植物生态学报 ›› 2024, Vol. 48 ›› Issue (11): 1536-1546.DOI: 10.17521/cjpe.2023.0258 cstr: 32100.14.cjpe.2023.0258
• 研究论文 • 上一篇
王妮1, 李朝娜1, 郑旭理2, 姜思成1, 杨海芸1,*()
收稿日期:
2023-09-08
接受日期:
2024-03-06
出版日期:
2024-11-20
发布日期:
2024-07-03
通讯作者:
*杨海芸(yhy2006@zafu.edu.cn)
基金资助:
WANG Ni1, LI Zhao-Na1, ZHENG Xu-Li2, JIANG Si-Cheng1, YANG Hai-Yun1,*()
Received:
2023-09-08
Accepted:
2024-03-06
Online:
2024-11-20
Published:
2024-07-03
Contact:
*YANG Hai-Yun (yhy2006@zafu.edu.cn)
Supported by:
摘要:
竹子在自然界中存在较多叶色变异, 花叶矢竹(Pseudosasa japonica f. akebonosuji)叶色变异是典型代表, 通过对花叶矢竹不同叶色叶片光合特性的研究, 可解析其叶色变异机理。该研究以花叶矢竹不同叶色叶片为研究对象, 利用紫外分光光度计、高效液相色谱和连续激发式荧光仪等测定不同叶色叶片的光合色素含量、叶绿素合成前体物质相对含量、光系统活性及光合效应差异, 阐明花叶矢竹叶色变异的生理机制。结果表明: (1)花叶矢竹全绿型和花叶型叶片光合色素含量差异显著, 花叶型叶片的叶绿素a/b值显著低于全绿型, 而类胡萝卜素/叶绿素值显著高于绿叶。(2)花叶矢竹白叶和条纹白叶的叶绿素生物合成前体物质粪卟啉III含量显著高于绿叶, 而相邻产物原卟啉IX含量急剧下降, 导致叶绿素a、叶绿素b含量显著降低。(3)条纹叶的净光合速率、表观量子效率等均显著低于绿叶, 全白叶无光合效应。(4)以全绿叶作为对照, 花叶捕获的激子将电子传递到电子传递链中初级醌受体(QA)下游的电子受体的概率(Ψo)和以吸收光能为基础的性能指数(PIABS)均显著降低, 且PIABS的降低幅度大于Ψo, 白叶复绿后也没有完全恢复, 表明花叶光系统II (PSII)供体侧供应电子的能力和受体侧接收电子的能力都降低, PSII整体性能低于绿叶。白叶和条纹叶叶绿素K相荧光强度(Fk)占F0 - Fj振幅的比例(Wk)变化值显著高于绿叶(F0为初始荧光强度, Fj为J相荧光强度), 白叶复绿后其性能基本恢复。绿叶叶绿素Fj占F0 - Fp振幅的比例(Vj)变化值显著低于白叶和复绿叶, 与条纹绿叶无显著差异, 表明PSII受体侧性能在绿叶和条纹绿叶上表现一致, 但是复绿叶也没有完全恢复至绿叶水平。(5)花叶和复绿叶820 nm处的光吸收量均小于绿叶, 白叶复绿过程中, 光系统I (PSI)最大氧化还原能力(ΔI/Io)值显著增加并逐渐恢复到稳定绿叶水平, 说明花叶叶绿素I (P700)氧化还原能力都较低, 白叶复绿后氧化能力与绿叶无显著差异, 但P700+的还原能力没有恢复到绿叶水平。(6) PSI与PSII之间的协调性变化(ΦPSI/PSII)在白叶中显著低于绿叶, PSI/PSII的协调性变差, PSII下降幅度大于PSI。复绿叶片ΦPSI/PSII显著高于绿叶, 说明PSI恢复而PSII没有恢复, 因此, 复绿叶光系统性能减弱主要由PSII引发。总之, 花叶是由叶绿素含量、叶绿素a/b值下降导致的叶绿素a缺乏型突变, 原卟啉IX含量急剧下降导致叶绿素合成障碍; PSII/PSI的协调性变弱、叶片复绿后PSII性能并未恢复到绿叶水平, 因此全株始终保持花叶, 光合能力及利用效率都低于绿叶, 不同叶色之间存在光合生理差异。
王妮, 李朝娜, 郑旭理, 姜思成, 杨海芸. 花叶矢竹叶片色素合成和光合特性. 植物生态学报, 2024, 48(11): 1536-1546. DOI: 10.17521/cjpe.2023.0258
WANG Ni, LI Zhao-Na, ZHENG Xu-Li, JIANG Si-Cheng, YANG Hai-Yun. Pigment synthesis and photosynthetic characteristics of leaves in Pseudosasa japonica f. akebonosuji. Chinese Journal of Plant Ecology, 2024, 48(11): 1536-1546. DOI: 10.17521/cjpe.2023.0258
图1 花叶矢竹不同叶片类型和不同复绿阶段叶片。
Fig. 1 Different types of leaves and different degrees of return-green leaves of Pseudosasa japonica f. akebonosuji. AL0 (AL), albino leaf; AL2, albino leaf unfold for 2 months; AL6, albino leaf unfold for 6 months; AL12, albino leaf unfold for 12 months; GL, green leaf; SA, striped albino leaf; SG, striped green leaf.
