植物生态学报 ›› 2019, Vol. 43 ›› Issue (10): 909-920.DOI: 10.17521/cjpe.2019.0235
赵鑫1,王文娟1,王普昶2,3,黄莉娟1,赵丽丽1,2,*()
出版日期:
2019-10-20
发布日期:
2020-02-24
通讯作者:
赵丽丽
基金资助:
ZHAO Xin1,WANG Wen-Juan1,WANG Pu-Chang2,3,HUANG Li-Juan1,ZHAO Li-Li1,2,*()
Online:
2019-10-20
Published:
2020-02-24
Contact:
ZHAO Li-Li
Supported by:
摘要:
研究不同钙浓度对宽叶雀稗(Paspalum wettsteinii)幼苗生长和生理的影响, 对于揭示宽叶雀稗对不同钙浓度环境的适应机理至关重要。该研究采用盆栽砂培试验, 研究不同钙浓度(0、5、25、50、100和200 mmol·L-1 CaCl2)和不同处理时间(7、14、21和28天)对宽叶雀稗幼苗生长、渗透调节物质含量、抗氧化酶活性、叶绿素含量和光合参数的影响。结果表明, 随着CaCl2浓度的增加和处理时间的延长, 宽叶雀稗幼苗株高等形态指标、生物量、渗透调节物质含量、抗氧化酶活性、叶绿素含量和光合参数呈先增后减的趋势, 低钙浓度(5-50 mmol·L-1)环境下, 株高、叶长、叶宽、根长和生物量与对照(0 mmol·L-1)相比均升高, 脯氨酸、可溶性蛋白和可溶性糖含量、过氧化物酶、过氧化氢酶和超氧化物歧化酶活性提高, 丙二醛含量和胞间CO2浓度降低、叶绿素含量增加以及净光合速率、蒸腾速率和气孔导度增强; 高钙浓度(200 mmol·L-1)环境下, 脯氨酸、可溶性蛋白和可溶性糖含量、过氧化物酶、过氧化氢酶和超氧化物歧化酶活性降低, 丙二醛含量和胞间CO2浓度增加, 叶绿素含量减少以及净光合速率、蒸腾速率和气孔导度减弱。结合隶属函数分析, 低钙盐浓度(5-50 mmol·L-1)处理对宽叶雀稗幼苗无抑制作用, 说明宽叶雀稗对低钙浓度具有一定的耐受性; 而在高钙浓度(200 mmol·L-1)下, 宽叶雀稗幼苗通过提高自身有机渗透调节物质含量、增强酶活性、增加叶绿素含量以及增强光合作用等方式来快速调节植物生理代谢功能, 进而适应高钙浓度环境条件。
赵鑫, 王文娟, 王普昶, 黄莉娟, 赵丽丽. 不同钙浓度对宽叶雀稗幼苗的生长和抗性生理的影响. 植物生态学报, 2019, 43(10): 909-920. DOI: 10.17521/cjpe.2019.0235
ZHAO Xin, WANG Wen-Juan, WANG Pu-Chang, HUANG Li-Juan, ZHAO Li-Li. Effects of different calcium concentrations on growth and physiology of Paspalum wettsteinii seedlings. Chinese Journal of Plant Ecology, 2019, 43(10): 909-920. DOI: 10.17521/cjpe.2019.0235
图1 不同CaCl2浓度对宽叶雀稗幼苗生长指标的影响(平均值±标准误差)。同一指标不同小字母表示处理间差异显著(p < 0.05)。
Fig. 1 Effects of different CaCl2 concentrations on the growth indices of Paspalum wettsteinii seedlings (mean ± SE). Different lowercase letters indicate significant difference among different CaCl2 concentrations (p < 0.05).
图2 不同CaCl2浓度对宽叶雀稗幼苗生物量的影响(平均值±标准误差)。同一指标不同小字母表示处理间差异显著(p < 0.05)。
Fig. 2 Effects of different CaCl2 concentrations on the biomass of Paspalum wettsteinii seedlings (mean ± SE). Different lowercase letters indicate significant difference among different CaCl2 concentrations (p < 0.05).
渗透调节物质Osmoregulation substance | CaCl2浓度 CaCl2 concentrations (mmol·L-1) | 时间处理 Time treatment (d) | |||
---|---|---|---|---|---|
7 | 14 | 21 | 28 | ||
脯氨酸 Proline (μg·g-1) | 0 | 16.13 ± 0.84Cc | 27.24 ± 0.97Ac | 23.87 ± 0.70Bc | 10.08 ± 1.43Dc |
5 | 23.44 ± 1.17Ca | 30.91 ± 0.87Ab | 27.64 ± 0.63Bb | 13.25 ± 0.61Db | |
25 | 25.04 ± 1.41Ca | 32.82 ± 0.68Aa | 30.91 ± 0.52Ba | 16.97 ± 0.65Da | |
50 | 20.51 ± 0.95Cb | 24.46 ± 0.67Ad | 22.68 ± 0.62Bc | 12.94 ± 0.74Db | |
100 | 14.23 ± 0.57Cd | 22.98 ± 0.62Ae | 19.08 ± 0.38Bd | 8.85 ± 0.62Dd | |
200 | 9.65 ± 0.32Be | 14.66 ± 1.17Af | 15.15 ± 0.32Ae | 7.25 ± 0.68Bd | |
可溶性蛋白 Soluble protein (mg·g-1) | 0 | 10.22 ± 0.70Bd | 14.09 ± 0.41Ac | 10.73 ± 0.43Bc | 6.25 ± 0.36Cb |
5 | 11.23 ± 0.50Bc | 15.47 ± 0.31Ab | 13.16 ± 0.73Ca | 7.48 ± 0.23Db | |
25 | 12.50 ± 0.27Bb | 17.38 ± 0.54Aa | 14.11 ± 0.77Ba | 8.99 ± 0.44Ca | |
50 | 13.67 ± 0.12Ba | 18.03 ± 0.43Aa | 11.84 ± 0.34Cb | 6.13 ± 0.45Db | |
100 | 11.56 ± 0.49Bc | 16.25 ± 0.64Ab | 10.17 ± 0.57Cc | 4.93 ± 0.25Dc | |
200 | 8.05 ± 0.54Ce | 13.54 ± 0.35Ac | 8.96 ± 0.07Bd | 3.75 ± 0.11Dd | |
可溶性糖 Soluble sugar (mg·g-1) | 0 | 17.04 ± 1.22Cd | 27.07 ± 1.42Ad | 22.54 ± 0.61Bc | 12.26 ± 1.64Db |
