植物生态学报 ›› 2007, Vol. 31 ›› Issue (2): 333-342.DOI: 10.17521/cjpe.2007.0039
史建伟, 王政权(), 于水强, 全先奎, 孙王月, 贾淑霞, 梅莉
收稿日期:
2005-11-15
接受日期:
2006-06-19
出版日期:
2007-11-15
发布日期:
2007-03-30
通讯作者:
王政权
作者简介:
* E-mail: wzqsilv@126.com基金资助:
SHI Jian-Wei, WANG Zheng-Quan(), YU Shui-Qiang, QUAN Xian-Kui, SUN Yue, JIA Shu-Xia, MEI Li
Received:
2005-11-15
Accepted:
2006-06-19
Online:
2007-11-15
Published:
2007-03-30
Contact:
WANG Zheng-Quan
摘要:
细根周转是陆地生态系统碳分配格局与过程的核心环节,而细根周转估计的关键是了解细根的生长和死亡动态。该研究以18年生落叶松(Larix gmelinii)和水曲柳(Fraxinus mandshurica)人工林为对象,采用微根管(Minirhizotron)技术对两树种0~40 cm深度的细根生长和死亡动态进行了为期1年的观测,研究了两树种细根在不同土层深度的生长与死亡动态、细根周转以及与土壤有效氮含量、土壤温度、大气温度和降水的关系。结果表明:1)落叶松平均细根生长(Root length density production, RLDP) (0.004 5 mm·cm-2·d-1)明显低于水曲柳RLDP(0.007 7 mm·cm-2·d-1)。两个树种细根平均RLDP在表层(0~10 cm)最大,而底层(30~40 cm)最小,两树种平均细根死亡(Root length density mortality, RLDM)也表现同样规律。水曲柳春季生长的细根占41.7%,夏季占39.7%,而落叶松细根生长分别是24.0%和51.2%,水曲柳细根死亡主要发生在春季(34.3%)和夏季(34.0%),而落叶松细根死亡主要发生在夏季和秋季(分别占28.5%和32.3%),两树种细根生长与死亡在冬季均较小;2)落叶松细根年生长量(0.94 mm·cm-2·a-1)和年死亡量(0.72 mm·cm-2·a-1)明显低于水曲柳(1.52和1.21 mm·cm-2·a-1),两树种细根表层年生长量和年死亡量均最高,底层最低。落叶松细根年周转为3.1次·a-1(按年生长量计算)和2.4次·a-1(按年死亡量计算),相比较,水曲柳细根年周转分别为2.7次·a-1和2.2次·a-1;3)土壤有效氮含量、土壤温度、大气温度和降水综合作用影响细根生长和死亡动态,可以解释细根生长80%的变异和细根死亡95%以上的变异。
史建伟, 王政权, 于水强, 全先奎, 孙王月, 贾淑霞, 梅莉. 落叶松和水曲柳人工林细根生长、死亡和周转. 植物生态学报, 2007, 31(2): 333-342. DOI: 10.17521/cjpe.2007.0039
SHI Jian-Wei, WANG Zheng-Quan, YU Shui-Qiang, QUAN Xian-Kui, SUN Yue, JIA Shu-Xia, MEI Li. ESTIMATING FINE ROOT PRODUCTION, MORTALITY AND TURNOVER WITH MINIRHIZOTRONS IN LARIX GMELINII AND FRAXINUS MANDSHURICA PLANTATIONS. Chinese Journal of Plant Ecology, 2007, 31(2): 333-342. DOI: 10.17521/cjpe.2007.0039
图1 落叶松和水曲柳细根长度生产(RLDP)季节动态(2004~2005)
Fig.1 Dynamics of fine root length production (RLDP) in Larix gmelinii and Fraxinus mandshurica plantations (2004-2005)
图2 落叶松和水曲柳细根长不同季节生长(RLDP)动态(2004~2005)
Fig.2 Dynamics of fine root length production with different seasons in Larix gmelinii and Fraxinus mandshurica plantations (2004-2005)
土层深度 Soil depth (cm) | 土壤有效氮 Soil nitrogen availability | 土壤温度 Soil temperature (℃) | 气温 Air temperature (℃) | 降雨 Precipitation (mm) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0~10 cm | 11~20 cm | 21~30 cm | 5 cm | 15 cm | 20 cm | 40 cm | ||||||||||||||||
落叶松 Larix gmelinii | ||||||||||||||||||||||
0~10 | -0.22 | 0.78 | 0.42 | 0.57 | 0.45 | 0.40 | 0.27 | 0.60 | 0.48 | |||||||||||||
