植物生态学报 ›› 2021, Vol. 45 ›› Issue (6): 641-649.DOI: 10.17521/cjpe.2021.0020
收稿日期:
2021-01-14
接受日期:
2021-04-26
出版日期:
2021-06-20
发布日期:
2021-09-09
通讯作者:
ORCID: *方欧娅: 0000-0002-8287-9404(oyfang@ibcas.ac.cn)
作者简介:
*E-mail: oyfang@ibcas.ac.cn
基金资助:
FANG Ou-Ya1,*(), ZHANG Yong2, ZHANG Qi1,3, JIA Heng-Feng1,3
Received:
2021-01-14
Accepted:
2021-04-26
Online:
2021-06-20
Published:
2021-09-09
Contact:
FANG Ou-Ya
Supported by:
摘要:
青藏高原黄河上游河岸带是典型的生态脆弱区, 然而近年来气候变暖加剧了该地极端旱涝事件的频繁发生, 高原河岸带生态脆弱区植被是否能够应对极端旱涝事件的干扰成为流域生态环境管理工作所关注的重点问题。为了研究黄河上游河岸林中主要树种对极端旱涝的响应, 该研究选取青海省同德县和兴海县3处河岸林中的47株甘蒙柽柳(Tamarix austromongolica), 分别从树干面向邻近山体一侧及与之垂直的一侧分别获取1根树轮样本, 分析其历史生长。通过对比两个方向上的生长速率判断甘蒙柽柳是否受到地质灾害影响从而将其划分为受伤组和对照组, 分析两组甘蒙柽柳在过去63年中径流极值年的抵抗力状况及两个方向的生长差异。研究发现, 甘蒙柽柳对干旱和洪涝均有着很强的抵抗力, 河岸带多样化的水分来源有助于甘蒙柽柳在极端干旱环境中较好地生长; 但洪涝伴随泥石流等地质灾害的频发使甘蒙柽柳面向山体侧面受到严重的生长抑制, 表现出显著的方向性差异, 从而影响甘蒙柽柳的形态。较长的创伤恢复期带来的遗留效应可能造成甘蒙柽柳对外界干扰的较高敏感性。研究黄河上游甘蒙柽柳生长对极端旱涝的响应, 将有助于评估生态脆弱区生态弹性过程, 同时为高原河岸带生态建设和恢复提供科学依据。
方欧娅, 张永, 张启, 贾恒锋. 黄河上游甘蒙柽柳生长对极端旱涝的响应. 植物生态学报, 2021, 45(6): 641-649. DOI: 10.17521/cjpe.2021.0020
FANG Ou-Ya, ZHANG Yong, ZHANG Qi, JIA Heng-Feng. Growth responses of Tamarix austromongolica to extreme drought and flood in the upper Yellow River basin. Chinese Journal of Plant Ecology, 2021, 45(6): 641-649. DOI: 10.17521/cjpe.2021.0020
图1 甘蒙柽柳研究区地理位置(A)、采样方向说明(B)以及同德县然果村采样点实景图(C)。BD, 班多村; LQ, 上鹿圈村; RG, 然果村。
Fig. 1 Geographic location of the tamarisk (Tamarix austromongolica) research sites (A), explanation on sampling directions (B) and the real scenery of the sampling site at Ranguo village, Tongde County (C). BD, Banduo village; LQ, Shanglujuan village; RG, Ranguo village.
图2 1956-2018年唐乃亥水文站年实测总径流量及1956-2007年5-9月实测径流量。▲, 干旱年; ▼, 洪涝年。
Fig. 2 The measured annual total runoff from 1956 to 2018 and May-to-September runoff from 1956 to 2007 at the Tangnag Hydrological Station. ▲, drought year; ▼, flood year.
图3 黄河上游两组甘蒙柽柳在不同方向上对极端干旱(A)及洪涝(B)事件的抵抗力指数统计。
Fig. 3 Statistics of the resistance indices for two groups of Tamarix austromongolica in the upper Yellow River basin in different directions to extreme drought (A) and flood (B) events.