5 | 18.60 ± 0.64Cc | 30.27 ± 0.70Ab | 23.68 ± 0.85Bb | 12.36 ± 0.80Db | |
25 | 21.25 ± 1.21Cb | 32.00 ± 1.47Aa | 25.40 ± 1.50Ba | 14.36 ± 0.95Da | |
50 | 22.23 ± 0.51Ba | 29.05 ± 1.36Ac | 20.81 ± 1.10Cd | 13.62 ± 0.49Da | |
100 | 15.82 ± 0.97Ce | 27.23 ± 1.29Ad | 19.09 ± 1.06Be | 10.45 ± 0.43Dc | |
200 | 13.92 ± 0.87Cf | 26.53 ± 0.80Ad | 19.62 ± 0.44Be | 10.50 ± 1.08Dc |
表1 不同CaCl2浓度对宽叶雀稗幼苗脯氨酸、可溶性蛋白和可溶性糖含量的影响(平均值±标准误差)
Table 1 Effects of different CaCl2 concentrations on proline content, soluble protein and soluble sugar content of Paspalum wettsteinii seedlings (mean ± SE)
渗透调节物质Osmoregulation substance | CaCl2浓度 CaCl2 concentrations (mmol·L-1) | 时间处理 Time treatment (d) | |||
---|---|---|---|---|---|
7 | 14 | 21 | 28 | ||
脯氨酸 Proline (μg·g-1) | 0 | 16.13 ± 0.84Cc | 27.24 ± 0.97Ac | 23.87 ± 0.70Bc | 10.08 ± 1.43Dc |
5 | 23.44 ± 1.17Ca | 30.91 ± 0.87Ab | 27.64 ± 0.63Bb | 13.25 ± 0.61Db | |
25 | 25.04 ± 1.41Ca | 32.82 ± 0.68Aa | 30.91 ± 0.52Ba | 16.97 ± 0.65Da | |
50 | 20.51 ± 0.95Cb | 24.46 ± 0.67Ad | 22.68 ± 0.62Bc | 12.94 ± 0.74Db | |
100 | 14.23 ± 0.57Cd | 22.98 ± 0.62Ae | 19.08 ± 0.38Bd | 8.85 ± 0.62Dd | |
200 | 9.65 ± 0.32Be | 14.66 ± 1.17Af | 15.15 ± 0.32Ae | 7.25 ± 0.68Bd | |
可溶性蛋白 Soluble protein (mg·g-1) | 0 | 10.22 ± 0.70Bd | 14.09 ± 0.41Ac | 10.73 ± 0.43Bc | 6.25 ± 0.36Cb |
5 | 11.23 ± 0.50Bc | 15.47 ± 0.31Ab | 13.16 ± 0.73Ca | 7.48 ± 0.23Db | |
25 | 12.50 ± 0.27Bb | 17.38 ± 0.54Aa | 14.11 ± 0.77Ba | 8.99 ± 0.44Ca | |
50 | 13.67 ± 0.12Ba | 18.03 ± 0.43Aa | 11.84 ± 0.34Cb | 6.13 ± 0.45Db | |
100 | 11.56 ± 0.49Bc | 16.25 ± 0.64Ab | 10.17 ± 0.57Cc | 4.93 ± 0.25Dc | |
200 | 8.05 ± 0.54Ce | 13.54 ± 0.35Ac | 8.96 ± 0.07Bd | 3.75 ± 0.11Dd | |
可溶性糖 Soluble sugar (mg·g-1) | 0 | 17.04 ± 1.22Cd | 27.07 ± 1.42Ad | 22.54 ± 0.61Bc | 12.26 ± 1.64Db |
5 | 18.60 ± 0.64Cc | 30.27 ± 0.70Ab | 23.68 ± 0.85Bb | 12.36 ± 0.80Db | |
25 | 21.25 ± 1.21Cb | 32.00 ± 1.47Aa | 25.40 ± 1.50Ba | 14.36 ± 0.95Da | |
50 | 22.23 ± 0.51Ba | 29.05 ± 1.36Ac | 20.81 ± 1.10Cd | 13.62 ± 0.49Da | |
100 | 15.82 ± 0.97Ce | 27.23 ± 1.29Ad | 19.09 ± 1.06Be | 10.45 ± 0.43Dc | |
200 | 13.92 ± 0.87Cf | 26.53 ± 0.80Ad | 19.62 ± 0.44Be | 10.50 ± 1.08Dc |
抗氧化酶和丙二醛 Antioxidative enzyme and malondialdehyde | CaCl2 浓度 CaCl2 concentrations (mmol·L-1) | 时间处理 Time treatment (d) | |||
---|---|---|---|---|---|
7 | 14 | 21 | 28 | ||
POD (U·g-1) | 0 | 1 034.32 ± 65.54Bb | 1 135.20 ± 29.29Ac | 827.85 ± 37.30Cc | 667.22 ± 38.99Db |
5 | 1 043.20 ± 37.77Bb | 1 240.38 ± 60.69Ab | 967.84 ± 21.11Bb | 825.57 ± 59.04Ca | |
25 | 1 173.26 ± 21.35Bb | 1 381.73 ± 35.64Aa | 1 111.83 ± 29.74Ba | 883.05 ± 54.03Ca | |
50 | 1 185.94 ± 52.78Aa | 1 158.08 ± 61.95Abc | 802.64 ± 26.22Bc | 639.95 ± 17.27Cb | |
100 | 1 048.06 ± 55.63Ab | 998.21 ± 27.68Ad | 661.87 ± 52.83Bd | 458.34 ± 31.80Cc | |
200 | 890.13 ± 24.29Ac | 726.07 ± 56.01Be | 446.48 ± 63.14Ce | 398.46 ± 13.29Cc | |
CAT (U·g-1) | 0 | 49.58 ± 5.27Ccd | 91.00 ± 4.84Ac | 66.25 ± 2.84Bc | 40.33 ± 2.02Dc |
5 | 58.18 ± 3.69Cb | 96.86 ± 3.75Abc | 75.56 ± 3.61Bb | 44.21 ± 0.98Db | |
25 | 66.18 ± 5.21Ca | 106.90 ± 3.97Aa | 81.33 ± 2.30Ba | 50.22 ± 0.99Da | |
