植物生态学报 ›› 2016, Vol. 40 ›› Issue (2): 93-101.DOI: 10.17521/cjpe.2015.0406
所属专题: 青藏高原植物生态学:植物-土壤-微生物
• 研究论文 • 下一篇
张蓓蓓1,2, 刘芳1, 丁金枝2,3, 房凯2,3, 杨贵彪2,3, 刘莉2,3, 陈永亮2, 李飞2,3, 杨元合2,,A;*()
出版日期:
2016-02-10
发布日期:
2016-03-08
通讯作者:
杨元合
Bei-Bei ZHANG1,2, Fang LIU1, Jin-Zhi DING2,3, Kai FANG2,3, Gui-Biao YANG2,3, Li LIU2,3, Yong-Liang CHEN2, Fei LI2,3, Yuan-He YANG2,*()
Online:
2016-02-10
Published:
2016-03-08
Contact:
Yuan-He YANG
摘要:
准确评估土壤无机碳库的大小及其分布特征有助于全面理解陆地生态系统碳循环与气候变暖之间的反馈关系.然而, 由于深层土壤剖面信息匮乏, 使得目前学术界对深层土壤无机碳库的了解十分有限.该研究基于342个3 m深度和177个50 cm深度的土壤剖面信息, 采用克里格插值方法估算了青藏高原高寒草地不同深度的土壤无机碳库大小, 并在此基础上分析了该地区土壤无机碳密度的分布特征.结果显示, 青藏高原高寒草地0-50 cm,0-1 m,0-2 m和0-3 m深度的土壤无机碳库大小分别为8.26,17.82,36.33和54.29 Pg C, 对应的土壤无机碳密度分别为7.22,15.58,31.76和47.46 kg C·m-2.研究区土壤无机碳密度总体呈现由东南向西北增加的趋势; 高寒草原土壤的无机碳密度显著大于高寒草甸的无机碳密度.整体上, 不同深度的高寒草原无机碳库约占整个研究区无机碳库的63%-66%.此外, 深层土壤中储存了大量无机碳, 1 m以下土壤无机碳库是1 m以内无机碳库的2倍.两种草地类型土壤无机碳的垂直分布存在差异: 对高寒草原而言, 0-50 cm土壤无机碳所占的比例最大; 但对高寒草甸而言, 在100-150 cm深度土壤无机碳出现富集.这些结果表明青藏高原深层土壤是一个重要的无机碳库, 需在未来碳循环研究中予以重视.
张蓓蓓, 刘芳, 丁金枝, 房凯, 杨贵彪, 刘莉, 陈永亮, 李飞, 杨元合. 青藏高原高寒草地3米深度土壤无机碳库及分布特征. 植物生态学报, 2016, 40(2): 93-101. DOI: 10.17521/cjpe.2015.0406
Bei-Bei ZHANG, Fang LIU, Jin-Zhi DING, Kai FANG, Gui-Biao YANG, Li LIU, Yong-Liang CHEN, Fei LI, Yuan-He YANG. Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: An updated evaluation using deep cores. Chinese Journal of Plant Ecology, 2016, 40(2): 93-101. DOI: 10.17521/cjpe.2015.0406
方程 Equation | R2 | p | n |
---|---|---|---|
SICD0-100 = 1.9309SICD0-50 + 1.6766 | 0.90 | <0.01 | 114 |
SICD0-200 = 3.4592SICD0-50 + 6.8517 | 0.69 | <0.01 | 114 |
SICD0-300 = 4.9222SICD0-50 + 11.4026 | 0.61 | <0.01 | 114 |
表1 0-100,0-200和0-300 cm深度土壤无机碳密度与0-50 cm深度土壤无机碳密度(SICD)的关系
Table 1 Relationships of soil inorganic carbon density (SICD) at depths of 0-100, 0-200 and 0-300 cm with SICD in the top 50 cm
方程 Equation | R2 | p | n |
---|---|---|---|
SICD0-100 = 1.9309SICD0-50 + 1.6766 | 0.90 | <0.01 | 114 |
SICD0-200 = 3.4592SICD0-50 + 6.8517 | 0.69 | <0.01 | 114 |
SICD0-300 = 4.9222SICD0-50 + 11.4026 | 0.61 | <0.01 | 114 |
图1 青藏高原高寒草地3 m深度土壤无机碳密度(SICD)及各层在3 m深度无机碳密度中所占比例的垂直分布特征.A, 高寒草原各层土壤无机碳密度.B, 高寒草甸各层土壤无机碳密度.C, 高寒草原各层土壤无机碳密度在0-300 cm无机碳密度中所占比例.D, 高寒草甸各层土壤无机碳密度在0-300 cm无机碳密度中所占比例.图中字母a,b表示两种草地类型之间不同层次土壤无机碳密度差异的显著性检验结果(检验方法为Kruskal-Wallis检验, 显著性水平为0.05).
