植物生态学报 ›› 2006, Vol. 30 ›› Issue (6): 954-959.DOI: 10.17521/cjpe.2006.0121
王玉猛1,3, 任立飞1, 田秋英1, 刘洪升2, 李凌浩2, 张文浩1,*()
收稿日期:
2006-01-18
接受日期:
2006-05-07
出版日期:
2006-01-18
发布日期:
2006-11-30
通讯作者:
张文浩
作者简介:
* E-mail: whzhang@ibcas.ac.cn基金资助:
WANG Yu-Meng1,3, REN Li-Fei1, TIAN Qiu-Ying1, LIU Hong-Sheng2, LI Ling-Hao2, ZHANG Wen-Hao1,*()
Received:
2006-01-18
Accepted:
2006-05-07
Online:
2006-01-18
Published:
2006-11-30
Contact:
ZHANG Wen-Hao
摘要:
根茎是根状茎型克隆植物的特有结构,在养分储存、运输和分蘖茎的形成等方面起关键性作用。然而有关根茎生理学方面的研究却十分匮乏。为了探讨根茎在植物感应环境胁迫中的作用, 本文以羊草(Leymus chinensis)为实验材料,研究和比较了短期NaCl胁迫根、根茎、根和根茎3种处理方式下羊草对盐胁迫的响应。试验结果表明:200 mmol·L-1 NaCl处理羊草根、根茎、根和根茎24 h,显著(p<0.05)降低羊草叶片净光合速率和蒸腾速率,增加叶片渗透浓度与脯氨酸含量;其中同时处理根和根茎叶片,蒸腾速率和净光合速率的降低程度显著高于分别处理根和根茎。在分别处理根与根茎的情况下,叶片含水量、脯氨酸含量、净光合速率、蒸腾速率均无显著性差异。不论单独胁迫根、根茎还是同时胁迫根和根茎,羊草根、根茎和叶片内Na+含量都显著高于对照,而羊草根、根茎和叶片内K+含量都显著低于对照。这些结果显示:1)根茎在羊草响应盐胁迫的生理过程中与根系具有类似的功能;2)羊草根茎在盐胁迫条件下能够有效地吸收Na+;3)鉴于根茎的生物量和表面积都明显地低于根系,在盐胁迫下羊草根茎吸收Na+的效率高于根系。
王玉猛, 任立飞, 田秋英, 刘洪升, 李凌浩, 张文浩. 根茎在羊草响应短期NaCl胁迫过程中的作用. 植物生态学报, 2006, 30(6): 954-959. DOI: 10.17521/cjpe.2006.0121
WANG Yu-Meng, REN Li-Fei, TIAN Qiu-Ying, LIU Hong-Sheng, LI Ling-Hao, ZHANG Wen-Hao. PHYSIOLOGICAL ROLES OF RHIZOMES IN RESPONSE TO SHORT-TERM SALINITY IN LEYMUS CHINENSIS. Chinese Journal of Plant Ecology, 2006, 30(6): 954-959. DOI: 10.17521/cjpe.2006.0121
处理 Treatments | 地上部生物 Shoot biomass (g) | 叶片含水量(%) Leaf water content | |
---|---|---|---|
鲜重FW | 干重DW | ||
对照 Control | 0.29±0.09a | 0.08±0.02a | 72±0.03a |
胁迫根茎 Treating rhizome | 0.28±0.14a | 0.09±0.02a | 69±0.05a |
胁迫根 Treating root | 0.29±0.05a | 0.10±0.01a | 67±0.04a |
同时胁迫根和根茎 Treating root and rhizome | 0.22±0.03a | 0.10±0.03a | 54±0.03b |
表1 NaCl胁迫羊草根、根茎对地上部生物量与叶片含水量的影响
Table 1 Effects of NaCl on shoot biomass and leaf water content of Leymus chinensis
处理 Treatments | 地上部生物 Shoot biomass (g) | 叶片含水量(%) Leaf water content | |
---|---|---|---|
鲜重FW | 干重DW | ||