材料 Material | 叶绿素a Chl a (µg·g-1) | 叶绿素b Chl b (µg·g-1) | 总叶绿素 Chl (a+b) (µg·g-1) | 类胡萝卜素 Car (µg·g-1) | 叶绿素a/b Chl a/b | 类胡萝卜素/叶绿素 Car/Chl |
---|---|---|---|---|---|---|
绿叶 GL | 408.9 ± 49.0a | 180.8 ± 24.3a | 589.7 ± 73.3a | 61.1 ± 12.1a | 2.3 ± 0.1a | 0.097 ± 0.021c |
条纹绿叶 SG | 355.7 ± 17.5a | 195.3 ± 12.6a | 551.1 ± 21.1a | 50.8 ± 9.5a | 1.9 ± 0.4b | 0.091 ± 0.044c |
条纹白叶 SA | 17.8 ± 3.1b | 10.7 ± 1.5b | 28.6 ± 4.6b | 8.8 ± 0.8b | 1.6 ± 0.1b | 0.338 ± 0.076b |
白叶 AL0 | 10.0 ± 1.0b | 5.7 ± 0.8b | 15.7 ± 1.7b | 7.8 ± 0.4b | 1.9 ± 0.5b | 0.534 ± 0.055a |
表1 花叶矢竹不同叶片光合色素含量的变化(平均值±标准差)
Table 1 Variation of photosynthetic pigment content of Pseudosasa japonica f. akebonosuji (mean ± SD)
材料 Material | 叶绿素a Chl a (µg·g-1) | 叶绿素b Chl b (µg·g-1) | 总叶绿素 Chl (a+b) (µg·g-1) | 类胡萝卜素 Car (µg·g-1) | 叶绿素a/b Chl a/b | 类胡萝卜素/叶绿素 Car/Chl |
---|---|---|---|---|---|---|
绿叶 GL | 408.9 ± 49.0a | 180.8 ± 24.3a | 589.7 ± 73.3a | 61.1 ± 12.1a | 2.3 ± 0.1a | 0.097 ± 0.021c |
条纹绿叶 SG | 355.7 ± 17.5a | 195.3 ± 12.6a | 551.1 ± 21.1a | 50.8 ± 9.5a | 1.9 ± 0.4b | 0.091 ± 0.044c |
条纹白叶 SA | 17.8 ± 3.1b | 10.7 ± 1.5b | 28.6 ± 4.6b | 8.8 ± 0.8b | 1.6 ± 0.1b | 0.338 ± 0.076b |
白叶 AL0 | 10.0 ± 1.0b | 5.7 ± 0.8b | 15.7 ± 1.7b | 7.8 ± 0.4b | 1.9 ± 0.5b | 0.534 ± 0.055a |
图2 花叶矢竹不同类型叶片间叶绿素合成前体物质相对含量(平均值±标准差)。设全绿叶(GL)中各产物含量为1, A、B、C分别为条纹绿叶(SG)、条纹白叶(SA)和全白叶(AL0)相对于绿叶(GL)的含量。ALA, δ-氨基乙酰丙酸; Chl, 叶绿素; Coprogen III, 粪卟啉原III; Mg-ProtoIX, Mg-原卟啉IX; PBG, 单卟啉胆色素; Pchlide, 原叶绿素酸酯; Proto IX, 原卟啉IX; Urogen III, 尿卟啉原III。不同小写字母表示不同类型叶片间差异显著(p < 0.05)。
Fig. 2 Relative content of precursor substances for chlorophyll synthesis of Pseudosasa japonica f. akebonosuji among different leaf types (mean ± SD). Supposing content of green leaf is 1, A, B, C are contents of striped green leaf (SG), striped albino leaf (SA) and albino leaf (AL0) relative to green leaf (GL). ALA, δ-aminolevulinic acid; Chl, chlorophyll; Coprogen III, coproporphyrinogen III; Mg-Proto, Mg-protoporphyrin IX; PBG, porphobilinogen; Pchlide, protochlorophyllide; Proto IX, protoporphyrin IX; Urogen III, uroporphyrino-gen III. Different lowercase letters indicate significant differences among different leaf types (p < 0.05).