Fig. 1 Vertical distributions of soil inorganic carbon density (SICD) at 50 cm intervals and relative proportion of each layer to total SICD in the 3 meters for alpine steppe (A, C) and alpine meadow (B, D). Letters indicate significant differences between the two grasslands types at each depth interval (Kruskal-Wallis test, p < 0.05).
草地类型 Grassland types | 面积 Area (104 km2) | SICD (kg C·m-2) | 无机碳库 SIC stock (Pg C) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0-50 cm | 0-100 cm | 0-200 cm | 0-300 cm | 0-50 cm | 0-100 cm | 0-200 cm | 0-300 cm | |||
高寒草原 Alpine steppe | 64.0 | 8.59 | 18.16 | 36.20 | 53.66 | 5.49 | 11.62 | 23.17 | 34.35 | |
高寒草甸 Alpine meadow | 50.4 | 5.48 | 12.29 | 26.12 | 39.58 | 2.76 | 6.20 | 13.16 | 19.95 | |
总计 Total | 114.4 | 7.22 | 15.58 | 31.76 | 47.46 | 8.26 | 17.82 | 36.33 | 54.29 |
表2 青藏高原高寒草地不同深度土壤无机碳密度(SICD)和碳库
Table 2 Summary of estimated soil inorganic carbon density (SICD) and soil inorganic carbon (SIC) stock in alpine grasslands on the Tibetan Plateau
草地类型 Grassland types | 面积 Area (104 km2) | SICD (kg C·m-2) | 无机碳库 SIC stock (Pg C) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0-50 cm | 0-100 cm | 0-200 cm | 0-300 cm | 0-50 cm | 0-100 cm | 0-200 cm | 0-300 cm | |||
高寒草原 Alpine steppe | 64.0 | 8.59 | 18.16 | 36.20 | 53.66 | 5.49 | 11.62 | 23.17 | 34.35 | |
高寒草甸 Alpine meadow | 50.4 | 5.48 | 12.29 | 26.12 | 39.58 | 2.76 | 6.20 | 13.16 | 19.95 | |
总计 Total | 114.4 | 7.22 | 15.58 | 31.76 | 47.46 | 8.26 | 17.82 | 36.33 | 54.29 |
图2 青藏高原高寒草地不同深度土壤无机碳密度(SICD)的空间分布(分辨率为10 km × 10 km).
Fig. 2 Spatial distributions of estimated soil inorganic carbon density (SICD) at different soil depths across alpine grasslands on the Tibetan Plateau at a resolution of 10 km × 10 km.
图3 0-50 cm无机碳密度的预测值与实测值之间的比较.根据青藏高原东部样点建立的回归关系(SICD0-50 cm = 1.7407SICD0-30 cm + 0.5068)在青藏高原西部的预测表现.SICD, 土壤无机碳密度; 虚线为1:1线.
