植物生态学报 ›› 2018, Vol. 42 ›› Issue (1): 50-65.DOI: 10.17521/cjpe.2017.0252
所属专题: 青藏高原植物生态学:群落生态学; 生物多样性
陈宁1,2,张扬建1,3,4,朱军涛1,*(),李军祥5,刘瑶杰1,2,俎佳星1,2,丛楠1,黄珂1,王荔5
出版日期:
2018-01-20
发布日期:
2018-03-08
通讯作者:
朱军涛 ORCID:0000-0002-3506-1247
基金资助:
CHEN Ning1,2,ZHANG Yang-Jian1,3,4,ZHU Jun-Tao1,*(),LI Jun-Xiang5,LIU Yao-Jie1,2,ZU Jia-Xing1,2,CONG Nan1,HUANG Ke1,WANG Li5
Online:
2018-01-20
Published:
2018-03-08
Contact:
ZHU Jun-Tao ORCID:0000-0002-3506-1247
Supported by:
摘要:
为了阐释青藏高原高寒草甸退化的关键生态过程, 该研究依托藏北高原草地生态系统研究站(那曲站), 设置不同退化梯度实验, 即对照、轻度退化、中度退化、重度退化和极度退化5个梯度, 探究群落生产力和物种多样性对不同退化强度的响应机制。结果表明: 1)随着退化程度不断加剧, 地上生物量呈现线性或非线性增加趋势, 在重度退化处理下, 地上生物量显著高于对照32.3%, 其中高山嵩草(Kobresia pygmaea)地上生物量呈非线性下降趋势, 而矮火绒草(Leontopodium nanum)地上生物量呈非线性增加趋势; 2)与地上生物量的响应模式相反, 随着退化程度加剧, 地下生物量与总生物量均呈现非线性降低趋势; 3)高寒草甸退化过程中, 物种辛普森指数、丰富度指数、香农多样性指数和均匀度指数均呈现非线性上升趋势。结构等式方程结果表明, 土壤碳含量和体积含水量与地下生物量均呈现显著的正相关关系。土壤碳含量、体积含水量和砾石质量比对地上生物量无显著影响, 土壤碳、氮含量与物种多样性指数呈现显著的负相关关系。研究认为地上生产力的变化不能很好地指示草地的退化程度, 建议今后研究应以可食性牧草和毒杂草等植物功能群的变化来衡量草地退化。
陈宁, 张扬建, 朱军涛, 李军祥, 刘瑶杰, 俎佳星, 丛楠, 黄珂, 王荔. 高寒草甸退化过程中群落生产力和物种多样性的非线性响应机制研究. 植物生态学报, 2018, 42(1): 50-65. DOI: 10.17521/cjpe.2017.0252
CHEN Ning, ZHANG Yang-Jian, ZHU Jun-Tao, LI Jun-Xiang, LIU Yao-Jie, ZU Jia-Xing, CONG Nan, HUANG Ke, WANG Li. Nonlinear responses of productivity and diversity of alpine meadow communities to degradation. Chinese Journal of Plant Ecology, 2018, 42(1): 50-65. DOI: 10.17521/cjpe.2017.0252
图1 样地布设图。A, 群落调查; B, 测定生物量; C, 测定碳通量; D, 未来的相关研究。
Fig. 1 Plot layout. A, community survey; B, measure biomass; C, measure carbon flux; D, future related researches.
图2 不同退化阶段高寒草甸的群落盖度。图中不同字母表示处理之间有显著差异(p < 0.1)。实线是非线性拟合结果, 虚线是线性拟合结果。Control, 对照, 无退化草甸; D1, 轻度退化草甸; D2, 中度退化草甸; D3, 重度退化草甸; D4, 极度退化草甸。
Fig. 2 The community coverage of alpine meadow in different degradation stages. Different letters in figures indicate significant difference (p < 0.1). The solid lines are nonlinear fitting results. Dotted lines are linear fitting results. Control, non-degraded meadow; D1, mild degraded meadow; D2, moderate degraded meadow; D3, severe degraded meadow; D4, serious sandy meadow.
图3 不同退化阶段高寒草甸的地上生物量。图中不同字母表示处理之间有显著差异(p < 0.1)。实线是非线性拟合结果, 虚线是线性拟合结果。Control, 对照, 无退化草甸; D1, 轻度退化草甸; D2, 中度退化草甸; D3, 重度退化草甸; D4, 极度退化草甸。
Fig. 3 The aboveground biomass of alpine meadow in different degradation stages. Different letters in figures indicate significant difference (p < 0.1). The solid lines are nonlinear fitting results. Dotted lines are linear fitting results. Control, non-degraded meadow; D1, mild degraded meadow; D2, moderate degraded meadow; D3, severe degraded meadow; D4, serious sandy meadow.