事件 Event | 组别 Group | 配对t检验 Paired t-test | 配对秩和检验 Wilcoxon signed rank test | |||
---|---|---|---|---|---|---|
t | df | p | V | p | ||
干旱 Drought | 受伤组 Injured group | 0.824 | 19 | 0.420 | 132 | 0.330 |
对照组 Comparative group | 1.526 | 25 | 0.139 (双侧) (two-sides) 0.069* (单侧) (single-side) | 238 | 0.116 (双侧) (two-sides) 0.058* (单侧) (single-side) | |
洪涝 Flood | 受伤组 Injured group | -2.204 | 18 | 0.041** (双侧) (two-sides) 0.020** (单侧) (single-side) | 48 | 0.060* (双侧) (two-sides) 0.030** (单侧) (single-side) |
对照组 Comparative group | - | - | - | 157 | 0.895 |
表1 黄河上游甘蒙柽柳在极端旱涝事件中A、B方向抵抗力指数差异检验
Table 1 Tests of differences in the resistance indices of Tamarix austromongolica in A and B directions to drought and flood events
事件 Event | 组别 Group | 配对t检验 Paired t-test | 配对秩和检验 Wilcoxon signed rank test | |||
---|---|---|---|---|---|---|
t | df | p | V | p | ||
干旱 Drought | 受伤组 Injured group | 0.824 | 19 | 0.420 | 132 | 0.330 |
对照组 Comparative group | 1.526 | 25 | 0.139 (双侧) (two-sides) 0.069* (单侧) (single-side) | 238 | 0.116 (双侧) (two-sides) 0.058* (单侧) (single-side) | |
洪涝 Flood | 受伤组 Injured group | -2.204 | 18 | 0.041** (双侧) (two-sides) 0.020** (单侧) (single-side) | 48 | 0.060* (双侧) (two-sides) 0.030** (单侧) (single-side) |
对照组 Comparative group | - | - | - | 157 | 0.895 |
图4 极端洪涝年两组甘蒙柽柳A、B方向抵抗力差值分布统计。
Fig. 4 Statistics distributions on of resistance differences between A and B directions in two groups of Tamarix austromongolica in extreme flood events.
采样点 Sampling site | 组别(株数) Group (Number of plants) | 干旱 Drought | 洪涝 Flood | ||
---|---|---|---|---|---|
A方向 Direction A | B方向 Direction B | A方向 Direction A | B方向 Direction B | ||
RG | 受伤组 Injured group (8) | 0.99 | 0.97 | 0.99 | 1.08 |
对照组 Comparative group (9) | 1.05 | 1.03 | 1.03 | 1.02 | |
BD | 受伤组 Injured group (7) | 0.94 | 0.91 | 1.04 | 1.09 |
对照组 Comparative group (13) | 0.96 | 0.92 | 1.02 | 1.02 | |
LQ | 受伤组 Injured group (5) | 0.87 | 0.85 | 1.00 | 1.15 |
对照组 Comparative group (4) | 0.89 | 0.88 | 1.23 | 1.48 |
表2 RG、BD和LQ样点甘蒙柽柳抵抗力平均值比较
Table 2 Comparison of the mean resistance indices of Tamarix austromongolica at the RG, BD and LQ sites
采样点 Sampling site | 组别(株数) Group (Number of plants) | 干旱 Drought | 洪涝 Flood | ||
---|---|---|---|---|---|
A方向 Direction A | B方向 Direction B | A方向 Direction A | B方向 Direction B | ||
RG | 受伤组 Injured group (8) | 0.99 | 0.97 | 0.99 | 1.08 |
对照组 Comparative group (9) | 1.05 | 1.03 | 1.03 | 1.02 | |
BD | 受伤组 Injured group (7) | 0.94 | 0.91 | 1.04 | 1.09 |
对照组 Comparative group (13) | 0.96 | 0.92 | 1.02 | 1.02 | |
LQ | 受伤组 Injured group (5) | 0.87 | 0.85 | 1.00 | 1.15 |
对照组 Comparative group (4) | 0.89 | 0.88 | 1.23 | 1.48 |
[1] |
Allen CD, Macalady AK, Chenchouni H, Bachelet D, Mc- Dowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684.
DOI URL |
[2] |
Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349, 528-532.