50 | 53.87 ± 2.95Cbc | 102.75 ± 4.81Ab | 71.13 ± 2.85Bb | 37.60 ± 1.24Dd | |
100 | 44.38 ± 4.29Cd | 78.95 ± 2.41Ad | 52.96 ± 1.65Bd | 32.82 ± 1.39De | |
200 | 42.96 ± 3.79Cd | 63.27 ± 2.40Ae | 49.20 ± 2.66Bd | 30.58 ± 2.24De | |
SOD (U·g-1) | 0 | 449.72 ± 15.86Ce | 761.24 ± 19.78Ac | 511.24 ± 1.00Bd | 362.00 ± 4.92Dc |
5 | 531.29 ± 17.48Cc | 783.43 ± 7.93Ab | 566.58 ± 10.39Bb | 391.70 ± 1.45Db | |
25 | 598.90 ± 5.61Ca | 878.34 ± 3.26Aa | 626.77 ± 20.00Ba | 416.30 ± 2.84Da | |
50 | 566.31 ± 1.98Bb | 797.08 ± 3.70Ab | 545.40 ± 5.00Cc | 387.04 ± 5.43Db | |
100 | 516.22 ± 1.12Bc | 660.98 ± 10.88Ad | 431.00 ± 10.00Ce | 333.14 ± 3.22Dd | |
200 | 468.37 ± 2.77Bd | 629.66 ± 13.24Ae | 404.64 ± 4.00Cf | 219.90 ± 9.99De | |
MDA (μmol·g-1) | 0 | 5.29 ± 0.37Dbc | 8.83 ± 0.29Cab | 9.49 ± 0.23Bbc | 12.68 ± 0.20Abc |
5 | 5.19 ± 0.17Dc | 8.00 ± 0.62Cbc | 9.04 ± 0.33Bcd | 11.77 ± 0.16Acd | |
25 | 5.04 ± 0.41Dc | 7.50 ± 0.75Cc | 8.47 ± 0.14Bd | 11.29 ± 0.44Ad | |
50 | 5.81 ± 0.53Dbc | 8.59 ± 0.30Cab | 10.40 ± 0.56Bb | 13.66 ± 0.35Ab | |
100 | 6.00 ± 0.41Dab | 8.94 ± 0.63Cab | 11.12 ± 0.75Ba | 15.22 ± 0.46Aa | |
200 | 6.60 ± 0.45Da | 9.64 ± 0.61Ca | 11.58 ± 0.27Ba | 15.53 ± 0.34Aa |
表2 不同CaCl2浓度对宽叶雀稗幼苗过氧化物酶(POD)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量的影响(平均值±标准误差)
Table 2 Effects of different CaCl2 concentrations on peroxidase, catalase, superoxide dismutase activity and malondialdehyde content of Paspalum wettsteinii seedlings (mean ± SE)
抗氧化酶和丙二醛 Antioxidative enzyme and malondialdehyde | CaCl2 浓度 CaCl2 concentrations (mmol·L-1) | 时间处理 Time treatment (d) | |||
---|---|---|---|---|---|
7 | 14 | 21 | 28 | ||
POD (U·g-1) | 0 | 1 034.32 ± 65.54Bb | 1 135.20 ± 29.29Ac | 827.85 ± 37.30Cc | 667.22 ± 38.99Db |
5 | 1 043.20 ± 37.77Bb | 1 240.38 ± 60.69Ab | 967.84 ± 21.11Bb | 825.57 ± 59.04Ca | |
25 | 1 173.26 ± 21.35Bb | 1 381.73 ± 35.64Aa | 1 111.83 ± 29.74Ba | 883.05 ± 54.03Ca | |
50 | 1 185.94 ± 52.78Aa | 1 158.08 ± 61.95Abc | 802.64 ± 26.22Bc | 639.95 ± 17.27Cb | |
100 | 1 048.06 ± 55.63Ab | 998.21 ± 27.68Ad | 661.87 ± 52.83Bd | 458.34 ± 31.80Cc | |
200 | 890.13 ± 24.29Ac | 726.07 ± 56.01Be | 446.48 ± 63.14Ce | 398.46 ± 13.29Cc | |
CAT (U·g-1) | 0 | 49.58 ± 5.27Ccd | 91.00 ± 4.84Ac | 66.25 ± 2.84Bc | 40.33 ± 2.02Dc |
5 | 58.18 ± 3.69Cb | 96.86 ± 3.75Abc | 75.56 ± 3.61Bb | 44.21 ± 0.98Db | |
25 | 66.18 ± 5.21Ca | 106.90 ± 3.97Aa | 81.33 ± 2.30Ba | 50.22 ± 0.99Da | |
50 | 53.87 ± 2.95Cbc | 102.75 ± 4.81Ab | 71.13 ± 2.85Bb | 37.60 ± 1.24Dd | |
100 | 44.38 ± 4.29Cd | 78.95 ± 2.41Ad | 52.96 ± 1.65Bd | 32.82 ± 1.39De | |
200 | 42.96 ± 3.79Cd | 63.27 ± 2.40Ae | 49.20 ± 2.66Bd | 30.58 ± 2.24De | |
SOD (U·g-1) | 0 | 449.72 ± 15.86Ce | 761.24 ± 19.78Ac | 511.24 ± 1.00Bd | 362.00 ± 4.92Dc |
5 | 531.29 ± 17.48Cc | 783.43 ± 7.93Ab | 566.58 ± 10.39Bb | 391.70 ± 1.45Db | |
25 | 598.90 ± 5.61Ca | 878.34 ± 3.26Aa | 626.77 ± 20.00Ba | 416.30 ± 2.84Da | |
50 | 566.31 ± 1.98Bb | 797.08 ± 3.70Ab | 545.40 ± 5.00Cc | 387.04 ± 5.43Db | |
100 | 516.22 ± 1.12Bc | 660.98 ± 10.88Ad | 431.00 ± 10.00Ce | 333.14 ± 3.22Dd | |
200 | 468.37 ± 2.77Bd | 629.66 ± 13.24Ae | 404.64 ± 4.00Cf | 219.90 ± 9.99De | |