图4 不同退化阶段高寒草甸的总生物与地下生物量。图中不同字母表示处理之间有显著差异(p < 0.1)。实线是非线性拟合结果, 虚线是线性拟合结果。Control, 对照, 无退化草甸; D1, 轻度退化草甸; D2, 中度退化草甸; D3, 重度退化草甸; D4, 极度退化草甸。
Fig. 4 The total biomass and belowground biomass of alpine meadow in different degradation stages. Different letters in figures indicate significant difference (p < 0.1). The solid lines are nonlinear fitting results. Dotted lines are linear fitting results. Control, non-degraded meadow; D1, mild degraded meadow; D2, moderate degraded meadow; D3, severe degraded meadow; D4, serious sandy meadow.
图5 不同退化阶段高寒草甸的生物多样性。图中不同字母表示处理之间有显著差异(p < 0.1)。实线是非线性拟合结果, 虚线是线性拟合结果。Control, 对照, 无退化草甸; D1, 轻度退化草甸; D2, 中度退化草甸; D3, 重度退化草甸; D4, 极度退化草甸。
Fig. 5 The species diversity of alpine meadow in different degradation stages. Different letters in figures indicate significant difference (p < 0.1). The solid lines are nonlinear fitting results. Dotted lines are linear fitting results. Control, non-degraded meadow; D1, mild degraded meadow; D2, moderate degraded meadow; D3, severe degraded meadow; D4, serious sandy meadow.
草甸类型 Meadow type | 土壤容重 Soil bulk density (g?cm-3) | 砾石质量比 Mass ratio of gravel (%) | 砾石体积比 Volume ratio of gravel (%) | 土壤氮含量 Soil nitrogen content (%) | 土壤碳含量 Soil carbon content (%) |
---|---|---|---|---|---|
对照 Non-degraded | 1.23 ± 0.04a | 29.77 ± 7.96a | 16.80 ± 7.45a | 0.45 ± 0.06a | 5.29 ± 0.95a |
轻度退化 Mild degraded | 1.26 ± 0.04a | 36.51 ± 1.34a | 22.19 ± 4.00a | 0.50 ± 0.04a | 5.76 ± 0.59a |
中度退化 Moderate degraded | 1.50 ± 0.02b | 37.43 ± 6.04a | 28.24 ± 2.60ab | 0.44 ± 0.11a | 5.10 ± 1.30a |
重度退化 Severe degraded | 1.47 ± 0.02b | 47.60 ± 4.52b | 32.15 ± 2.41b | 0.32 ± 0.05b | 3.21 ± 0.69b |
极度退化 Serious degraded | 1.56 ± 0.11b | 49.62 ± 4.94b | 33.52 ± 0.68b | 0.34 ± 0.02b | 3.57 ± 0.23b |
表1 不同退化阶段高寒草甸的土壤理化特征
Table 1 The soil physicochemical properties of alpine meadow in different degradation stages
草甸类型 Meadow type | 土壤容重 Soil bulk density (g?cm-3) | 砾石质量比 Mass ratio of gravel (%) | 砾石体积比 Volume ratio of gravel (%) | 土壤氮含量 Soil nitrogen content (%) | 土壤碳含量 Soil carbon content (%) |
---|---|---|---|---|---|
对照 Non-degraded | 1.23 ± 0.04a | 29.77 ± 7.96a | 16.80 ± 7.45a | 0.45 ± 0.06a | 5.29 ± 0.95a |
轻度退化 Mild degraded | 1.26 ± 0.04a | 36.51 ± 1.34a | 22.19 ± 4.00a | 0.50 ± 0.04a | 5.76 ± 0.59a |
中度退化 Moderate degraded | 1.50 ± 0.02b | 37.43 ± 6.04a | 28.24 ± 2.60ab | 0.44 ± 0.11a | 5.10 ± 1.30a |
重度退化 Severe degraded | 1.47 ± 0.02b | 47.60 ± 4.52b | 32.15 ± 2.41b | 0.32 ± 0.05b | 3.21 ± 0.69b |
极度退化 Serious degraded | 1.56 ± 0.11b | 49.62 ± 4.94b | 33.52 ± 0.68b | 0.34 ± 0.02b | 3.57 ± 0.23b |
R2 | 拟合模型 Fitted model | |
---|---|---|
土壤容重 Soil bulk density | ||
线性模型 Linear model | 0.66*** | y = -0.006x + 1.695 |
非线性模型 Nonlinear model | 0.76*** | y = 0.0002x2 + 0.012x + 1.326 |
砾石质量比 Mass ratio of gravel | ||
线性模型 Linear model | 0.13 | y = -0.155x + 47.310 |
非线性模型 Nonlinear model | 0.53* | y = 0.023x2-2.326x + 89.838 |
砾石体积比 Volume ratio of gravel | ||
线性模型 Linear model | 0.44** | y = 0.240x + 37.607 |
非线性模型 Nonlinear model | 0.58** | y = 0.011x2-1.300x + 58.371 |
