植物生态学报 ›› 2016, Vol. 40 ›› Issue (2): 93-101.DOI: 10.17521/cjpe.2015.0406

所属专题: 青藏高原植物生态学:植物-土壤-微生物

• 研究论文 •    下一篇

青藏高原高寒草地3米深度土壤无机碳库及分布特征

张蓓蓓1,2, 刘芳1, 丁金枝2,3, 房凯2,3, 杨贵彪2,3, 刘莉2,3, 陈永亮2, 李飞2,3, 杨元合2,,A;*()   

  1. 1内蒙古工业大学能源与动力工程学院, 呼和浩特 010051
    2中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
    3中国科学院大学, 北京 100049
  • 出版日期:2016-02-10 发布日期:2016-03-08
  • 通讯作者: 杨元合

Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: An updated evaluation using deep cores

Bei-Bei ZHANG1,2, Fang LIU1, Jin-Zhi DING2,3, Kai FANG2,3, Gui-Biao YANG2,3, Li LIU2,3, Yong-Liang CHEN2, Fei LI2,3, Yuan-He YANG2,*()   

  1. 1College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

    2State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    and
    3University of Chinese Academy of Sciences, Beijing 100049, China
  • Online:2016-02-10 Published:2016-03-08
  • Contact: Yuan-He YANG

摘要:

准确评估土壤无机碳库的大小及其分布特征有助于全面理解陆地生态系统碳循环与气候变暖之间的反馈关系.然而, 由于深层土壤剖面信息匮乏, 使得目前学术界对深层土壤无机碳库的了解十分有限.该研究基于342个3 m深度和177个50 cm深度的土壤剖面信息, 采用克里格插值方法估算了青藏高原高寒草地不同深度的土壤无机碳库大小, 并在此基础上分析了该地区土壤无机碳密度的分布特征.结果显示, 青藏高原高寒草地0-50 cm,0-1 m,0-2 m和0-3 m深度的土壤无机碳库大小分别为8.26,17.82,36.33和54.29 Pg C, 对应的土壤无机碳密度分别为7.22,15.58,31.76和47.46 kg C·m-2.研究区土壤无机碳密度总体呈现由东南向西北增加的趋势; 高寒草原土壤的无机碳密度显著大于高寒草甸的无机碳密度.整体上, 不同深度的高寒草原无机碳库约占整个研究区无机碳库的63%-66%.此外, 深层土壤中储存了大量无机碳, 1 m以下土壤无机碳库是1 m以内无机碳库的2倍.两种草地类型土壤无机碳的垂直分布存在差异: 对高寒草原而言, 0-50 cm土壤无机碳所占的比例最大; 但对高寒草甸而言, 在100-150 cm深度土壤无机碳出现富集.这些结果表明青藏高原深层土壤是一个重要的无机碳库, 需在未来碳循环研究中予以重视.

关键词: 碳库, 克里格插值, 土壤无机碳, 3 m土钻, 青藏高原

Abstract:

Aims To estimate the size and spatial patterns of 3-m-deep soil inorganic carbon (SIC) stock across alpine grasslands on the Qinghai-Xizang Plateau.Methods We conducted a comprehensive investigation and collected soil samples from 342 3-m-deep cores and 177 50-cm-deep pits across the study area. Using Kriging interpolation, we interpolated site-level observations to the regional level. The distribution of SIC density was then overlaid with the regional vegetation map at a scale of 1:1000000 to calculate SIC stock of the alpine steppe and alpine meadow. Kruskal-Wallis tests were further conducted to examine the differences of SIC density between the two grassland types and among soil depths with 50 cm-depth intervals.Important findings The total SIC stock at depths of 50 cm, 1 m, 2 m and 3 m were estimated at 8.26, 17.82, 36.33 and 54.29 Pg C, with SIC density being 7.22, 15.58, 31.76 and 47.46 kg C·m-2, respectively. SIC density exhibited large spatial variability, with an increasing trend from the southeastern to the northwestern plateau. Much larger SIC stock was observed in the alpine steppe than alpine meadow, with the former accounting for 63%-66% of the total stock at depths of 50 cm, 1 m, 2 m and 3 m. A large amount of SIC stock was found in deep soils (1-3 m), amounting to approximately 2 times as much carbon stored in the top 1-m-deep soil layer. The vertical distributions of SIC density differed between the two grassland types. The highest proportions of SIC occurred in the upper 50 cm layer for the alpine steppe while the highest proportions occurred in 100-150 cm layer for the alpine meadow. These results highlight that a large amount of SIC is stored in deep soil layers, which should be considered in evaluating terrestrial carbon balance under global change scenario.

Key words: carbon stock, Kriging interpolation, soil inorganic carbon, deep cores, Qinghai-Xizang Plateau