10~20 | 0.00 | 0.45 | 0.30 | 0.59 | 0.52 | 0.52 | 0.45 | 0.56 | 0.31 | |||||||||||||
20~30 | 0.49 | 0.01 | -0.26 | 0.85* | 0.89* | 0.89* | 0.88* | 0.82* | 0.95** | |||||||||||||
30~40 | 0.70 | -0.06 | -0.62 | 0.79 | 0.87* | 0.84* | 0.84* | 0.77 | 0.67 | |||||||||||||
水曲柳 Fraxinus mandshurica | ||||||||||||||||||||||
0~10 | 0.49 | 0.24 | 0.28 | 0.52 | 0.30 | 0.27 | 0.08 | 0.60 | 0.31 | |||||||||||||
10~20 | 0.55 | 0.31 | 0.29 | 0.65 | 0.44 | 0.42 | 0.25 | 0.71 | 0.49 | |||||||||||||
20~30 | 0.44 | 0.22 | -0.07 | 0.63 | 0.45 | 0.44 | 0.29 | 0.71 | 0.65 | |||||||||||||
30~40 | 0.56 | 0.38 | 0.12 | 0.89* | 0.81* | 0.81* | 0.71 | 0.91** | 0.92** |
表1 落叶松和水曲柳不同土层细根RLDP与土壤有效氮、土壤温度、气温及降水简单相关关系
Table 1 Correlation coefficients of fine root length production with soil nitrogen availability, soil temperature, air temperature and precipitation at different soil depth in Larix gmelinii and Fraxinus mandshurica plantation
土层深度 Soil depth (cm) | 土壤有效氮 Soil nitrogen availability | 土壤温度 Soil temperature (℃) | 气温 Air temperature (℃) | 降雨 Precipitation (mm) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0~10 cm | 11~20 cm | 21~30 cm | 5 cm | 15 cm | 20 cm | 40 cm | ||||||||||||||||
落叶松 Larix gmelinii | ||||||||||||||||||||||
0~10 | -0.22 | 0.78 | 0.42 | 0.57 | 0.45 | 0.40 | 0.27 | 0.60 | 0.48 | |||||||||||||
10~20 | 0.00 | 0.45 | 0.30 | 0.59 | 0.52 | 0.52 | 0.45 | 0.56 | 0.31 | |||||||||||||
20~30 | 0.49 | 0.01 | -0.26 | 0.85* | 0.89* | 0.89* | 0.88* | 0.82* | 0.95** | |||||||||||||
30~40 | 0.70 | -0.06 | -0.62 | 0.79 | 0.87* | 0.84* | 0.84* | 0.77 | 0.67 | |||||||||||||
水曲柳 Fraxinus mandshurica | ||||||||||||||||||||||
0~10 | 0.49 | 0.24 | 0.28 | 0.52 | 0.30 | 0.27 | 0.08 | 0.60 | 0.31 | |||||||||||||
10~20 | 0.55 | 0.31 | 0.29 | 0.65 | 0.44 | 0.42 | 0.25 | 0.71 | 0.49 | |||||||||||||
20~30 | 0.44 | 0.22 | -0.07 | 0.63 | 0.45 | 0.44 | 0.29 | 0.71 | 0.65 | |||||||||||||
30~40 | 0.56 | 0.38 | 0.12 | 0.89* | 0.81* | 0.81* | 0.71 | 0.91** | 0.92** |
土层深度 Soil depth (cm) | | | |
---|---|---|---|
落叶松 Larix gmelinii | |||
0~10 | 0.89** | 0.36 | 0.99** |
10~20 | 0.47 | 0.41 | 0.50 |
20~30 | 0.84** | 0.89** | 0.98** |
30~40 | 0.74* | 0.59 | 0.79* |
水曲柳 Fraxinus mandshurica | |||
0~10 | 0.30 | 0.52 | 0.83* |
10~20 | 0.20 | 0.57 | 0.92** |
20~30 | 0.23 | 0.51 | 0.99** |
30~40 | 0.52 | 0.90** | 0.98** |
表2 落叶松和水曲柳不同土层细根RLDP与土壤有效氮(N)、土壤温度(T)、气温(air)及降水(P)之间复相关关系(R2)