土壤氮含量 Soil nitrogen content | ||
线性模型 Linear model | 0.42*** | y = 0.003x + 0.264 |
非线性模型 Nonlinear model | 0.46*** | y = -0.0001x2 + 0.011x + 0.115 |
土壤碳含量 Soil carbon content | ||
线性模型 Linear model | 0.50*** | y = 0.049x + 2.35 |
非线性模型 Nonlinear model | 0.55*** | y = -0.001x2 + 0.159x + 0.183 |
表2 高寒草甸退化过程中土壤理化性质线性和非线性响应比较
Table 2 Comparison between linear and nonlinear responses of soil physicochemical properties to alpine meadow degradation
R2 | 拟合模型 Fitted model | |
---|---|---|
土壤容重 Soil bulk density | ||
线性模型 Linear model | 0.66*** | y = -0.006x + 1.695 |
非线性模型 Nonlinear model | 0.76*** | y = 0.0002x2 + 0.012x + 1.326 |
砾石质量比 Mass ratio of gravel | ||
线性模型 Linear model | 0.13 | y = -0.155x + 47.310 |
非线性模型 Nonlinear model | 0.53* | y = 0.023x2-2.326x + 89.838 |
砾石体积比 Volume ratio of gravel | ||
线性模型 Linear model | 0.44** | y = 0.240x + 37.607 |
非线性模型 Nonlinear model | 0.58** | y = 0.011x2-1.300x + 58.371 |
土壤氮含量 Soil nitrogen content | ||
线性模型 Linear model | 0.42*** | y = 0.003x + 0.264 |
非线性模型 Nonlinear model | 0.46*** | y = -0.0001x2 + 0.011x + 0.115 |
土壤碳含量 Soil carbon content | ||
线性模型 Linear model | 0.50*** | y = 0.049x + 2.35 |
非线性模型 Nonlinear model | 0.55*** | y = -0.001x2 + 0.159x + 0.183 |
图6 不同退化阶段高寒草甸的土壤含水量特征(平均值±标准误差)。不同字母表示处理之间有显著差异(p < 0.1)。Control, 对照, 无退化草甸; D1, 轻度退化草甸; D2, 中度退化草甸; D3, 重度退化草甸; D4, 极度退化草甸。
Fig. 6 The soil water content of alpine meadow in different degradation stages (mean ± SE). Different letters indicate significant difference (p < 0.1). Control, non-degraded meadow; D1, mild degraded meadow; D2, moderate degraded meadow; D3, severe degraded meadow; D4, serious sandy meadow.
R2 | 拟合模型 Fitted model | |
---|---|---|
0-7.6 cm土层 0-7.6 cm soil layer | ||
线性模型 Linear model | 0.61*** | y = 0.044x + 7.396 |
非线性模型 Nonlinear model | 0.61*** | y = 7.557e0.005x |
0-12 cm土层 0-12 cm soil layer | ||
线性模型 Linear model | 0.39*** | y = 0.066x + 10.148 |
非线性模型 Nonlinear model | 0.41*** | y = -0.001x2 + 0.169x + 8.136 |
表3 高寒草甸退化过程中土壤含水量的线性和非线性响应比较
Table 3 Comparison between linear and nonlinear responses of soil water content to alpine meadow degradation
R2 | 拟合模型 Fitted model | |
---|---|---|
0-7.6 cm土层 0-7.6 cm soil layer | ||
线性模型 Linear model | 0.61*** | y = 0.044x + 7.396 |
非线性模型 Nonlinear model | 0.61*** | y = 7.557e0.005x |
0-12 cm土层 0-12 cm soil layer | ||
线性模型 Linear model | 0.39*** | y = 0.066x + 10.148 |
非线性模型 Nonlinear model | 0.41*** | y = -0.001x2 + 0.169x + 8.136 |
图7 不同退化阶段高寒草甸群落物种多样性与土壤理化性质之间相关分析。黑色和从左下指向右上的斜杠表示两个变量正相关, 黑色和从左上指向右下的斜杠表示变量之间负相关。颜色越深, 饱和度越高, 说明变量相关性越大; *、**、***分别表示在10%、5%、1%的置信水平上具有统计显著性。
Fig. 7 Correlation analysis among soil physico-chemical properties and species diversity of alpine meadow community. Black and from lower left to upper right of the slash said two variables are related, and black from the upper left to lower right slash said negative correlation between variables. The deeper the color, the higher the degree of saturation, explanatory variable correlation; *, **, *** represent statistically significant at the 10%, 5%, 1% confidence level, respectively.