Fig. 3 Validation of the regression model of soil inorganic carbon density (SICD) between the depths of 0-30 cm and 0-50 cm (SICD0-50 cm = 1.7407SICD0-30 cm + 0.5068) constructed in the eastern Tibetan Plateau, using actual measurements in the western part of the plateau. The dashed line is 1:1 line.
[1] | Avnimelech Y, Ritvo G, Meijer LE, Kochba M (2001). Water content, organic carbon and dry bulk density in flooded sediments.Aquacultural Engineering, 25, 25-33. |
[2] | Batjes NH (1996). Total carbon and nitrogen in the soils of the world.European Journal of Soil Science, 47, 151-163. |
[3] | Delvecchia AG, Bruno JF, Benninger L, Alperin M, Banerjee O, Morales JDD (2014). Organic carbon inventories in natural and restored Ecuadorian mangrove forests.Peerj, 2, doi:10.7717/peerj.388. |
[4] | Deng L, Shangguan ZP, Sweeney S (2014). "Grain for Green" driven land use change and carbon sequestration on the Loess Plateau, China.Scientific Reports, 4, 7039-7039. |
[5] | Díaz-Hernández JL (2010). Is soil carbon storage underestimated?Chemosphere, 80, 346-349. |
[6] | Dı?az-Hernández JL, Fernández EB, González JL (2003). Organic and inorganic carbon in soils of semiarid regions: A case study from the Guadix-Baza Basin (Southeast Spain).Geoderma, 114, 65-80. |
[7] | Ding JZ, Li F, Yang GB, Chen LY, Zhang BB, Liu L, Fang K, Qin SQ, Chen YL, Peng YF, Ji CJ, He HL, Smith P, Yang YH (2016). The permafrost carbon inventory of the Tibetan Plateau: A new evaluation using deep sediment cores.Global Change Biology, doi: 10.1111/gcb.13257. |
[8] | Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011). Mangroves among the most carbon-rich forests in the tropics.Nature Geoscience, 4, 293-297. |
[9] | Georg W, Fenstermaker LF, Arnone IJA (2008). Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Global Change Biology, 14, 1475-1487. |
[10] | Harrison EJ, Dorn RI (2014). Introducing a terrestrial carbon pool in warm desert bedrock mountains, southwestern USA.Global Biogeochemical Cycles, 28, 253-268. |
[11] | Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps.Biogeosciences, 11, 6573-6593. |
[12] | Jacobson AD, Blum JD, Walter LM (2002). Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: Insights from the carbonate geochemistry of stream waters.Geochimica et Cosmochimica Acta, 66, 3417-3429. |
[13] | Krige D (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand.Journal of Chemical, Metallurgical, and Mining Society of South Africa, 52, 119-139. |
[14] | Lal R (2004). Soil carbon sequestration impacts on global cli- mate change and food security.Science, 304, 1623-1627. |
[15] | Landi A, Mermut AR, Anderson DW (2003). Origin and rate of pedogenic carbonate accumulation in Saskatchewan soils, Canada. Geoderma, 117, 143-156. |
[16] | Lerman A, Mackenzie FT (2005). CO2 air-sea exchange due to calcium carbonate and organic matter storage, and its implications for the global carbon cycle. Aquatic Geochemistry, 11, 345-390. |
[17] | Li MS (1994). The soil in Tibet.China's Tibet, 3, 29-31.(in Chinese) [李明森 (1994). 西藏的土壤. 中国西藏, 3, 29-31.] |
[18] | Li ZP, Han FX, Su Y, Zhang TL, Sun B, Monts DL, Plodinec MJ (2007). Assessment of soil organic and carbonate carbon storage in China.Geoderma, 138, 119-126. |