Table 2 Multiple correlation coefficients (R2) of fine root production with soil nitrogen availability (N), soil temperature (T), air temperature (air) and precipitation (P) at different soil depth in Larix gmelinii and Fraxinus mandshurica plantations
土层深度 Soil depth (cm) | | | |
---|---|---|---|
落叶松 Larix gmelinii | |||
0~10 | 0.89** | 0.36 | 0.99** |
10~20 | 0.47 | 0.41 | 0.50 |
20~30 | 0.84** | 0.89** | 0.98** |
30~40 | 0.74* | 0.59 | 0.79* |
水曲柳 Fraxinus mandshurica | |||
0~10 | 0.30 | 0.52 | 0.83* |
10~20 | 0.20 | 0.57 | 0.92** |
20~30 | 0.23 | 0.51 | 0.99** |
30~40 | 0.52 | 0.90** | 0.98** |
图3 落叶松和水曲柳细根长度死亡(RLDM)季节动态(2004~2005)
Fig.3 Seasonal dynamics of fine root length mortality (RLDM) in Larix gmelinii and Fraxinus mandshurica plantations (2004-2005)
图4 落叶松和水曲柳细根长不同季节死亡(RLDM)动态(2004~2005)
Fig.4 Dynamics of fine root length mortality (RLDM) with different seasons in Larix gmelinii and Fraxinus mandshurica plantations (2004-2005)
土层深度 Soil depth (cm) | | | |
---|---|---|---|
落叶松 Larix gmelini | |||
0~10 | 0.28 | 0.44 | 0.44 |
10~20 | 0.67* | 0.85** | 0.98** |
20~30 | 0.60 | 0.28 | 0.95** |
30~40 | 0.56 | 0.82* | 0.98** |
水曲柳 Fraxinus mandshurica | |||
0~10 | 0.44 | 0.28 | 0.44 |
10~20 | 0.67* | 0.87** | 0.97** |
20~30 | 0.60 | 0.29 | 0.95** |
30~40 | 0.55 | 0.82* | 0.98** |
表3 水曲柳与落叶松不同土层细根RLDM与土壤有效氮(N)、土壤温度(T)、气温(air)及降水(P)之间复相关关系(R2)
Table 3 Multiple correlation coefficients (R2) of fine root mortality with soil nitrogen availability (N), soil temperature (T), air temperature (air) and precipitation (P) at different soil depth in Larix gmelinii and Fraxinus mandshurica plantation
土层深度 Soil depth (cm) | | | |
---|---|---|---|
落叶松 Larix gmelini | |||
0~10 | 0.28 | 0.44 | 0.44 |
10~20 | 0.67* | 0.85** | 0.98** |
20~30 | 0.60 | 0.28 | 0.95** |
30~40 | 0.56 | 0.82* | 0.98** |
水曲柳 Fraxinus mandshurica | |||
0~10 | 0.44 | 0.28 | 0.44 |
10~20 | 0.67* | 0.87** | 0.97** |
20~30 | 0.60 | 0.29 | 0.95** |
30~40 | 0.55 | 0.82* | 0.98** |
土层 Soil depth (cm) | 现存量 Average length (mm·cm-2) | 年生长量 Annual length production (mm·cm-2·a-1) | 年死亡量 Annual length mortality (mm·cm-2·a-1) | 周转 Turnover1) (a-1) | 周转 Turnover2) (a-1) | 周转 Turnover3) (a-1) |
---|---|---|---|---|---|---|
落叶松 Larix gmelinii | ||||||
0~10 | 0.60 (0.21) | 1.39 (0.05) | 1.35 (0.07) | 2.31 | 2.23 | 1.38 |
10~20 | 0.68 (0.26) | 1.15 (0.04) | 1.25 (0.06) | 1.69 | 1.83 | 0.87 |