图8 影响地上生物量与地下生物量的直接因素和间接因素的结构等式模型。带有箭头的虚线表示关系不显著(p > 0.1), 实线表示关系显著(p < 0.1), 带有箭头线上的数字是标准化路径系数(*, p < 0.1; **, p < 0.05; ***, p < 0.01)。AIC, 最小信息准则; AICdm, 内定模式; AICim, 独立模式; AICsm, 饱和模式; DF, 自由度; NFI, 增值适配度指数; RMSEA, 绝对适配指数。
Fig. 8 The results of structural equation models showed the direct and indirect impacts of various factors on biomass and species diversity. A dotted line relationship of the arrow was not significant (p > 0.1), the solid line shows the relationship between significantly (p < 0.1), the degree of thickness line to reflect the degree of a strong relation between variables, with the arrow line Numbers are standardized path coefficient (*, p < 0.1; **, p < 0.05; ***, p < 0.01). AIC, an information criterion; AICdm, default mode; AICim, independence model; AICsm, saturated model; DF, degree of freedom; NFI, normed fit index; RMSEA, root mean square error of approximation.
指标分类 Index classification | 指标个数 Number of indexes | 指标 Indexes |
---|---|---|
土壤 Soil | 41 | 土壤质地、土层厚度、含水量、团粒结构稳定性等 Soil texture, soil thickness, water content, and stability of aggregates, etc. |
植被 Vegetation | 11 | 植被盖度、植被种类、植被均匀度指数、根系深度等 Vegetation cover, vegetation species, vegetation Pielou evenness index, and root depth, etc. |
社会经济 Social economy | 11 | 经济收入水平(农民收入、消费水平)、人口数量等 Economic income level (farmer's income, consumption level) and population, etc. |
气候 Climate | 7 | 降水量、蒸发量、风速、平均气温、湿润指数等 Precipitation, evaporation, wind speed, average temperature, and wetting index, etc. |
生物 Biology | 7 | 生物量、生物多样性指数、群落类型、种群优势度 Biomass, biodiversity index, community type, and population dominance |
地形地貌 Topography | 6 | 坡度、坡向、沟谷密度、地貌类型、海拔高度 Slope, slope direction, valley density, landform type, and altitude |
附件表1 土地退化中文指标分类(邱秋兰, 2012)
Appendix table 1 Land degradation index classification in China (Qiu, 2012)
指标分类 Index classification | 指标个数 Number of indexes | 指标 Indexes |
---|---|---|
土壤 Soil | 41 | 土壤质地、土层厚度、含水量、团粒结构稳定性等 Soil texture, soil thickness, water content, and stability of aggregates, etc. |
植被 Vegetation | 11 | 植被盖度、植被种类、植被均匀度指数、根系深度等 Vegetation cover, vegetation species, vegetation Pielou evenness index, and root depth, etc. |
社会经济 Social economy | 11 | 经济收入水平(农民收入、消费水平)、人口数量等 Economic income level (farmer's income, consumption level) and population, etc. |
气候 Climate | 7 | 降水量、蒸发量、风速、平均气温、湿润指数等 Precipitation, evaporation, wind speed, average temperature, and wetting index, etc. |
生物 Biology | 7 | 生物量、生物多样性指数、群落类型、种群优势度 Biomass, biodiversity index, community type, and population dominance |
地形地貌 Topography | 6 | 坡度、坡向、沟谷密度、地貌类型、海拔高度 Slope, slope direction, valley density, landform type, and altitude |
频次 Frequency | 指标个数 Number of indexes | 指标 Indexes |
---|---|---|
> 40 | 41 | 植被盖度、经济收入水平、坡度、有机质含量 Vegetation cover, economic income level, slope, organic matter content |
30-39 | 11 | 土壤质地、氮、磷和钾元素含量、含水量、土地利用类型 Soil texture, nitrogen, phosphorus and potassium content, water content, land use type |
20-29 | 11 | 生产力、降水量、生物多样性、生物量、地貌类型 Productivity, precipitation, biodiversity, biomass, landform type |
10-19 | 7 | 土壤类型、覆沙盖度、土层厚度、风速、蒸发量 Soil type, cover sand cover, soil thickness, wind speed, evaporation |
< 10 | 7 | 土壤容重、土壤侵蚀模数、电导率、径流量、结皮厚度 Soil bulk density, soil erosion modulus, conductivity, runoff, crust thickness |
附件表2 土地退化中文指标应用频次统计(邱秋兰, 2012)
Appendix table 2 Land degradation index of application frequency statistics (Qiu, 2012)
频次 Frequency | 指标个数 Number of indexes | 指标 Indexes |
---|---|---|
> 40 | 41 | 植被盖度、经济收入水平、坡度、有机质含量 Vegetation cover, economic income level, slope, organic matter content |
30-39 | 11 | 土壤质地、氮、磷和钾元素含量、含水量、土地利用类型 Soil texture, nitrogen, phosphorus and potassium content, water content, land use type |
20-29 | 11 | 生产力、降水量、生物多样性、生物量、地貌类型 Productivity, precipitation, biodiversity, biomass, landform type |
10-19 | 7 | 土壤类型、覆沙盖度、土层厚度、风速、蒸发量 Soil type, cover sand cover, soil thickness, wind speed, evaporation |
< 10 | 7 | 土壤容重、土壤侵蚀模数、电导率、径流量、结皮厚度 Soil bulk density, soil erosion modulus, conductivity, runoff, crust thickness |
[1] |
Bai YF, Li LH, Wang QB, Zhang LX, Zhang Y, Chen ZZ ( 2000). Changes in plant species diversity and productivity along gradients of precipitation and elevation in the Xilin River Basin, Inner Mongolia. Acta Phytoecologica Sinica, 24, 667-673.