MDA (μmol·g-1) | 0 | 5.29 ± 0.37Dbc | 8.83 ± 0.29Cab | 9.49 ± 0.23Bbc | 12.68 ± 0.20Abc |
5 | 5.19 ± 0.17Dc | 8.00 ± 0.62Cbc | 9.04 ± 0.33Bcd | 11.77 ± 0.16Acd | |
25 | 5.04 ± 0.41Dc | 7.50 ± 0.75Cc | 8.47 ± 0.14Bd | 11.29 ± 0.44Ad | |
50 | 5.81 ± 0.53Dbc | 8.59 ± 0.30Cab | 10.40 ± 0.56Bb | 13.66 ± 0.35Ab | |
100 | 6.00 ± 0.41Dab | 8.94 ± 0.63Cab | 11.12 ± 0.75Ba | 15.22 ± 0.46Aa | |
200 | 6.60 ± 0.45Da | 9.64 ± 0.61Ca | 11.58 ± 0.27Ba | 15.53 ± 0.34Aa |
叶绿素 Chlorophyll (chl) (mg·g-1) | CaCl2浓度 CaCl2 concentrations (mmol·L-1) | 时间处理 Time treatment (d) | |||
---|---|---|---|---|---|
7 | 14 | 21 | 28 | ||
Chl a (mg·g-1) | 0 | 3.81 ± 0.34Aa | 4.41 ± 0.19Aab | 3.65 ± 0.32Aa | 2.43 ± 0.06Aabc |
5 | 4.38 ± 0.34ABa | 4.57 ± 0.20Aab | 3.75 ± 0.13ABa | 2.74 ± 0.31Bab | |
25 | 5.23 ± 0.15Aa | 5.00 ± 0.19Aa | 4.34 ± 0.11Aa | 3.20 ± 0.19Aa | |
50 | 4.08 ± 0.16Aa | 4.03 ± 0.13Aab | 2.89 ± 0.12ABab | 2.47 ± 0.13Bab | |
100 | 3.46 ± 0.13Aa | 3.33 ± 0.11Aab | 2.48 ± 0.08Aab | 2.20 ± 0.07Abc | |
200 | 2.26 ± 0.04Aa | 2.06 ± 0.14Ab | 1.94 ± 0.24Ab | 1.72 ± 0.11Ac | |
Chl b (mg·g-1) | 0 | 1.06 ± 0.08Aab | 1.24 ± 0.03Aa | 1.41 ± 0.06Aab | 1.26 ± 0.04Aa |
5 | 1.33 ± 0.05Aa | 1.71 ± 0.09Aa | 2.05 ± 0.07Aa | 1.67 ± 0.02Aa | |
25 | 1.19 ± 0.06Aa | 1.57 ± 0.03Aa | 1.75 ± 0.03Aab | 1.59 ± 0.02Aa | |
50 | 1.12 ± 0.10Aab | 1.31 ± 0.06Aa | 1.74 ± 0.02Aab | 1.45 ± 0.06Aa | |
100 | 0.87 ± 0.06Aab | 1.20 ± 0.06Aa | 1.38 ± 0.09Ab | 1.23 ± 0.12Aa | |
200 | 0.65 ± 0.04Bb | 1.13 ± 0.09Aa | 1.20 ± 0.06Ab | 0.84 ± 0.13ABa | |
Chl a+b (mg·g-1) | 0 | 4.74 ± 0.47Aabc | 5.92 ± 0.15Aab | 6.48 ± 0.24Aab | 5.00 ± 0.30Aab |
5 | 5.95 ± 0.09Aa | 7.09 ± 0.08Aa | 7.85 ± 0.31Aa | 6.51 ± 0.17Aa | |
25 | 5.44 ± 0.17Aab | 6.23 ± 0.37Aab | 7.23 ± 0.17Aab | 5.77 ± 0.32Aab | |
50 | 4.65 ± 0.17Aabc | 5.55 ± 0.35Aab | 6.19 ± 0.59Aab | 5.04 ± 0.33Aab | |
100 | 3.69 ± 0.38Bbc | 5.05 ± 0.46Abc | 5.37 ± 0.18Aab | 4.74 ± 0.15Ab | |
200 | 3.08 ± 0.65Bc | 3.78 ± 0.77ABc | 4.24 ± 0.18Ab | 3.15 ± 0.15Bc |
表3 不同CaCl2浓度对宽叶雀稗幼苗叶绿素含量的影响(平均值±标准误差)
Table 3 Effects of different CaCl2 concentrations on the chlorophyll content of Paspalum wettsteinii seedlings (mean ± SE)
叶绿素 Chlorophyll (chl) (mg·g-1) | CaCl2浓度 CaCl2 concentrations (mmol·L-1) | 时间处理 Time treatment (d) | |||
---|---|---|---|---|---|
7 | 14 | 21 | 28 | ||
Chl a (mg·g-1) | 0 | 3.81 ± 0.34Aa | 4.41 ± 0.19Aab | 3.65 ± 0.32Aa | 2.43 ± 0.06Aabc |
5 | 4.38 ± 0.34ABa | 4.57 ± 0.20Aab | 3.75 ± 0.13ABa | 2.74 ± 0.31Bab | |
25 | 5.23 ± 0.15Aa | 5.00 ± 0.19Aa | 4.34 ± 0.11Aa | 3.20 ± 0.19Aa | |
50 | 4.08 ± 0.16Aa | 4.03 ± 0.13Aab | 2.89 ± 0.12ABab | 2.47 ± 0.13Bab | |
100 | 3.46 ± 0.13Aa | 3.33 ± 0.11Aab | 2.48 ± 0.08Aab | 2.20 ± 0.07Abc | |
200 | 2.26 ± 0.04Aa | 2.06 ± 0.14Ab | 1.94 ± 0.24Ab | 1.72 ± 0.11Ac | |
Chl b (mg·g-1) | 0 | 1.06 ± 0.08Aab | 1.24 ± 0.03Aa | 1.41 ± 0.06Aab | 1.26 ± 0.04Aa |
5 | 1.33 ± 0.05Aa | 1.71 ± 0.09Aa | 2.05 ± 0.07Aa | 1.67 ± 0.02Aa | |
25 | 1.19 ± 0.06Aa | 1.57 ± 0.03Aa | 1.75 ± 0.03Aab | 1.59 ± 0.02Aa | |
50 | 1.12 ± 0.10Aab | 1.31 ± 0.06Aa | 1.74 ± 0.02Aab | 1.45 ± 0.06Aa | |
100 | 0.87 ± 0.06Aab | 1.20 ± 0.06Aa | 1.38 ± 0.09Ab | 1.23 ± 0.12Aa | |
200 | 0.65 ± 0.04Bb | 1.13 ± 0.09Aa | 1.20 ± 0.06Ab | 0.84 ± 0.13ABa | |