DOI PMID |
[3] |
Arbellay E, Fonti P, Stoffel M (2012). Duration and extension of anatomical changes in wood structure after cambial injury. Journal of Experimental Botany, 63, 3271-3277.
DOI PMID |
[4] |
Bär A, Michaletz ST, Mayr S (2019). Fire effects on tree physiology. New Phytologist, 223, 1728-1741.
DOI URL |
[5] |
DeSoto L, Cailleret M, Sterck F, Jansen S, Kramer K, Robert EMR, Aakala T, Amoroso MM, Bigler C, Camarero JJ, Čufar K, Gea-Izquierdo G, Gillner S, Haavik LJ, Hereş AM, et al. (2020). Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 11, 545. DOI: 10.1038/s41467-020-14300-5.
DOI PMID |
[6] |
Devitt DA, Salal A, Mace KA, Smith SD (1997). The effect of applied water on the water use of saltcedar in a desert riparian environment. Journal of Hydrology, 192, 233-246.
DOI URL |
[7] | Dong ZW, Li SY, Zhao Y, Lei JQ, Wang YD, Li CJ (2020). Stable oxygen-hydrogen isotopes reveal water use strategies of Tamarix taklamakanensis in the Taklimakan Desert, China. Journal of Arid Land, 12, 115-129. |
[8] |
Fang OY, Jia HF, Qiu HY, Ren HB(2017). Age of arboreous Tamarix austromongolica and its growth response to environment in Tongde County of Qinghai, China. Chinese Journal of Plant Ecology, 41, 738-748.
DOI URL |
[ 方欧娅, 贾恒锋, 邱红岩, 任海保(2017). 青海省同德县乔木状甘蒙柽柳的年龄及其生长对环境的响应. 植物生态学报, 41, 738-748.] | |
[9] |
Fang OY, Zhang QB (2019). Tree resilience to drought increases in the Tibetan Plateau. Global Change Biology, 25, 245-253.
DOI URL |
[10] | Flores BM, Holmgren M, Xu C, van Nes EH, Jakovac CC, Mesquita RCG, Scheffer M (2017). Floodplains as an Achilles’ heel of Amazonian forest resilience. Proceedings of the National Academy of Sciences of the United States of America, 114, 4442-4446. |
[11] |
Gazol A, Camarero JJ, Anderegg WRL, Vicente-Serrano SM (2017). Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 26, 166-176.
DOI URL |
[12] |
Ji P, Yuan X, Ma F, Pan M (2020). Accelerated hydrological cycle over the Sanjiangyuan region induces more streamflow extremes at different global warming levels. Hydrology and Earth System Sciences, 24, 5439-5451.
DOI URL |
[13] | Ji XM, Ning HS, Liang JY, Gao MY, Li L(2012). Comparison of drought resistance and photosynthetic characteristics of Haloxylon ammodendron and Tamarix hohenackeri at seedling stage under different moisture conditions. Journal of Desert Research, 32, 399-406. |
[ 吉小敏, 宁虎森, 梁继业, 高明月, 李磊(2012). 不同水分条件下梭梭和多花柽柳苗期光合特性及抗旱性比较. 中国沙漠, 32, 399-406.] | |
[14] |
Kuang XX, Jiao JJ (2016). Review on climate change on the Tibetan Plateau during the last half century. Journal of Geophysical Research: Atmospheres, 121, 3979-4007.
DOI URL |
[15] |
Li CF, Yang F, Zheng XQ, Han ZY, Pan HL, Zhou CL, Ji CR (2021). Changes in distribution and morphology of Tamarix ramosissima nebkhas in an oasis-desert ecotone. Geosciences Journal.DOI: 10.1007/s12303-020-0054-3.
DOI |
[16] | Li CJ, Chen T, Wang B, Xu GB, Zhang XW, Wu GJ(2019). Advances in research on the abnormal structure of tree-rings. Chinese Journal of Ecology, 38, 1538-1550. |
[ 李彩娟, 陈拓, 王波, 徐国保, 张轩文, 吴国菊(2019). 树轮异常结构的研究进展. 生态学杂志, 38, 1538-1550.] | |
[17] | Li CX, Lan HY(2021). Research progress in the stress tolerance mechanisms of desert plant Tamarix spp. Biotechnology Bulletin, 37, 17-29. |
[ 李彩霞, 兰海燕(2021). 荒漠植物柽柳抗逆机制的研究进展. 生物技术通报, 37, 17-29.] | |
[18] |
Li D, Si JH, Zhang XY, Gao YY, Luo H, Qin J, Gao GL (2019). Comparison of branch water relations in two riparian species:Populus euphratica and Tamarix ramosissima. Sustainability, 11, 5461.