图3 花叶矢竹不同类型叶片间的光响应曲线(平均值±标准差)。GL, 绿叶; SA, 条纹白叶; SG, 条纹绿叶。
Fig. 3 Light response curves of net photosynthetic rate (Pn) in Pseudosasa japonica f. akebonosuji among different leaf types (mean ± SD). GL, green leaf; SA, albino sector in leaf with strips; SG, green sector in leaf with strips. PAR, photosynthetically active radiation.
叶型 Leaf type | 最大净光合速率 Pmax (μmol·m-2·s-1) | 表观量子效率 AQY (μmol·mol-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) |
---|---|---|---|---|---|
绿叶 GL | 13.70 ± 2.44a | 0.057 ± 0.005a | 1.18 ± 0.18a | 21.30 ± 2.02b | 424.50 ± 39.01b |
条纹绿叶 SG | 8.65 ± 2.55b | 0.004 ± 0.006b | 0.97 ± 0.02a | 26.16 ± 3.75b | 489.30 ± 86.63b |
条纹白叶 SA | 0.93 ± 0.01c | 0.003 ± 0.000c | 0.60 ± 0.12b | 260.02 ± 15.45a | 628.80 ± 42.80a |
白叶 AL0 | - | - | - | - | - |
表2 花叶矢竹不同类型叶片间对光响应特性的影响(平均值±标准差)
Table 2 Effects of different leaf types on photosynthesis-light response parameters of Pseudosasa japonica f. akebonosuji (mean ± SD)
叶型 Leaf type | 最大净光合速率 Pmax (μmol·m-2·s-1) | 表观量子效率 AQY (μmol·mol-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) |
---|---|---|---|---|---|
绿叶 GL | 13.70 ± 2.44a | 0.057 ± 0.005a | 1.18 ± 0.18a | 21.30 ± 2.02b | 424.50 ± 39.01b |
条纹绿叶 SG | 8.65 ± 2.55b | 0.004 ± 0.006b | 0.97 ± 0.02a | 26.16 ± 3.75b | 489.30 ± 86.63b |
条纹白叶 SA | 0.93 ± 0.01c | 0.003 ± 0.000c | 0.60 ± 0.12b | 260.02 ± 15.45a | 628.80 ± 42.80a |
白叶 AL0 | - | - | - | - | - |
叶型 Leaf type | Vcmax (μmol·m-2·s-1 ) | Jmax (μmol·m-2·s-1) | Jmax/Vcmax |
---|---|---|---|
绿叶 GL | 86.22 ± 3.78a | 117.67 ± 4.36a | 1.37 ± 0.01c |
条纹绿叶 SG | 85.60 ± 8.29a | 120.77 ± 13.87a | 1.41 ± 0.03b |
条纹白叶 SA | 15.34 ± 1.58b | 30.61 ± 3.05b | 2.00 ± 0.01a |
白叶 AL0 | - | - | - |
表3 花叶矢竹不同类型叶片间CO2响应曲线模拟的光合参数(平均值±标准差)
Table 3 Photosynthesis parameters for CO2 response curve for different leaf types in Pseudosasa japonica f. akebonosuji (mean ± SD)
叶型 Leaf type | Vcmax (μmol·m-2·s-1 ) | Jmax (μmol·m-2·s-1) | Jmax/Vcmax |
---|---|---|---|
绿叶 GL | 86.22 ± 3.78a | 117.67 ± 4.36a | 1.37 ± 0.01c |
条纹绿叶 SG | 85.60 ± 8.29a | 120.77 ± 13.87a | 1.41 ± 0.03b |
条纹白叶 SA | 15.34 ± 1.58b | 30.61 ± 3.05b | 2.00 ± 0.01a |
白叶 AL0 | - | - | - |
图4 花叶矢竹不同类型叶片间叶绿素荧光诱导动力学曲线和相对可变荧光强度差值。AL0 (AL), 白叶; AL2, 白叶展开2个月; AL6, 白叶展开6个月; AL12, 白叶展开12个月; GL, 绿叶; SA, 条纹白叶; SG, 条纹绿叶。
Fig. 4 Dynamic curves for chlorophyll a fluorescein and the relative variable fluorescence intensity with different leaf types of Pseudosasa japonica f. akebonosuji. AL0 (AL), albino leaf; AL2, albino leaf unfold for 2 months; AL6, albino leaf unfold for 6 months; AL12, albino leaf unfold for 12 months; GL, green leaf; SA, striped albino leaf; SG, striped green leaf.