Chl a+b (mg·g-1) | 0 | 4.74 ± 0.47Aabc | 5.92 ± 0.15Aab | 6.48 ± 0.24Aab | 5.00 ± 0.30Aab |
5 | 5.95 ± 0.09Aa | 7.09 ± 0.08Aa | 7.85 ± 0.31Aa | 6.51 ± 0.17Aa | |
25 | 5.44 ± 0.17Aab | 6.23 ± 0.37Aab | 7.23 ± 0.17Aab | 5.77 ± 0.32Aab | |
50 | 4.65 ± 0.17Aabc | 5.55 ± 0.35Aab | 6.19 ± 0.59Aab | 5.04 ± 0.33Aab | |
100 | 3.69 ± 0.38Bbc | 5.05 ± 0.46Abc | 5.37 ± 0.18Aab | 4.74 ± 0.15Ab | |
200 | 3.08 ± 0.65Bc | 3.78 ± 0.77ABc | 4.24 ± 0.18Ab | 3.15 ± 0.15Bc |
图3 不同CaCl2浓度对宽叶雀稗幼苗光合参数的影响(平均值±标准误差)。Ci, 胞间CO2浓度; Gs, 气孔导度; Pn, 净光合速率; Tr, 蒸腾速率。不同大写字母表示同一浓度不同时间处理间差异显著(p < 0.05); 不同小写字母表示同一时间处理不同浓度间差异显著(p < 0.05)。
Fig. 3 Effects of different CaCl2 concentrations on photosynthetic parameters of Paspalum wettsteinii seedlings (mean ± SE). Ci, intercellular CO2 concentration; Gs, stomatal conductance; Pn, net photosynthetic rate; Tr, transpiration rate. Different uppercase letters indicate significant difference between treatments at different times of the same concentration (p < 0.05); different lowercase letters indicate significant difference between different concentrations at the same time (p < 0.05).
隶属函数值 Sobordinative function | ||||||
---|---|---|---|---|---|---|
L1 | L2 | L3 | L4 | L5 | L6 | |
I1 | 0.459 | 0.513 | 0.333 | 0.536 | 0.636 | 0.553 |
I2 | 0.400 | 0.478 | 0.635 | 0.519 | 0.523 | 0.404 |
I3 | 0.456 | 0.370 | 0.656 | 0.593 | 0.667 | 0.467 |
I4 | 0.412 | 0.563 | 0.664 | 0.617 | 0.606 | 0.619 |
I5 | 0.556 | 0.667 | 0.600 | 0.444 | 0.583 | 0.407 |
I6 | 0.667 | 0.556 | 0.500 | 0.500 | 0.556 | 0.500 |
I7 | 0.500 | 0.444 | 0.556 | 0.500 | 0.333 | 0.556 |
I8 | 0.667 | 0.500 | 0.417 | 0.583 | 0.500 | 0.583 |
I9 | 0.333 | 0.333 | 0.400 | 0.504 | 0.502 | 0.403 |
I10 | 0.600 | 0.646 | 0.378 | 0.476 | 0.400 | 0.611 |
I11 | 0.467 | 0.548 | 0.417 | 0.567 | 0.556 | 0.667 |
I12 | 0.522 | 0.422 | 0.500 | 0.398 | 0.664 | 0.447 |
I13 | 0.475 | 0.351 | 0.470 | 0.595 | 0.662 | 0.339 |
I14 | 0.519 | 0.655 | 0.485 | 0.529 | 0.364 | 0.560 |
I15 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 |
I16 | 0.526 | 0.468 | 0.634 | 0.459 | 0.445 | 0.364 |
I17 | 0.391 | 0.597 | 0.362 | 0.500 | 0.372 | 0.364 |
I18 | 0.491 | 0.500 | 0.625 | 0.436 | 0.481 | 0.347 |
I19 | 0.587 | 0.499 | 0.557 | 0.370 | 0.411 | 0.593 |
I20 | 0.583 | 0.657 | 0.567 | 0.556 | 0.333 | 0.600 |
I21 | 0.437 | 0.541 | 0.636 | 0.513 | 0.557 | 0.360 |
I22 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.457 |
综合评价值 Comprehansive evaluation | 0.502 | 0.514 | 0.518 | 0.509 | 0.507 | 0.486 |
表5 不同CaCl2浓度下宽叶雀稗幼苗形态和生理指标的隶属函数值
Table 5 Sobordinative function among all growth and physiological indices of Paspalum wettsteinii seedlings under different CaCl2 concentrations
隶属函数值 Sobordinative function | ||||||
---|---|---|---|---|---|---|
L1 | L2 | L3 | L4 | L5 | L6 | |
I1 | 0.459 | 0.513 | 0.333 | 0.536 | 0.636 | 0.553 |
I2 | 0.400 | 0.478 | 0.635 | 0.519 | 0.523 | 0.404 |
I3 | 0.456 | 0.370 | 0.656 | 0.593 | 0.667 | 0.467 |
I4 | 0.412 | 0.563 | 0.664 | 0.617 | 0.606 | 0.619 |
I5 | 0.556 | 0.667 | 0.600 | 0.444 | 0.583 | 0.407 |
I6 | 0.667 | 0.556 | 0.500 | 0.500 | 0.556 | 0.500 |
