Global Change Science, 2,347-358. |
[13] | Holt JA (1997). Grazing pressure and soil carbon, microbial biomass and enzymes activities in semiarid Northeastern Australia. Applied Soil Ecology, 5,143-149. |
[14] | Li LH (李凌浩) (1998). Effects of land-use change on soil carbon storage in grassland ecosystems. Acta Phytoecologica Sinica (植物生态学报), 22,300-302. (in Chinese with English abstract) |
[15] | Li YL (李跃林), Peng SL (彭少麟), Zhao P (赵平), Ren H (任海), Li ZA (李志安) (2002). A study on the soil carbon storage of some land use types in Heshan, Guangdong, China. Journal of Mountain Science (山地学报), 20,548-552. (in Chinese with English abstract) |
[16] | Li ZH (李政海), Bao YJ (鲍雅静), Kou XY (寇香玉) (1999). The effect of different human disturbance on net primary productivity of plant and community in steppe. Acta Scientiarum Naturalium Universitatis Neimongol (内蒙古大学学报自然科学版), 30,745-750. (in Chinese with English abstract) |
[17] | Liu H (刘慧), Cheng SK (成升魁), Zhang L (张雷) (2002). The international latest research of the impacts of human activities on carbon emission. Progress in Geography (地理科学进展), 21,420-429. (in Chinese with English abstract) |
[18] | Loiseau P, Soussana JF (2000). Effects of elevated CO2 temperature and N fertilization on fluxes in a grassland ecosystem . Global Change Biology, 6,953-965. |
[19] | Ojima D, Schimel DS, Parton WJ (1994). Long and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry, 24,67-84. |
[20] | Puri G, Ashman MR (1998). Relationship between soil microbial biomass and gross N mineralization. Soil Biology Biochemistry, 30,251-256. |
[21] | Qi YC (齐玉春), Dong SY (董云社), Geng YB (耿元波), Yang XH (杨小红), Geng HL (耿会立) (2003). The progress in the carbon cycle researches in grassland ecosystem in China. Progress in Geography (地理科学进展), 22,342-352. (in Chinese with English abstract) |
[22] | Tilman D (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystem. Nature, 379,718-720. |
[23] | Wang CH (王常慧), Xing XR (邢雪荣), Han XG (韩兴国) (2004). Advances in study of factors affecting soil N mineralization in grassland ecosystems. Chinese Journal of Applied Ecology (应用生态学报), 15,2184-2188. (in Chinese with English abstract) |
[24] | Wang DX (王得祥), Li YB (李轶冰), Yang GH (杨改河) (2004). Progress in the study of the environment of the source regions of Yangtse River, Yellow River and Lantsang River. Journal of Northwest Science-Technology of Agriculture and Forest (Natural Science Edition) (西北农林科技大学学报(自然科学版)), 32,5-10. (in Chinese with English abstract) |
[25] | Wang KX (王凯雄), Yao M (姚铭), Xu LJ (许利君) (2001). A focus topic of global change study: carbon cycle. Journal of Zhejiang University(Agriculture and Life Science) (浙江大学学报 (农业与生命科学版)), 27,473-478. (in Chinese with English abstract) |
[26] | Wang SP (汪诗平), Wang YF (王艳芬), Li YH (李永宏), Chen ZZ (陈佐忠) (1998). The influence of different stocking rates on herbage regrowth and aboveground net primary production. Acta Agrestia Sinica (草地学报), 6,275-281. (in Chinese with English abstract) |
[27] | Wang SP (王淑平), Zhou GS (周广胜), Lü YC (吕育财), Zou JJ (邹建军) (2002). Distribution of soil carbon, nitrogen and phosphorus along Northeast China transect (NECT) and their relationships with climatic factors. Acta Phytoecologica Sinica (植物生态学报), 26,513-517. (in Chinese with English abstract) |
[28] | Wang W (王炜), Liu ZL (刘钟龄), Hao DY (郝敦元), Liang CZ (梁存柱) (1996). Research on the restoring succession of the degenerated in Inner Mongolia Ⅰ. Basic characteristics degenerated grassland. Acta Phytoecologica Sinica (植物生态学报), 20,449-459. (in Chinese with English abstract) |
[29] | Wang YF (王艳芬), Chen ZZ (陈佐忠), Tieszen LT (1998). Distribution of soil organic carbon in the major grasslands Xilinguole, Inner Mongolia, China. Acta Phytoecologica Sinica (植物生态学报), 22,545-551. (in Chinese with English abstract) |
[30] | Yang X (杨昕), Wang MX (王明星) (2001). Reviews several aspects of terrestrial carbon cycling. Advances in Earth Sciences (地球科学进展), 16,427-435. (in Chinese with English abstract) |
[31] | Zhang N (张娜), Liang YM (梁一民) (2000). The effect of arid climate on the structure and above-ground growth of Bothrichloa ischaemum community . Acta Ecologica Sinica (生态学报), 20,964-970. (in Chinese with English abstract) |
[32] | Zou L (周立), Wang QJ (王启基), Zhou Q (周琪) (1995a). Studies on the cycles of nonlinear oscillation behavior at the alpine meadow ecosystem. Ⅰ. The power spectrum analysis and the fluctuation cycles of rainfall and primary productivity. Alpine Meadow Ecosystem (高寒草甸生态系统), 4,219-239. (in Chinese with English abstract) |
[33] | Zou L (周立), Wang QJ (王启基), Zhou Q (周琪) (1995b). Studies on the cycles of nonlinear oscillation behavior at the alpine meadow ecosystem. Ⅱ. The power spectrum analysis of air temperature fluctuation and the relationship between its cycles and the fluctuation cycles of primary productivity. Alpine Meadow Ecosystem (高寒草甸生态系统), 4,241-253. (in Chinese with English abstract) |
[34] | Zhou XM (周兴民) (2001). Kobresia Meadow in China (中国嵩草草甸). Science Press, Beijing. |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[3] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[4] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[5] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[6] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[7] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[8] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[9] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[10] | 缪丽娟, 张宇阳, 揣小伟, 包刚, 何昱, 朱敬雯. 亚洲旱区草地NDVI对气候变化的响应及滞后效应[J]. 植物生态学报, 2023, 47(10): 1375-1385. |
[11] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[12] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[13] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[14] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[15] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19