对照 Control | 0.29±0.09a | 0.08±0.02a | 72±0.03a |
胁迫根茎 Treating rhizome | 0.28±0.14a | 0.09±0.02a | 69±0.05a |
胁迫根 Treating root | 0.29±0.05a | 0.10±0.01a | 67±0.04a |
同时胁迫根和根茎 Treating root and rhizome | 0.22±0.03a | 0.10±0.03a | 54±0.03b |
图2 NaCl分别胁迫羊草根、根茎和同时胁迫羊草根和根茎对叶片脯氨酸含量的影响 柱形图上方的误差棒代表正负标准误差(n=3), 不同字母表示处理间差异显著(p<0.05)
Fig.2 Changes in leaf proline content in response to treatments of roots, rhizomes and roots and rhizomes together of Leymus chinensis Vertical bars represent mean±SD (n=3). The different letters represent significant differently among treatments (p<0.05)
图3 NaCl单独处理羊草根、根茎和同时处理羊草根和根茎对羊草叶片渗透势的影响 图注见图2
Fig.3 Effect of treatments of roots, rhizomes and roots and rhizomes together with NaCl on leaf osmolality of Leymus chinensis Note see Fig.2
图4 NaCl单独胁迫羊草根、根茎和同时胁迫羊草根和根茎对羊草的叶片净光合速率、蒸腾速率和气孔导度的影响 图注见图2
Fig.4 Effects of treatments of roots, rhizomes and roots and rhizomes together with NaCl on leaf net photosynthesis rate, transpiration rate and stomatal conductance of Leymus chinensis Note see Fig.2
图5 NaCl单独胁迫羊草根、根茎和同时胁迫羊草根和根茎对羊草根、根茎和叶片中Na+、K+含量的影响 (A、B、C分别代表各种处理下羊草叶片、根和根茎内K+含量;D、E、F分别代表各种处理下羊草叶片、根和根茎内Na+含量) 图注见图2 Note see Fig.2
Fig.5 Effects of treatments of roots, rhizomes and roots and rhizomes together with NaCl on K+(A, B, C) and Na+(D, E, F) contents in leaves, roots and rhizomes of Leymus chinensis
[1] |
Blumwald E, Aharon GS, Apse MP (2000). Sodium transport in plant cells. Biochimica et Biophysica Acta, 1465,140-151.
DOI URL PMID |
[2] | Brooker RW, Callaghan TV, Jonasson S (1999). Nitrogen uptake by rhizomes of the clonal sedge Carex bigelowii: a previously overlooked nutritional benefit of rhizomatous growth. New Phytologist, 142,35-48. |
[3] |
Evans JP (1992). The effect of local resource availability and clonal integration on ramet functional morphology in Hydrocotyle bonariensis. Oecologia, 89,265-276.