DOI URL |
[19] |
Li XY, Liu LY, Gao SY, Shi PJ, Zou XY, Zhang CL (2005). Microcatchment water harvesting for growing Tamarix ramosissima in the semiarid loess region of China. Forest Ecology and Management, 214, 111-117.
DOI URL |
[20] |
Liu HY, Williams AP, Allen CD, Guo DL, Wu XC, Anenkhonov OA, Liang EY, Sandanov DV, Yin Y, Qi ZH, Badmaeva NK (2013). Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Global Change Biology, 19, 2500-2510.
DOI URL |
[21] |
Lloret F, Keeling EG, Sala A (2011). Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 120, 1909-1920.
DOI URL |
[22] |
Moreno-Fernández D, Ledo A, Martín-Benito D, Cañellas I, Gea-Izquierdo G (2019). Negative synergistic effects of land-use legacies and climate drive widespread oak decline in evergreen Mediterranean open woodlands. Forest Ecology and Management, 432, 884-894.
DOI |
[23] |
Mou YM, Fang OY, Cheng XH, Qiu HY (2019). Recent tree growth decline unprecedented over the last four centuries in a Tibetan juniper forest. Journal of Forestry Research, 30, 1429-1436.
DOI URL |
[24] |
Nippert JB, Butler JJ, Kluitenberg GJ, Whittemore DO, Arnold D, Spal SE, Ward JK (2010). Patterns of Tamarix water use during a record drought. Oecologia, 162, 283-292.
DOI PMID |
[25] |
Schurman JS, Trotsiuk V, Bače R, Cada V, Fraver S, Janda P, Kulakowski D, Labusova J, Mikoláš M, Nagel TA, Seidl R, Synek M, Svobodová K, Chaskovskyy O, Teodosiu M, et al. (2018). Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Global Change Biology, 24, 2169-2181.
DOI URL |
[26] | Sher A, Quigley MF (2013). Tamarix: a Case Study of Ecological Change in the American West. Oxford University Press, Oxford. |
[27] |
Snyder KA, Scott RL (2020). Longer term effects of biological control on tamarisk evapotranspiration and carbon dioxide exchange. Hydrological Processes, 34, 223-236.
DOI URL |
[28] |
Stoffel M (2008). Dating past geomorphic processes with tangential rows of traumatic resin ducts. Dendrochronologia, 26, 53-60.
DOI URL |
[29] |
Stromberg JC, Tluczek MGF, Hazelton AF, Ajami H (2010). A century of riparian forest expansion following extreme disturbance: spatio-temporal change in Populus/Salix/ amarix forests along the Upper San Pedro River, Arizona, USA. Forest Ecology and Management, 259, 1181-1189.
DOI URL |
[30] |
Wang PL, Wang LQ, Liu ZY, Zhang TQ, Wang YY, Li YB, Gao CQ (2019). Molecular characterization and expression profiles of GRAS genes in response to abiotic stress and hormone treatment in Tamarix hispida. Trees, 33, 213-225.