20~30 | 0.77 (0.29) | 1.00 (0.05) | 1.15 (0.07) | 1.30 | 1.50 | 0.76 |
30~40 | 0.33 (0.10) | 0.75 (0.03) | 0.73 (0.03) | 2.26 | 2.20 | 1.15 |
0~40 | 0.30 (0.09) | 0.94 (0.33) | 0.72 (0.12) | 3.09 | 2.37 | 1.79 |
水曲柳 Fraxinus mandshurica | ||||||
0~10 | 1.10 (0.11) | 3.30 (0.05) | 2.80 (0.05) | 2.99 | 2.54 | 2.32 |
10~20 | 0.59 (0.13) | 1.53 (0.04) | 1.79 (0.04) | 2.59 | 3.04 | 2.03 |
20~30 | 0.46 (0.10) | 1.40 (0.03) | 1.81 (0.05) | 3.02 | 3.91 | 2.42 |
30~40 | 0.32 (0.09) | 0.99 (0.03) | 1.21 (0.04) | 3.10 | 3.79 | 2.43 |
0~40 | 0.55 (0.03) | 1.52 (0.19) | 1.21 (0.08) | 2.74 | 2.20 | 2.13 |
表4 落叶松和水曲柳细根平均长度、年长度生长量、年长度死亡量和周转
Table 4 Average fine root length, annual length production, annual length mortality and turnover in Larix gmelinii and Fraxinus mandshurica plantations
土层 Soil depth (cm) | 现存量 Average length (mm·cm-2) | 年生长量 Annual length production (mm·cm-2·a-1) | 年死亡量 Annual length mortality (mm·cm-2·a-1) | 周转 Turnover1) (a-1) | 周转 Turnover2) (a-1) | 周转 Turnover3) (a-1) |
---|---|---|---|---|---|---|
落叶松 Larix gmelinii | ||||||
0~10 | 0.60 (0.21) | 1.39 (0.05) | 1.35 (0.07) | 2.31 | 2.23 | 1.38 |
10~20 | 0.68 (0.26) | 1.15 (0.04) | 1.25 (0.06) | 1.69 | 1.83 | 0.87 |
20~30 | 0.77 (0.29) | 1.00 (0.05) | 1.15 (0.07) | 1.30 | 1.50 | 0.76 |
30~40 | 0.33 (0.10) | 0.75 (0.03) | 0.73 (0.03) | 2.26 | 2.20 | 1.15 |
0~40 | 0.30 (0.09) | 0.94 (0.33) | 0.72 (0.12) | 3.09 | 2.37 | 1.79 |
水曲柳 Fraxinus mandshurica | ||||||
0~10 | 1.10 (0.11) | 3.30 (0.05) | 2.80 (0.05) | 2.99 | 2.54 | 2.32 |
10~20 | 0.59 (0.13) | 1.53 (0.04) | 1.79 (0.04) | 2.59 | 3.04 | 2.03 |
20~30 | 0.46 (0.10) | 1.40 (0.03) | 1.81 (0.05) | 3.02 | 3.91 | 2.42 |
30~40 | 0.32 (0.09) | 0.99 (0.03) | 1.21 (0.04) | 3.10 | 3.79 | 2.43 |
0~40 | 0.55 (0.03) | 1.52 (0.19) | 1.21 (0.08) | 2.74 | 2.20 | 2.13 |
[1] | Anderson LJ, Comas LH, Lakso AN, Eissenstat DM (2003). Multiple risk factors in root survivorship: a 4-year study in Concord grape. New Phytologist, 158,489-501. |
[2] | Bloomfield J, Vogt KA, Wargo PM (1996). Tree root turnover and senescence. In:Wiasel Y, Bshel A, Kafkafi U eds. Plant Roots: the Hidden Half 2nd edn. Marcel Dekker, New York, 363-381. |
[3] | Burke MK, Raynal DJ (1994). Fine root growth phonology, production, and turnover in a northern hardwood forest ecosystems. Plant and Soil, 162,135-146. |
[4] |
Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forest. Oecologia, 125,389-399.