DOI URL |
[ 白永飞, 李凌浩, 王其兵, 张丽霞, 张焱, 陈佐忠 ( 2000). 锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究. 植物生态学报, 24, 667-673.]
DOI URL |
|
[2] |
Cai XB, Zhang YQ, Shao W ( 2007). Degradation and mechanism of grassland of North Tibet alpine prairie. Soil, 39, 855-858.
DOI URL |
[ 蔡晓布, 张永青, 邵伟 ( 2007). 藏北高寒草原草地退化及其驱动力分析. 土壤, 39, 855-858.]
DOI URL |
|
[3] |
Chen LL, Shi JJ, Wang YL, Ma YS, Dong QM, Hou XK ( 2016). Study on different degraded degrees grassland community structure characteristics of the alpine area. Acta Agrectir Sinica, 24, 210-213.
DOI URL |
[ 陈乐乐, 施建军, 王彦龙, 马玉寿, 董全民, 侯宪宽 ( 2016). 高寒地区不同退化程度草地群落结构特征研究. 草地学报, 24, 210-213.]
DOI URL |
|
[4] | Dong XB, Zhang XS ( 2005). View on the grassland in China. Green Economy, ( 10), 70-73. |
[ 董孝斌, 张新时 ( 2005). 我国草地的发展观. 生态经济, ( 10), 70-73.] | |
[5] |
Gao YZ, Han XG, Wang SP ( 2004). The effects of grazing on grassland soils. Acta Ecologica Sinica, 24, 790-797.
DOI URL |
[ 高英志, 韩兴国, 汪诗平 ( 2004). 放牧对草原土壤的影响. 生态学报, 24, 790-797.]
DOI URL |
|
[6] | Gu YR, Zhang GF, Meng L ( 2005). Drought resistance of four forage species at seedling under water stress. Journal of Sichuan Grassland, ( 4), 4-7. |
[ 谷燕蓉, 张国芳, 孟林 ( 2005). 四种牧草幼苗对水分胁迫的相应及其抗旱性. 四川草原, ( 4), 4-7.] | |
[7] | He JS, Fang JY, Ma KP, Huang JH ( 2003). Biodiversity and ecosystem productivity: Why is there a discrepancy in the relationship between experimental and natural ecosystems? Acta Phytoecologica Sinica, 27, 835-843. |
[ 贺金生, 方精云, 马克平, 黄建辉 ( 2003). 生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致? 植物生态学报, 27, 835-843.] | |
[8] |
Hou JT, Cheng ZJ ( 1999). Application and analytical strategies of structure equation modelling. Exploration of Psychology, 19, 54-59.
DOI URL |
[ 侯杰泰, 成子娟 ( 1999). 结构方程模型的应用及分析策略. 心理学探新, 19, 54-59.]
DOI URL |
|
[9] | Kong FZ, Yu RC, Xu ZJ, Zhou MJ ( 2012). Application of excel in calculation of biodiversity indices. Marine Sciences, 36(4), 57-62. |
[ 孔凡洲, 于仁成, 徐子钧, 周名江 ( 2012). 应用Excel软件计算生物多样性指数. 海洋科学, 36(4), 57-62.] | |
[10] |
Li L, Liu W ( 2011). Relationship between plant functional groups, species richness and community’s productivity in degraded grassland. Acta Agrectir Sinica, 19, 917-921.
DOI URL |
[ 李里, 刘伟 ( 2011). 退化草地植物功能群和物种丰富度与群落生产力关系的研究. 草地学报, 19, 917-921.]
DOI URL |
|
[11] |
Li MS ( 2000). Countermeasures for environmental protection in the Qinghai-Tibet Plateau. Resources Science, 22(4), 78-82.
DOI URL |
[ 李明森 ( 2000). 青藏高原环境保护对策. 资源科学, 22(4), 78-82.]
DOI URL |
|
[12] |
Lin HL, Hou FJ, Ren JZ ( 2008). Evaluation of indicators of grazing trampling intensity. Acta Prataculturae Sinica, 17(1), 85-92.