[19] | Liu SL, Lin L, Guo XW, Li J, Ouyang JZ, Du YG, Zhang FW, Li YK, Cao GM (2014). The variation feature of soil inorganic carbon storage in alpine grassland in Qinghai Province.Acta Ecologica Sinica, 34, 5953-5961.(in Chinese with English abstract) [刘淑丽, 林丽, 郭小伟, 李婧, 欧阳经政, 杜岩功, 张法伟, 李以康, 曹广民 (2014). 青海省高寒草地土壤无机碳储量空间分异特征. 生态学报, 34, 5953-5961.] |
[20] | Liu Z, Dreybrodt W, Liu H (2011). Atmospheric CO2 sink: Silicate weathering or carbonate weathering?Applied Geochemistry, 26, S292-S294. |
[21] | Liu Z, Dreybrodt W, Wang H (2010). A new direction in effect- tive accounting for the atmospheric CO2 budget: Consid- ering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms.Earth-Science Reviews, 99, 162-172. |
[22] | Mi N, Wang S, Liu J, Yu G, Zhang W, Jobbagy E (2008). Soil inorganic carbon storage pattern in China.Global Change Biology, 14, 2380-2387. |
[23] | Mikhailova EA, Post CJ (2006). Effects of land use on soil inorganic carbon stocks in the Russian Chernozem.Journal of Environmental Quality, 35, 1384-1388. |
[24] | Pan GX (1999). Study on carbon reservoir in soils of China.Bulletin of Science and Technology, 15, 330-332.(in Chinese with English abstract) [潘根兴 (1999). 中国土壤有机碳和无机碳库量研究. 科技通报, 15, 330-332.] |
[25] | Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982). Soil carbon pools and world life zones.Nature, 298, 156-159. |
[26] | Schlesinger WH (1982). Carbon storage in the caliche of arid soils: A case study from Arizona.Soil Science, 133, 247-255. |
[27] | Somebroek W (1993). Amounts, dynamics and sequestering of carbon in tropical and subtropical soils.Ambio, 22, 417-426. |
[28] | Stone R (2008). Have desert researchers discovered a hidden loop in the carbon cycle?Science, 320, 1409-1410. |
[29] | Tan WF, Zhang R, Cao H, Huang CQ, Yang QK, Wang MK, Koopal LK (2014). Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China.Catena, 121, 22-30. |
[30] | Wang HR, Yang ZF (2011). Research progress on soil inorganic carbon.Journal of Anhui Agriculture Science, 39, 21735-21739.(in Chinese with English abstract) [王海荣, 杨忠芳 (2011). 土壤无机碳研究进展. 安徽农业科学, 39, 21735-21739.] |
[31] | Wang Y, Li Y, Ye X, Chu Y, Wang X (2010). Profile storage of organic/inorganic carbon in soil: From forest to desert.Science Total Environment, 408, 1925-1931. |
[32] | Wang YN, Xie JM, Guo X (2008). Application of geostatistical interpolation method in ArcGIS.Software Guide, 12, 36-38.(in Chinese with English abstract) [王艳妮, 谢金梅, 郭祥 (2008). ArcGIS中的地统计克里格插值法及其应用. 软件导刊, 12, 36-38.] |
[33] | Wu H, Guo Z, Gao Q, Peng C (2009). Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China.Agriculture, Ecosystems & Environment, 129, 413-421. |
[34] | Xu NZ, Zhang TL, Wang XX, Liu HY, Liang XH (2009). Statistical calculation of soil inorganic carbon stock in the Yangtze Delta region.Resources and Environment in the Yangtze Basin, 11, 1038-1044.(in Chinese with English abstract) [许乃政, 张桃林, 王兴祥, 刘红樱, 梁晓红 (2009). 长江三角洲地区土壤无机碳库研究. 长江流域资源与环境, 11, 1038-1044.] |
[35] | Yang LF, Li GT (2011). Advances in research of soil inorganic carbon.Chinese Journal of Soil Science, 4, 986-990.(in Chinese with English abstract) [杨黎芳, 李贵桐 (2011). 土壤无机碳研究进展. 土壤通报, 4, 986-990.] |
[36] | Yang LF, Li GT, Li BG (2006). Modeling and application of stable carbon isotope of pedogenic carbonate.Advances in Earth Science, 9, 973-981.(in Chinese with English abstract) [杨黎芳, 李贵桐, 李保国 (2006). 土壤发生性碳酸盐碳稳定性同位素模型及其应用. 地球科学进展, 9, 973-981.] |