DOI URL PMID |
[5] |
Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996). Maximum rooting depth of vegetation types at the global scale. Oecologia, 108,583-593.
DOI URL PMID |
[6] | Cheng YH(程云环), Han YZ(韩有志), Wang QC(王庆成), Wang ZQ(王政权) (2005). Seasonal dynamics of fine root biomass, root length density, specific root length and soil resource availability in a Larix gmelinii plantation. Acta Phytoecologica Sinica(植物生态学报), 29,403-410. (in Chinese with English abstract) |
[7] | Craine J, Tremmel D (1995). Improvements to the minirhizotron system. Bulletin of the Ecological Society of America, 76,234-235. |
[8] | Eissenstat DM, Yanai RD (2002). Root lifespan, efficiency, and turnover. In: Waisel Y, Eshel A, Kafkafi U eds. Plant Roots: the Hidden Half 3rd edn. Marcel Dekker, Inc., New York, 221-238. |
[9] | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan. Advances in Ecological Research, 27,1-60. |
[10] | Fahey TJ, Hughes JW (1994). Fine root dynamics in a northern hardwood forest ecosystem, hubbard brook experimental forest. Journal of Ecology, 82,533-548. |
[11] | Farrar JF, Jones DL (2000). The control of carbon acquisition by roots. New Phytologist, 147,43-53. |
[12] | Fogel R (1985). Roots as primary producers in below-ground ecosystems. In: Fitter AH, Atkinson D, Read DJ, Usher MB eds. Ecological Interactions in Soil. Blackwell Scientific Publications, Oxford, 23-36. |
[13] | Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147,13-31. |
[14] | Hendrick RL, Pregitzer KS (1992). The demography of fine roots in a northern hardwood forest. Ecology, 73,1094-1104. |
[15] | Hendrick RL, Pregitzer KS (1993). The dynamics of fine root, length, biomass, and nitrogen content in two northern hardwood ecosystems. Canadian Journal of Forest Research, 23,2507-2520. |
[16] | Hendrick RL, Pregitzer KS (1996). Applications of minirhizotrons to understand root function in forests and other natural ecosystems. Plant and Soil, 185,293-304. |
[17] | Huang JH(黄建辉), Han XG(韩兴国), Chen LZ(陈灵芝) (1999). Advances in the research of (fine)root biomass in forest ecosystems. Acta Ecologica Sinica(生态学报), 19,270-277. (in Chinese with English abstract) |
[18] |
Jackson RB, Reynolds HL (1996). Nitrogen and ammonium uptake for single- and mixed-species communities grown at elevated CO2. Oecologia, 105,74-80.
URL PMID |
[19] |
Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001). Advancing fine root research with minirhizotrons. Environmental and Experimental Botany, 45,263-289.
DOI URL PMID |
[20] | Joslin JD, Henderson GS (1987). Organic matter and nutrients associated with fine root turnover in a white oak stand. Forest Science, 33,330-346. |
[21] | Li PZ(李培芝), Fan SH(范世华), Wang LH(王力华), Xu SM(许思明) (2001). Productivity and turnover of fine roots in poplar tree and grass roots. Chinese Journal of Applied Ecology(应用生态学报), 12,829-832. (in Chinese with English abstract) |
[22] | Majdi H (1996). Root sampling methods—applications and limitations of minirhizotron technique. Plant and Soil, 185,255-258. |
[23] |
Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003). Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science, 302,1385-1387.