DOI URL |
[ 林慧龙, 侯扶江, 任继周 ( 2008). 放牧家畜的践踏强度指标探讨. 草业学报, 17(1), 85-92.]
DOI URL |
|
[13] | Liu W, Wang QJ, Wang X, Zhou L, Li YF, Li FJ ( 1999). Ecological process of forming “black soil-type” degraded grassland. Acta Agrestia Sinica, 7, 301-305. |
[ 刘伟, 王启基, 王溪, 周立, 李有福, 李发吉 ( 1999). 高寒草甸“黑土型”退化草地的成因及生态过程. 草地学报, 7, 301-305.] | |
[14] | Liu XN, Sun JL, Zhang DG, Pu XP, Xu GP ( 2008). A study on the community structure and plant diversity of alpine meadow under different degrees of degradation in the Eastern Qilian Mountains. Acta Prataculturae Sinica, 17(4), 1-11. |
[ 柳小妮, 孙九林, 张德罡, 蒲小鹏, 徐广平 ( 2008). 东祁连山不同退化阶段高寒草甸群落结构与植物多样性特征研究, 草业学报, 17(4), 1-11.] | |
[15] |
Liu XQ, Wu QH, Li HQ, Mao SJ, Li YN ( 2013). A comparison of the vegetation/soil carbon density and net ecosystem CO2 exchange of alpine meadow with different enclosure durations. Journal of Glaciology and Geocryology, 35, 848-856.
DOI URL |
[ 刘晓琴, 吴启华, 李红琴, 毛绍娟, 李英年 ( 2013). 不同封育年限高寒草甸植被/土壤碳密度及净生态系统CO2交换量的比较. 冰川冻土, 35, 848-856.]
DOI URL |
|
[16] |
Long Y, Meng FD, Wang CS, Bai L, Zhong Y, Wang SP ( 2015). Above- and below-ground biomass distribution of main alpine meadow plants and impact of degradation on root/shoot ratio and root area. Guihaia, 35, 532-538.
DOI URL |
[ 龙毅, 孟凡栋, 王常顺, 白玲, 钟扬, 汪诗平 ( 2015). 高寒草甸主要植物地上地下生物量分布及退化对根冠比和根系表面积的影响. 广西植物, 35, 532-538.]
DOI URL |
|
[17] | Luo YY, Meng QT, Zhang JH, Zhao XY, Qin Y ( 2014). Species diversity and biomass in relation to soil properties of alpine meadows in the eastern Tibetan Plateau in different degradation stages. Journal of Glaciology and Geocryology, 36, 1298-1305. |
[ 罗亚勇, 孟庆涛, 张静辉, 赵学勇, 秦彧 ( 2014). 青藏高原东缘高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系. 冰川冻土, 36, 1298-1305.] | |
[18] | Luo YY, Zhang Y, Zhang JH, Ka ZJ, Shang LY, Wang SY ( 2012). Soil stiochiometry characteristics among alpine meadows of different degradation stages in Maqu County. Chinese Journal of Ecology, 31, 254-260. |
[ 罗亚勇, 张宇, 张静辉, 卡召加, 尚伦宇, 王少影 ( 2012). 不同退化阶段高寒草甸土壤化学计量特征. 生态学杂志, 31, 254-260.] | |
[19] | Mao F, Zhang YH, Hou YY, Tang SH, Lu ZG, Zhang JH ( 2008). Dynamic assessment of grassland degradation in Naqu of northern Tibet. Chinese Journal of Applied Ecology, 19, 278-284. |
[ 毛飞, 张艳红, 侯英雨, 唐世浩, 卢志光, 张佳华 ( 2008). 藏北那曲地区草地退化动态评价. 应用生态学报, 19, 278-284.] | |
[20] |
Niu KC, Luo YJ, Choler P, Du GZ ( 2008). The role of biomass allocation strategy in diversity loss due to fertilization. Basic and Applied Ecology, 9, 485-493.
DOI URL |
[21] |
Qi B, Zhang DG, Ding LL, Zhang L, Wang X, Yang YH ( 2005). Properties of plant community diversity of degraded alpine arid grasslands. Journal of Gansu Agricultural University, 40, 626-631.
DOI URL |
[ 祁彪, 张德罡, 丁玲玲, 张力, 汪玺, 杨予海 ( 2005). 退化高寒干旱草地植物群落多样性特征. 甘肃农业大学学报, 40, 626-631.]
DOI URL |
|
[22] |
Ren QJ, Cui XL, Zhao BB ( 2008). Effects of grazing impact on community structure and productivity in an alpine meadow. Acta Prataculturae Sinica, 17(6), 134-140.
DOI URL |
[ 仁青吉, 崔现亮, 赵彬彬 ( 2008). 放牧对高寒草甸植物群落结构及生产力的影响. 草业学报, 17(6), 134-140.]