I7 | 0.500 | 0.444 | 0.556 | 0.500 | 0.333 | 0.556 |
I8 | 0.667 | 0.500 | 0.417 | 0.583 | 0.500 | 0.583 |
I9 | 0.333 | 0.333 | 0.400 | 0.504 | 0.502 | 0.403 |
I10 | 0.600 | 0.646 | 0.378 | 0.476 | 0.400 | 0.611 |
I11 | 0.467 | 0.548 | 0.417 | 0.567 | 0.556 | 0.667 |
I12 | 0.522 | 0.422 | 0.500 | 0.398 | 0.664 | 0.447 |
I13 | 0.475 | 0.351 | 0.470 | 0.595 | 0.662 | 0.339 |
I14 | 0.519 | 0.655 | 0.485 | 0.529 | 0.364 | 0.560 |
I15 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 |
I16 | 0.526 | 0.468 | 0.634 | 0.459 | 0.445 | 0.364 |
I17 | 0.391 | 0.597 | 0.362 | 0.500 | 0.372 | 0.364 |
I18 | 0.491 | 0.500 | 0.625 | 0.436 | 0.481 | 0.347 |
I19 | 0.587 | 0.499 | 0.557 | 0.370 | 0.411 | 0.593 |
I20 | 0.583 | 0.657 | 0.567 | 0.556 | 0.333 | 0.600 |
I21 | 0.437 | 0.541 | 0.636 | 0.513 | 0.557 | 0.360 |
I22 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.457 |
综合评价值 Comprehansive evaluation | 0.502 | 0.514 | 0.518 | 0.509 | 0.507 | 0.486 |
[1] | .Bai XS (2019). Adaptive responses of soybean leaves to osmotic retion under drought and salt stress.Modern Agricultural Sciences and Technology, (10), 5-6. |
[柏新盛 (2019). 旱盐胁迫下大豆叶片渗透调节的适应性响应. 现代农业科技, (10), 5-6.] | |
[2] | .Bor M, Özdemir F, Türkan I (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beetBeta vulgaris L. and wild beet Beta maritima L. Plant Science, 164, 77-84. |
[3] |
.Celik Ö, Atak C (2012). The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties.Turkish Journal of Biology, 36, 339-356.
DOI URL |
[4] | .Chen SY, Zhao YM, Li ZX, Han H, Hou XL, Cai LP (2018). Effects of Pb, Cd and acid stress on seed germination, seedling growth and antioxidant enzyme activities ofPaspalum wettsteinii. Acta Agrestia Sinica, 26, 1173-1180. |
[陈顺钰, 赵雅曼, 李宗勋, 韩航, 侯晓龙, 蔡丽平 (2018). Pb、Cd和酸胁迫对宽叶雀稗种子萌发、幼苗生长及抗氧化酶活性的影响. 草地学报, 26, 1173-1180.] | |
[5] | .Cheng GL, Zhang HJ, Zhao JR, Liu CG, Wang YD, Wang XG, Wang RH, Chen CY, Xu TJ (2015). Vigor and physiological changes of different genotypes of maize seed (Zea mays L.) under critical stress storage conditions. Scientia Agricultura Sinica, 48, 33-42. |
[成广雷, 张海娇, 赵久然, 刘春阁, 王元东, 王晓光, 王荣焕, 陈传永, 徐田军 (2015). 临界胁迫贮藏条件下不同基因型玉米种子活力及生理变化. 中国农业科学, 48, 33-42.] | |
[6] | .Doganlar ZB, Demir K, Basak H, Gul IH (2010). Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars.African Journal of Agricultural Research, 15, 2056-2065. |
[7] |
.Farhangi-Abriz S, Torabian S (2017). Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress.Ecotoxicology and Environmental Safety, 137, 64-70.
DOI URL PMID |
[8] | .Ferit Sönmez, Füsun Gülser (2016). Effects of humic acid and CaNO32 on nutrient contents in pepper (Apsicum annuum) seedling under salt stress. Acta Agriculturae Scandinavica, 66, 1-6. |
[9] | .Gabara B, Krajewska M, Stecka E (1995). Calcium effect on number, dimension and activity of nucleoli in cortex cells of pea (Pisum sativum L.) roots after treatment with heavy metals. Plant Science, 111, 153-161. |
[10] |
.Grotkopp E, Rejmánek M, Rost TL (2002). Toward a causal explanation of plant invasiveness: Seedling growth and life-history strategies of 29 pine (Pinus) species. The American Naturalist, 159, 396-419.