DOI URL |
[31] | Wang TS, Sun BP, Feng L, Hu SJ, Yu MH(2013). Effects of different soil moisture contents on root growth characteristics of Tamarix austromongolica seedlings. Chinese Journal of Ecology, 32, 591-596. |
[ 王同顺, 孙保平, 冯磊, 胡生君, 于明含(2013). 不同水分处理对甘蒙柽柳幼苗根系生长特性的影响. 生态学杂志, 32, 591-596.] | |
[32] | Wang WQ, Ma ZJ, Feng LZ(2003). Plant for protecting ridge of terrace fields in hilly area of Qinghai: Tamarix austremongolica Nakai. Research of Soil and Water Conservation, 10, 112-115. |
[ 王文卿, 马占杰, 冯玲正(2003). 青海浅山区梯田护埂植物——甘蒙柽柳. 水土保持研究, 10, 112-115.] | |
[33] | Wei J, Zhang XM, Ma WD, Shan LS, Yan HL(2007). Seedling growth dynamics of Tamarix austromongolica and its acclimation strategy in hinterland of desert. Arid Land Geography, 30, 666-673. |
[ 魏疆, 张希明, 马文东, 单立山, 闫海龙(2007). 甘蒙柽柳幼苗生长动态及其对沙漠腹地生境条件的适应策略. 干旱区地理, 30, 666-673.] | |
[34] |
Xia JB, Lang Y, Zhao QK, Liu P, Su L (2021). Photosynthetic characteristics of Tamarix chinensis under different groundwater depths in freshwater habitats. Science of the Total Environment, 761, 143221. DOI: 10.1016/j.scitotenv.2020.143221.
DOI URL |
[35] |
Xiao SC, Xiao HL, Peng XM, Tian QY (2014). Intra-annual stem diameter growth of Tamarix ramosissima and association with hydroclimatic factors in the lower reaches of China’s Heihe River. Journal of Arid Land, 6, 498-510.
DOI URL |
[36] | Xu H, Li Y, Xie JX, Cheng L, Zhao Y, Liu R(2010). Influence of solar radiation and groundwater table on carbon balance of phreatophytic desert shrub Tamarix. Chinese Journal of Plant Ecology, 34, 375-386. |
[ 许皓, 李彦, 谢静霞, 程磊, 赵彦, 刘冉(2010). 光合有效辐射与地下水位变化对柽柳属荒漠灌木群落碳平衡的影响. 植物生态学报, 34, 375-386.] | |
[37] |
Yang GY, Yu LL, Zhang KM, Zhao YL, Guo YC, Gao CQ (2017). A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida. Plant Physiology and Biochemistry, 113, 187-197.
DOI URL |
[38] |
Yang Y, Saatchi SS, Xu L, Yu YF, Choi S, Phillips N, Kennedy R, Keller M, Knyazikhin Y, Myneni RB (2018). Post- drought decline of the Amazon carbon sink. Nature Communications, 9, 3172. DOI: 10.1038/s41467-018-05668-6.
DOI PMID |
[39] |
Yao TD, Thompson LG, Mosbrugger V, Zhang F, Ma YM, Luo TX, Xu BQ, Yang XX, Joswiak DR, Wang WC, Joswiak ME, Devkota LP, Tayal S, Jilani R, Fayziev R (2012). Third pole environment (TPE). Environmental Development, 3, 52-64.
DOI URL |
[40] | Zhang JQ, Qie JZ, Zhang Y(2020). Investigation of the distribution of traumatic resin ducts in Picea crassifolia. Mountain Research, 38, 710-716. |
[ 张建奇, 郄佳志, 张永(2020). 青海云杉创伤树脂道分布调查. 山地学报, 38, 710-716.] | |
[41] |
Zhang L, Li GJ, Dong GQ, Wang M, Di DW, Kronzucker HJ, Shi WM (2019). Characterization and comparison of nitrate fluxes in Tamarix ramosissima and cotton roots under simulated drought conditions. Tree Physiology, 39, 628-640.
DOI PMID |
[42] |
Zhang QB, Fang OY (2020). Tree rings circle an abrupt shift in climate. Science, 370, 1037-1038.
DOI URL |
[43] |
Zhu JF, Liu JT, Lu ZH, Li JS, Sun JK (2018). Water-use strategies of coexisting shrub species in the Yellow River Delta, China. Canadian Journal of Forest Research, 48, 1099-1107.
DOI URL |
[1] | 王晓悦 许艺馨 李春环 余海龙 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性及其影响因素研究[J]. 植物生态学报, 2023, 47(1): 0-0. |
[2] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[3] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[4] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[5] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[6] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[7] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[8] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[9] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[10] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
[11] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[12] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度 敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[13] | 陈世苹 胡中民. 中国典型生态脆弱区碳水通量过程研究[J]. 植物生态学报, 2022, 46(12): 1433-1436. |
[14] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤呼吸与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[15] | 王俐爽 同小娟 孟平 张劲松 刘沛荣 李俊 张静茹 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19