DOI URL |
|
[23] |
Sala OE, Oesterheld M, León RJC, Soriano A ( 1986). Grazing effects upon plant community structure in subhumid grasslands of Argentina. Vegetatio, 67, 27-32.
DOI URL |
[24] |
Sheng L, Wang YL ( 2010). Characteristics variation of soil nutrition in different degraded degree alpine meadow in Dawu region of Guoluo prefecture. Chinese Qinghai Journal of Animal and Veterinary Sciences, 40(4), 4-6.
DOI URL |
[ 盛丽, 王彦龙 ( 2010). 果洛大武地区不同退化梯度下高寒草甸土壤养分特征变化. 青海畜牧兽医杂志, 40(4), 4-6.]
DOI URL |
|
[25] | Studies on the Development of Agriculture and Animal Husbandry Industry with Characteristics of Tibet Autonomous Region Group ( 2003). Studies on the development of agriculture and animal husbandry industry with characteristics of Tibet Autonomous Region. Journal of China Agricultural Resources and Regional Planning, 24(6), 8-12. |
[ 西藏自治区农牧业特色产业发展研究课题组 ( 2003). 西藏自治区农牧业特色产业发展研究. 中国农业资源与区划, 24(6), 8-12.] | |
[26] |
Wang CT, Long RJ, Wang QL, Cao GM, Shi JJ, Du YG ( 2008). Response of plant diversity and productivity to soil response changing under grazing disturbance on an alpine meadow. Acta Ecologica Sinica, 28, 4144-4152.
DOI URL |
[ 王长庭, 龙瑞军, 王启兰, 曹广民, 施建军, 杜岩功 ( 2008). 放牧扰动下高寒草甸植物多样性、生产力对土壤养分条件变化的响应. 生态学报, 28, 4144-4152.]
DOI URL |
|
[27] | Wang DL, Lü XL, Luo WD ( 1996). Analysis to effects of different grazing density on characteristics of rangeland vegetation. Acta Prataculturae Sinica, 5(3), 28-33. |
[ 王德利, 吕新龙, 罗卫东 ( 1996). 不同放牧密度对草原植被特征的影响分析. 草业学报, 5(3), 28-33.] | |
[28] | Wang GX, Shen YP, Cheng GD ( 2000). Eco-environmental changes and causal analysis in the source regions of the Yellow River. Journal of Glaciology and Geocryology, 22, 200-205. |
[ 王根绪, 沈永平, 程国栋 ( 2000). 黄河源区生态环境变化与成因分析. 冰川冻土, 22, 200-205.] | |
[29] |
Wang QL, Wang CT, Du YG, Cao GM ( 2008). Grazing impact on soil microbial biomass carbon and relationships with soil environment in alpine Kobresia meadow. Acta Prataculturae Sinica, 17(2), 39-46.
DOI URL |
[ 王启兰, 王长庭, 杜岩功, 曹广民 ( 2008). 放牧对高寒嵩草草甸土壤微生物量碳的影响及其与土壤环境的关系. 草业学报, 17(2), 39-46.]
DOI URL |
|
[30] | Wang W, Liu ZL, Hao DY, Liang CZ ( 1996). Research on the restoring succession of the degenerated grassland in Inner Mongolia II. Analysis of the restoring process. Acta Phytoecologica Sinica, 20, 460-471. |
[ 王炜, 刘钟龄, 郝敦元, 梁存柱 ( 1996). 内蒙古草原退化群落恢复演替的研究: II.恢复演替时间进程的分析. 植物生态学报, 20, 460-471.] | |
[31] |
Wang YX, Cao JM ( 2007). How to solve the overgrazing problem in Inner Mongolia. Green Economy, ( 7), 58-64.
DOI URL |
[ 王云霞, 曹建民 ( 2007). 内蒙古草原过度放牧的解决途径. 生态经济, ( 7), 58-64.]
DOI URL |
|
[32] | Wu ML ( 2010). Structural Equation Modeling: Operation and Response of AMOS. The University of Chongqing Press, Chongqing. |
(in Chinese) [ 吴明隆 ( 2010).结构方程模型: AMOS的操作与应用. 重庆大学出版.] | |
[33] |
Yang FY, Zhang YW, Miao YJ, Wei XH ( 2003). Main limiting factors for deteriorated grasslands vegetation restoration of Northern Tibet Plateau. Bulletin of Soil and Water Conservation, 23(4), 17-20.
DOI URL |
[ 杨富裕, 张蕴微, 苗彦军, 魏学红 ( 2003). 藏北高寒退化草地植被恢复过程的障碍因子初探. 水土保持通报, 23(4), 17-20.]
DOI URL |
|
[34] |
Zhang GS, Li L ( 1999). Effects of climatic changes of South Qinghai Plateau on the alpine meadow. Acta Prataculturae Sinica, 8(3), 1-10.