DOI URL PMID |
[11] | .Guo YY, Yu HY, Yang MM, Kong DS, Zhang YJ (2018). Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots ofLycium ruthenicum Murr. seedling. Russian Journal of Plant Physiology, 65, 244-250. |
[12] | .Jia PY, Tian FP, Liu YF, Liu Y, Wu GL, Hu Y, Lu Y (2017). Response of leaf physiological indexes to short-term salinity stress for seedlings ofSonchus oleraceus L. Acta Botanica Boreali-Occidentalia Sinica, 37, 1303-1311. |
[贾鹏燕, 田福平, 刘一帆, 刘玉, 武高林, 胡宇, 路远 (2017). 短期盐胁迫对苦苣菜幼苗叶片抗逆生理指标的影响. 西北植物学报, 37, 1303-1311.] | |
[13] | .Jia XP, Deng YM, Sun XB, Liang LJ (2015). Impacts of salt stress on the growth and physiological characteristics ofPaspalum vaginatum. Acta Prataculturae Sinica, 24, 204-212. |
[贾新平, 邓衍明, 孙晓波, 梁丽建 (2015). 盐胁迫对海滨雀稗生长和生理特性的影响. 草业学报, 24, 204-212.] | |
[14] | .Jiang ZC, Luo WQ, Deng Y, Cao JH, Qin XM, Li YQ, Yang QY (2014). The leakage of water and soil in the karst peak cluster depression and its prevention and treatment.Acta Geoscientica Sinica, 35, 535-542. |
[蒋忠诚, 罗为群, 邓艳, 曹建华, 覃星铭, 李衍青, 杨奇勇 (2014). 岩溶峰丛洼地水土漏失及防治研究. 地球学报, 35, 535-542.] | |
[15] |
.Jose AM, Maria O, Agustina BV, Pedro DV, Maria SB, Jose H (2017). Plant responses to salt stress: Adaptive mechanisms.Agronomy, 7, 18. DOI: 10.3390/agronomy7010018.
DOI URL |
[16] |
.Killi D, Haworth M (2017). Diffusive and metabolic constraints to photosynthesis in quinoa during drought and salt stress.Plants, 6, 49. DOI: 10.3390/plants6040049.
DOI URL PMID |
[17] | .Lai ZQ (1989). Studies on tropical and subtropical fine grassPaspalum wettsteiini. Grassland of China, 11, 60-63. |
[赖志强 (1989). 热带亚热带优良牧草宽叶雀稗的研究. 中国草地, 11, 60-63.] | |
[18] | .Li HS (2000). Principles and Techniques of Plant Physiological and Biochemical Experiments. Higher Education Press, Beijing. |
[李合生 (2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京.] | |
[19] | .Li XF (2006). Speciation of Calcium in Soil and Plants’ Leaves in Karst Ecosystem and Its Ecological Significance. Master degree dissertation, Guangxi Normal University, Guilin, Guangxi. |
[李小方 (2006). 岩溶环境中土壤-植物系统钙元素形态分析及其生态意义. 硕士学位论文, 广西师范大学, 广西桂林.] | |
[20] |
.Li XG, Meng QW, Jiang GQ, Zou Q (2003). The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle.Photosynthetica, 41, 259-265.
DOI URL |
[21] |
.Li Z, Tan XF, Lu K, Liu ZM, Wu LL (2017). The effect of CaCl2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions.Photosynthetica, 55, 553-560.
DOI URL |
[22] |
.Li ZW, Xu XL, Zhu JX, Xu CH, Wang KL (2019). Effects of lithology and geomorphology on sediment yield in karst mountainous catchments. Geomorphology, 343, 119-128.
DOI URL |
[23] |
.Liang WJ, Wang ML, Ai XZ (2009). The role of calcium in regulating photosynthesis and related physiological indexes of cucumber seedlings under low light intensity and suboptimal temperature stress.Scientia Horticulturae, 123, 34-38.
DOI URL |
[24] | .Long JM, Li XG (2016). Effects of different sowing date on the growth and agronomic traits ofPaspalum auriculatum. Journal of Anhui Agricultural Sciences, 44, 124-126. |
[龙金梅, 李显刚 (2016). 不同播种期对宽叶雀稗生长发育和农艺性状的影响. 安徽农业科学, 44, 124-126.] | |
[25] | .Luo D, Shi YJ, Song FH, Li JC (2019). Effects of salt stress on growth, photosynthetic and fluorescence characteristics, and root architecture ofCorylus heterophylla × C. avellan seedlings. Journal of Applied Ecology, 30, 3376-3384. |
[罗达, 史彦江, 宋锋惠, 李嘉诚 (2019). 盐胁迫对平欧杂种榛幼苗生长、光合荧光特性及根系构型的影响. 应用生态学报, 30, 3376-3384.] | |
[26] | .Mi YW, Wang GX, Gong CW, Cai ZP, Wu WG (2018). Effects of salt stress on growth and physiology ofIsatis indigotica seedlings. Acta Prataculturae Sinica, 27, 43-51. |
[米永伟, 王国祥, 龚成文, 蔡子平, 武伟国 (2018). 盐胁迫对菘蓝幼苗生长和抗性生理的影响. 草业学报, 27, 43-51.] | |
[27] |
.Mittler R, Vanderauwera S, Gollery M, van Breusegem F (2004). Reactive oxygen gene network of plants.Trends in Plant Science, 9, 490-498.
DOI URL |
[28] | .Ning MQ, Zhao J (2013). The dynamic evolution of rocky desertification in Guizhou during 2005-2010.Guizhou Agricultural Science, (9), 75-78. |
[宁茂岐, 赵佳 (2013).“十一五”期间贵州省石漠化的变化情况. 贵州农业科学, (9), 75-78.] | |
[29] | .Pushpam R, Rangasamy SRS (2000). Variations in chlorophyll contents of rice in relation to salinity.Crop Research, 20, 197-200. |
[30] | .Qu XH, Zhao LL, Wang PC, Chen C, Tang HJ, Zeng HX (2017). Drought resistance of sixPaspalum wettsteinii materials during germination period. Seed, 36, 24-27. |
[屈兴红, 赵丽丽, 王普昶, 陈超, 唐华江, 曾洪学 (2017). 6个宽叶雀稗材料种子萌发期抗旱性研究. 种子, 36, 24-27.] | |
[31] | .Shen LH, Chen JP, Huang YH (2001). Research on characters ofPaspalum wettsteinii. Fujian Science & Technology of Tropical Crops, (2), 1-8. |
[沈林洪, 陈晶萍, 黄炎和 (2001). 宽叶雀稗的性状研究. 福建热作科技, (2), 1-8.] | |
[32] |
.Sneha S, Rishi A, Chandra S (2014). Effect of short term salt stress on chlorophyll content, protein and activities of catalase and ascorbate peroxidase enzymes in pearl millet.American Journal of Plant Physiology, 9, 32-37.