[37] | Yang YH, Fang JY, Ji CJ, Ma WH, Su SD, Tang ZY (2010). Soil inorganic carbon stock in the Tibetan alpine grasslands. Global Biogeochemical Cycles, 24, GB4022, doi: 10.1029/2010GB003804. |
[38] | Yang YH, Fang JY, Smith P, Tang YH, Chen AP, Ji CJ, Hu HF, Rao S, Tan K, He JS (2009). Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004.Global Change Biology, 15, 2723-2729. |
[39] | Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu B (2008). Storage, patterns and controls of soil organic carbon in the Tibetan grasslands.Global Change Biology, 14, 1592-1599. |
[40] | Yang YH, Ji CJ, Chen LY, Ding JZ, Cheng X, Robinson D (2015). Edaphic rather than climatic controls over 13C enrichment between soil and vegetation in alpine grasslands on the Tibetan Plateau.Functional Ecology, 29, 839-848. doi: 10.1111/1365-2435.12393. |
[41] | Yang YH, Mohammat A, Feng J, Zhou R, Fang JY (2007). Storage, patterns and environmental controls of soil organic carbon in China.Biogeochemistry, 84, 131-141. |
[42] | Yu BH, Lü CH (2011). Assessment of ecological vulnerability on the Tibetan Plateau.Geographical Research, 12, 2289-2295.(in Chinese with English abstract) [于伯华, 吕昌河 (2011). 青藏高原高寒区生态脆弱性评价. 地理研究, 12, 2289-2295.] |
[43] | Yu J, Fang L, Bian ZF, Wang Q, Yu YC (2014). A review of the composition of soil carbon pool.Acta Ecologica Sinica, 34, 4829-4838.(in Chinese with English abstract) [余健, 房莉, 卞正富, 汪青, 俞元春 (2014). 土壤碳库构成研究进展. 生态学报, 34, 4829-4838.] |
[44] | Zhang F, Wang X, Guo T, Zhang P, Wang J (2015). Soil organic and inorganic carbon in the loess profiles of Lanzhou area: Implications of deep soils.Catena, 126, 68-74. |
[45] | Zhang K, Dang H, Tan S, Cheng X, Zhang Q (2010). Change in soil organic carbon following the 'Grain-for-Green' programme in China.Land Degradation & Development, 21, 13-23. |
[46] | Zheng JF, Cheng K, Pan GX (2011). Perspectives on studies on soil carbon stocks and the carbon sequestration potential of China.Chinese Science Bulletin, 56, 2162-2173.(in Chinese) [郑聚锋, 程琨, 潘根兴 (2011). 关于中国土壤碳库及固碳潜力研究的若干问题. 科学通报, 56, 2162-2173.] |
[47] | Zhou XM, Wang ZB, Du Q (1986). The Vegetation of Qinghai. Qinghai People's Press, Xining. 17.(in Chinese) [周兴民, 王志彬, 杜庆 (1986). 青海植被. 青海人民出版社, 西宁. 17.] |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[3] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[4] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[5] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[6] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[7] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[8] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[9] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[10] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[11] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[12] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[13] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[14] | 陈哲, 汪浩, 王金洲, 石慧瑾, 刘慧颖, 贺金生. 基于物候相机归一化植被指数估算高寒草地植物地上生物量的季节动态[J]. 植物生态学报, 2021, 45(5): 487-495. |
[15] | 刘攀, 王文颖, 周华坤, 毛旭锋, 刘艳方. 青藏高原人工草地土壤可溶性氮组分与植被生产力动态变化过程[J]. 植物生态学报, 2021, 45(5): 562-572. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 4328
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 3096
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La