DOI URL |
[ 张国胜, 李林 ( 1999). 青南高原气候变化及其对高寒草甸牧草生长影响的研究. 草业学报, 8(3), 1-10.]
DOI URL |
|
[35] |
Zhang J, Zhao H, Zhang T, Zhao X, Drake S ( 2005). Community succession along a chronosequence of vegetation restoration on sand dunes in Horqin Sandy Land. Journal of Arid Environments, 62, 555-566.
DOI URL |
[36] |
Zhang JP, Chen XH, Zou XY, Ji HL, Du J, Cao ZJ, Fu XF ( 2001). The eco-environmental problems and its countermeasures in Tibet. Journal of Mountain Science, 19, 81-86.
DOI URL |
[ 张建平, 陈学华, 邹学勇, 靳鹤龄, 杜杰, 曹宗杰, 付雪峰 ( 2001). 西藏自治区生态环境问题及对策. 山地学报, 19, 81-86.]
DOI URL |
|
[37] | Zhao CZ, Long RJ, Ma YH, Ji SZ ( 2005). The impact of the institution of grassland property right on overgrazing—A case from Hongshiwo countryside, Sunan County, Gansu. Acta Prataculturae Sinica, 14(1), 1-5. |
[ 赵成章, 龙瑞军, 马永欢, 吉生柱 ( 2005). 草地产权制度对草地超载过牧的影响——以肃南县红石窝乡的调查为例. 草业学报, 14(1), 1-5.] | |
[38] | Zheng W, Dong QM, Li SX, Li HT, Liu Y, Yang SH ( 2012). Impact of grazing intensities on community biodiversity and productivity of alpine grassland in Qinghai Lake Region. Acta Agrestia Sinica, 20, 1033-1038. |
[ 郑伟, 董全民, 李世雄, 李红涛, 刘玉, 杨时海 ( 2012). 放牧强度对环青海湖高寒草原群落物种多样性和生产力的影响. 草地学报, 20, 1033-1038.] | |
[39] | Zhong XH ( 2005). Pay close attention to an issue at home and abroad academic circles all along: Research of the Qinghai-Tibet Plateau. Journal of Mountain Science, 23, 257-259. |
[ 钟祥浩 ( 2005). 国内外学术界一直关注的问题: 青藏高原研究. 山地学报, 23, 257-259.] | |
[40] | Zhou HK, Zhao XQ, Zhou Li, Liu W, Li YN, Tang YH ( 2005). A study on correlations between vegetation degradation and soil degradation in the alpine meadow of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 14(3), 31-40. |
[ 周华坤, 赵新全, 周立, 刘伟, 李英年, 唐艳鸿 ( 2005). 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 14(3), 31-40.] | |
[41] | Zhu JT ( 2016). Effects of experimental warming on plant phenology in Xizang alpine meadow. Chinese Journal of Plant Ecology, 40, 1028-1036. |
[ 朱军涛 ( 2016). 实验增温对藏北高寒草甸植物物候的影响. 植物生态学报, 40, 1028-1036.] | |
[42] | Zong N, Shi PL, Niu B, Jiang J, Song MH, Zhang XZ, He YT ( 2010). Effects of nitrogen and phosphorous fertilization on community structure and productivity of degraded alpine meadows in northern Tibet, China. Chinese Journal of Applied Ecology, 25, 3458-3468. |
[ 宗宁, 石培礼, 牛犇, 蒋婧, 宋明华, 张宪洲, 何永涛 ( 2010). 氮磷配施对藏北退化高寒草甸群落结构和生产力的影响. 应用生态学报, 25, 3458-3468.] | |
[43] |
Zou XY, Dong GR, Li S, Dong YX, Yang P, Ji HL, Zhang CL, Cheng H ( 2003). Desertification and its prevention and control strategy in Tibet. Journal of Natural Disasters, 17-24.
DOI URL |
[ 邹学勇, 董光荣, 李森, 董玉祥, 杨萍, 靳鹤龄, 张春来, 程宏 ( 2003). 西藏荒漠化及其防治战略. 自然灾害学报, 12, 17-24.]
DOI URL |
|
[44] |
Zuo XA, Zhao XY, Zhao HL, Li YQ, Guo ZR, Zhao YP ( 2007). Changes of species diversity and productivity in relation to soil properties in sandy grassland in Horqin Sand Land. Environmental Science, 28, 945-951.
DOI URL |
[ 左小安, 赵学勇, 赵哈林, 李玉强, 郭轶瑞, 赵玉萍 ( 2007). 科尔沁沙质草地群落物种多样性、生产力与土壤特性的关系. 环境科学, 28, 945-951.]
DOI URL |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[3] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[4] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[5] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[6] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[7] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[8] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[9] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[10] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[11] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[12] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[13] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[14] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[15] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19