DOI URL |
[33] | .Sun CC, Zhao HY, Zheng CX (2017). Effects of NaCl stress on osmolyte and proline metabolism inGinkgo biloba seedling. Plant Physiology Journal, 53, 470-476. |
[孙聪聪, 赵海燕, 郑彩霞 (2017). NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响. 植物生理学报, 53, 470-476.] | |
[34] | .Wang B, Yu MK, Sun HJ, Cheng XR, Shan QH, Fang YM (2009). Photosynthetic characters ofQuercus acutissima from different provenances under effects of salt stress. Journal of Applied Ecology, 20, 1817-1824. |
[王标, 虞木奎, 孙海菁, 成向荣, 单奇华, 方炎明 (2009). 盐胁迫对不同种源麻栎叶片光合特征的影响. 应用生态学报, 20, 1817-1824.] | |
[35] | .Wang JY, Ao H, Zhang J (2003). Experimental Techniques and Principles of Plant Physiology and Biochemistry. Northeast Forestry University Press, Harbin. 135-136. |
[王晶英, 敖红, 张杰 (2003). 植物生理生化实验技术与原理. 东北林业大学出版社, 哈尔滨. 135-136.] | |
[36] | .Wang SJ, Li YB (2007). Problems and development trends about researches on karst rocky desertification.Advances in Earth Science, 22, 573-582. |
[王世杰, 李阳兵 (2007). 喀斯特石漠化研究存在的问题与发展趋势. 地球科学进展, 22, 573-582.] | |
[37] | .Wang WJ, Zhao LL, Wang PC, Chen C, Yu QQ, Zhang YJ (2019). Effect of different nitrogen levels on the physiology and ecology ofPaspalum wettsteinii. Pratacultural Science, 36, 744-753. |
[王文娟, 赵丽丽, 王普昶, 陈超, 余青青, 张宇君 (2019). 氮素水平对宽叶雀稗生理生态的影响. 草业科学, 36, 744-753.] | |
[38] | .Xie YG, Liu JM, Liao XF, Li P (2017). Effects of calcium stress on physiological and biochemical characteristics of honeysuckle. Jiangsu Agricultural Science, 45, 144-146. |
[谢元贵, 刘济明, 廖小锋, 李鹏 (2017). 钙胁迫对金银花生理生化特性的影响. 江苏农业科学, 45, 144-146.] | |
[39] | .Xu DH, Wang WY, Gao TP, Fang XW, Gao XG, Li JH, Bu HY, Mu J (2017). Calcium alleviates decreases in photosynthesis under salt stress by enhancing antioxidant metabolism and adjusting solute accumulation in Calligonum mongolicum. Conservation Physiology, 5, cox060. DOI: 10.1093/conphys/cox060. |
[40] | .Yang FR, Liu WY, Huang J, Wei YM, Jin Q (2017). Physiological responses of different quinoa varieties to salt stress and evaluation of salt tolerance.Acta Prataculturae Sinica, 26, 77-88. |
[杨发荣, 刘文瑜, 黄杰, 魏玉明, 金茜 (2017). 不同藜麦品种对盐胁迫的生理响应及耐盐性评价. 草业学报, 26, 77-88.] | |
[41] |
.Yang YQ, Guo Y (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses.New Phytologist, 217, 523-539.
DOI URL PMID |
[42] |
.Zeng C, Wang SJ, Bai XY, Li YB, Tian YC, Li Y, Wu LH, Luo GJ (2017). Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS.Solid Earth, 8, 721-736.
DOI URL |
[43] |
.Zhang HH, Zhang XL, Li X, Ding JN, Zhu WX, Qi F, Zhang T, Tian Y, Sun GY (2012). Effects of NaCl and Na2CO3 stresses on the growth and photosynthesis characteristics ofMorus alba seedlings. Journal of Applied Ecology, 23, 625-631.
URL PMID |
[张会慧, 张秀丽, 李鑫, 丁俊男, 朱文旭, 齐飞, 张婷, 田野, 孙广玉 (2012). NaCl和Na2CO3胁迫对桑树幼苗生长和光合特性的影响. 应用生态学报, 23, 625-631.]
URL PMID |
|
[44] | .Zhang SR (1999). A discussion on chlorophyll fluorescence kinetics parameters and their significance.Chinese Bulletin of Botany, 34, 444-448. |
[张守仁 (1999). 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 34, 444-448.] | |
[45] | .Zhao SJ, Shi GA, Dong XC (2002). Experimental Guidance on Crop Physiology. Science Press, Beijing. |
[赵世杰, 史国安, 董新纯 (2002). 作物生理学实验指导. 科学出版社, 北京.] | |
[46] | .Zhao YM, Chen SY, Zhang Y, Jiang Y, Hou XL, Cai LP (2019). Effects of acid and cadmium stresses on seed germination, seedling growth, and subcellular structure ofPaspalum wettsteinii. Journal of Agro-Environment Science, 38, 60-69. |
[赵雅曼, 陈顺钰, 张韵, 姜云, 侯晓龙, 蔡丽平 (2019). 酸、Cd胁迫对宽叶雀稗种子萌发、幼苗生长及亚细胞结构的影响. 农业环境科学学报, 38, 60-69.] | |
[47] | .Zhou Y, Zhao YJ, Huang LJ, Tang NY, Tang XQ, Wang KC (2019). Physiological responses ofSchizonepeta tenuifolia Briq. seedlings to salt stress. Journal of Nuclear Agricultural Sciences, 33, 166-175. |
[周莹, 赵永娟, 黄丽瑾, 唐楠煜, 唐晓清, 王康才 (2019). 荆芥幼苗对盐胁迫的生理响应. 核农学报, 33, 166-175.] |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 邓蓓 王晓锋 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的整合分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
[4] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[5] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[6] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[7] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[8] | 汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响[J]. 植物生态学报, 2023, 47(2): 195-205. |
[9] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[10] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[11] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[12] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[13] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[14] | 张宏祥, 闻志彬, 王茜. 新疆野苹果种群遗传结构及其环境适应性[J]. 植物生态学报, 2022, 46(9): 1098-1108. |
[15] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19