DOI URL PMID |
[4] | Fougère F, Le Rudulier D, Streeter JG (1991). Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroides, and cytosol of alfalfa (Medicago sativa L.). Plant Physiology, 96,1288-1236. |
[5] | Gallarado M, Truner NC, Ludwig C (1994). Water relation, gas exchange and abscisic acid content of Lupinus cosentinii leaves in response to drying different proportions of the root system. Journal of Experimental Botany, 45,909-918. |
[6] | Greenway H, Munns R (1980). Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology, 31,149-190. |
[7] | He WM, Dong M (2003). Physiological acclimation and growth response to partial shading in Salix matsudana in the Mu Us Sandland in China. Trees, 17,87-93. |
[8] | Hou ZA(侯振安), Li PF(李品芳), Guo SW(郭世文), Ye J(冶军) (2002). Effect of NaCI stress on growth and water use efficiency of Aneurolepidium chinense and Medicago sativa L.in drying soil. Scientia Agricultura Sinica(中国农业科学), 35,894-900. (in Chinese with English abstract) |
[9] | Hui HX(惠红霞), Xu X(许兴), Li SM(李守明) (2004). Possible mechanism of inhibition on photosynthesis of Lyeium barbarum under salt stress. Chinese Journal of Ecology (生态学杂志), 23(1),5-9. (in Chinese with English abstract) |
[10] | Lambers H, Chapin FS, Pons TL (1998). Plant Physiological Ecology. Springer-Verlag, New York. |
[11] | Luo XG(罗学刚), Dong M(董鸣) (2001). Architectural plasticity in response to light intensity in the stoloniferous herb Duchesnea indica Focke. Acta Phytoecologica Sinica (植物生态学报), 25,494-497. (in Chinese with English abstract) |
[12] | Luo XG(罗学刚), Dong M(董鸣) (2002). Architectural plasticity in response to soil moisture in the stoloniferous herb, Duchesnea indica. Acta Botanica Sinica (植物学报), 44,97-100. (in English with Chinese abstract). |
[13] | Marshall C (1990). Source-sink relations of interconnected ramets. In: van Groenendael J, de Kroon H eds. Clonal Growth in Plants: Regulation and Function. SPB Academic Publishing, the Hague, the Netherlands,23-41. |
[14] | Oborny B, Czárán T, Kun Á (2001). Exploration and exploitation of resource patches by clonal growth: a spatial model on the effect of transport between modules. Ecological Modelling, 141,151-169. |
[15] | Oborny B, Kun A, Czárán T, Bokros S (2000). The effect of clonal integration on plant competition for mosaic habitat space. Ecology, 81,3291-3304. |
[16] | Shen YG(沈义国), Chen SY(陈受宜) (2001). Molecular mechanism of plant responses to salt stress. Hereditas (遗传), 23,365-369. (in Chinese with English abstract) |
[17] | Shi DC(石德成), Yin SJ(尹尚军), Yang GH(杨国会), Zhao KF(赵可夫) (2002). Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress. Acta Botanica Sinica (植物学报), 44,537-540. (in English with Chinese abstract). |
[18] | Wennstrøm A, Ericson L (1992). Environmental heterogeneity and disease transmission within clones of Lactuca sibirica. Journal of Ecology, 80,71-77. |
[19] | Yan H(颜宏), Shi DC(石德成), Yin SJ(尹尚军), Zhao W(赵伟) (2000). Effects of saline-alkaline stress on the contents of nitrogen and several organisms of Aneurolepidium chinense. Journal of Northeast Normal University (Natural Science Edition) (东北师范大学学报(自然科学版)), 32(3),47-52. (in Chinese with English abstract) |
[20] | Yan H(颜宏), Zhao W(赵伟), Sheng YM(盛艳敏), Shi DC(石德成), Zhou DW(周道玮) (2005). Effects of alkali-stress on Aneurolepidium chinense and Helianthus annuus. Chinese Journal of Applied Ecology(应用生态学报), 16,1497-1501. (in Chinese with English abstract) |
[21] | Yu FH, Dong M, Zhang CY (2002). Intraclonal resource sharing and functional specialization on ramets in response to resource heterogeneity in three stoloniferous herbs. Acta Botanica Sinica (植物学报), 44,468-473. |
[22] |
Zhang CY, Yang C, Dong M (2002). The clonal integration and its ecological significance in Hedysarum laeve, a rhizomatous shrub in Mu Us Sandland. Journal of Plant Research, 115,113-118.
DOI URL PMID |
[23] | Zhou C(周婵), Zhang Z(张卓), Yang YF(杨允菲) (2003). Physiological reaction of seedings of experimental population of Leymus chinensis under different gradient of salt-alkali stress. Journal of Northeast Normal University (Natural Science Edition) (东北师范大学学报(自然科学版)), 35(4),61-67. (in Chinese with English abstract) |
[24] | Zhu TC(祝廷成) (2004). Yang-Cao Biological Ecology (羊草生物生态学). Jilin Science and Technology Publisting House, Changchun,132-160. (in Chinese) |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[5] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[6] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[7] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[8] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[9] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[10] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[11] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[12] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[13] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[14] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[15] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19