DOI URL PMID |
[24] | Mei L(梅莉), Wang ZQ(王政权), Cheng YH(程云环), Guo DL(郭大立) (2004). A review: factors influenceing fine root longevity in forest ecosystem. Acta Phytoecologica Sinica(植物生态学报), 28,704-710. (in Chinese with English abstract) |
[25] | Mei L(梅莉), Han YZ(韩有志), Yu SQ(于水强), Shi JW(史建伟), Wang ZQ(王政权) (2006). Impact factors on fine roots seasonal dynamics in manchurian ash plantation. Scientia Silvae Sinicae (林业科学), 42(9),7-12. (in Chinese with English abstract) |
[26] | Norby RJ, Jackson RB (2000). Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147,3-12. |
[27] | Powell SW, Day FP Jr (1991). Root production in four communities in the Great Dismal Swamp. American Journal of Botany, 78,288-297. |
[28] | Pregitzer KS (2003). Woody plants, carbon allocation and fine roots. New Phytologist, 158,421-423. |
[29] | Pregitzer KS, Zak DR, Maziasz J, DeForest J, Curtis PS, Lussenhop J (2000). Fine root growth, mortality, and morphology in a factorial elevated atmospheric CO2×soil N availability experiment. Ecological Applications, 10,18-33. |
[30] | Raich JW, Nadelhoffer KJ (1989). Belowground carbon allocation in forest ecosystems: global trends. Ecology, 70,1346-1354. |
[31] | Schenk HJ, Jackson RB (2002). The global biogeography of roots. Ecological Monographs, 72,311-328. |
[32] | Shan JP(单建平), Tao DL(陶大立), Wang M(王淼), Zhao SD(赵士洞) (1993). Fine roots turnover in a broadleaved Korean pine forest of Changbai Mountain. Chinese Journal of Applied Ecology(应用生态学报), 4,241-245. (in Chinese with English abstract) |
[33] | Shi JW(史建伟), Yu SQ(于水强), Yu LZ(于立忠), Han YZ(韩有志), Wang ZQ(王政权), Guo DL(郭大力) (2006). Application of minirhizotron in fine root studies. Chinese Journal of Applied Ecology(应用生态学报), 17,715-719. (in Chinese with English abstract) |
[34] |
Steele SJ, Gower ST, Vogel JG, Norman JM (1997). Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiology, 17,577-587.
DOI URL PMID |
[35] | Tierney GL, Fahey TJ (2001). Evaluation of minirhizotron estimates of fine root longevity in the forest floor of a temperate broadleaf forest. Plant and Soil, 229,167-176. |
[36] | Vogt KA, Gxier CC, Vogt DJ (1986). Production, turnover and nutrient dynamics of above-and belowground detritus of world forests. Advances in Ecological Research, 15,303-377. |
[37] | Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O'Hara J, Asbjornsen H (1996). Review of root dynamics in forest ecosystems grouped by climate,climatic forest type and species. Plant and Soil, 187,159-219. |
[38] | Wells CE, Glenn DM, Eissenstat DM (2002). Soil insects alter fine root demography in peach (Prunus persica). Plant, Cell and Environment, 25,431-439. |
[39] | Zhang XQ(张小全), Wu KH(吴可红) (2001). Fine-root production and turnover for forest ecosystems. Scientia Silvae Sinicae(林业科学), 37(3),126-138. (in Chinese with English abstract) |
[40] | Zhang XQ(张小全), Wu KH(吴可红), Murach D (2000). A review of methods for fine-root production and turnover of trees. Acta Ecologica Sinica(生态学报), 20,875-883. (in Chinese with English abstract) |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[5] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[6] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[7] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[8] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[9] | 方文静, 蔡琼, 朱江玲, 吉成均, 岳明, 郭卫华, 张峰, 高贤明, 唐志尧, 方精云. 华北地区落叶松林的分布、群落结构和物种多样性[J]. 植物生态学报, 2019, 43(9): 742-752. |
[10] | 焦亮, 王玲玲, 李丽, 陈晓霞, 闫香香. 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应[J]. 植物生态学报, 2019, 43(4): 320-330. |
[11] | 温晓示, 陈彬杭, 张树斌, 徐凯, 叶新宇, 倪伟杰, 王襄平. 不同林龄、树种落叶松人工林径向生长与气候变化的关系[J]. 植物生态学报, 2019, 43(1): 27-36. |
[12] | 字洪标, 陈焱, 胡雷, 王长庭. 氮肥添加对川西北高寒草甸植物群落根系动态的影响[J]. 植物生态学报, 2018, 42(1): 38-49. |
[13] | 解雅麟, 王海燕, 雷相东. 基于过程模型的气候变化对长白落叶松人工林净初级生产力的影响[J]. 植物生态学报, 2017, 41(8): 826-839. |
[14] | 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760. |
[15] | 常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3): 279-289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19