图5 花叶矢竹不同类型叶片间捕获的激子将电子传递到电子传递链中初级醌受体(QA)下游的电子受体的概率(Ψo)和以吸收光能为基础的性能指数(PIABS) (平均值±标准差)。AL0 (AL), 白叶; AL2, 白叶展开2个月; AL6, 白叶展开6个月; AL12, 白叶展开12个月; GL, 绿叶; SA, 条纹白叶; SG, 条纹绿叶。不同小写字母表示不同类型叶片间差异显著(p < 0.05)。
Fig. 5 Probability of that a trapped exciton the moves an electron further than QA by trapped exciton (Ψo) and performance index (PIABS) of Pseudosasa japonica f. akebonosuji under different leaf types (mean ± SD). AL0 (AL), albino leaf; AL2, albino leaf unfold for 2 months; AL6, albino leaf unfold for 6 months; AL12, albino leaf unfold for 12 months; GL, green leaf; SA, striped albino leaf; SG, striped green leaf. Different lowercase letters indicate significant differences among different leaf types (p < 0.05).
图6 花叶矢竹不同类型叶片间叶绿素Fk占F0 - Fj振幅的比例(Wk)和Fj占F0 - Fp振幅的比例(Vj) (平均值±标准差)。AL0 (AL), 白叶; AL2, 白叶展开2个月; AL6, 白叶展开6个月; AL12, 白叶展开12个月; GL, 绿叶; SA, 条纹白叶; SG, 条纹绿叶; F0, 初始荧光; Fj, J相荧光强度; Fk, K相荧光强度; Fp, P相荧光强度。不同小写字母表示不同类型叶片间差异显著(p < 0.05)。
Fig. 6 Proportion of Fk in F0 - Fj amplitude of chlorophyll (Wk) and proportion of Fj in F0 - Fp amplitude of chlorophyll (Vj) of Pseudosasa japonica f. akebonosuji under different leaf types (mean ± SD). AL0 (AL), albino leaf; AL2, albino leaf unfold for 2 months; AL6, albino leaf unfold for 6 months; AL12, albino leaf unfold for 12 months; GL, green leaf; SA, striped albino leaf; SG, striped green leaf; F0, minimal fluorescence; Fj, fluorescence intensity at J-step; Fk, fluorescence intensity at K-step; Fp, fluorescence intensity at P-step. Different lowercase letters indicate significant differences among different leaf types (p < 0.05).
图7 花叶矢竹不同类型叶片间光系统I (PSI) 820 nm相对吸收值变化(平均值±标准差)。AL0 (AL), 白叶; AL2, 白叶展开2个月; AL6, 白叶展开6个月; AL12, 白叶展开12个月; GL, 绿叶; SA, 条纹白叶; SG, 条纹绿叶。
Fig. 7 Changes of relative absorbtion of photosystem I (PSI) (PSI) 820 nm of different leaf types in Pseudosasa japonica f. akebonosuji (mean ± SD). AL0 (AL), albino leaf; AL2, albino leaf unfold for 2 months; AL6, albino leaf unfold for 6 months; AL12, albino leaf unfold for 12 months; GL, green leaf; SA, striped albino leaf; SG, striped green leaf.
图8 花叶矢竹不同类型叶片间光系统I (PSI)最大氧化还原能力(ΔI/Io)的差异(平均值±标准差)。AL0 (AL), 白叶; AL2, 白叶展开2个月; AL6, 白叶展开6个月; AL12, 白叶展开12个月; GL, 绿叶; SA, 条纹白叶; SG, 条纹绿叶。不同小写字母表示不同类型叶片间差异显著(p < 0.05)。
Fig. 8 Difference of photosystem I (PSI) maximum ability of oxido-reduction ΔI/Io of different leaf types in Pseudosasa japonica f. akebonosuji (mean ± SD). AL0 (AL), albino leaf; AL2, albino leaf unfold for 2 months; AL6, albino leaf unfold for 6 months; AL12, albino leaf unfold for 12 months; GL, green leaf; SA, striped albino leaf; SG, striped green leaf. Different lowercase letters indicate significant differences among different leaf types (p < 0.05).
图9 花叶矢竹不同类型叶片间光系统I (PSI)与光系统II (PSII)之间的协调性变化(ΦPSI/PSII) (平均值±标准差)。AL0 (AL), 白叶; AL2, 白叶展开2个月; AL6, 白叶展开6个月; AL12, 白叶展开12个月; GL, 绿叶; SA, 条纹白叶; SG, 条纹绿叶。不同小写字母表示不同类型叶片间差异显著(p < 0.05)。
Fig. 9 Changes of coordination between photosystem I (PSI) and photosystem II (PSII) of Pseudosasa japonica f. akebonosuji among different leaf types (ΦPSI/PSII) (mean ± SD). AL0 (AL), albino leaf; AL2, albino leaf unfold for 2 months; AL6, albino leaf unfold for 6 months; AL12, albino leaf unfold for 12 months; GL, green leaf; SA, striped albino leaf; SG, striped green leaf. Different lowercase letters indicate significant differences among different leaf types (p < 0.05).
[1] | Chen LY, Xie DJ, Rong JD, Lai JL, Lin XL, Zheng YS (2019). Effects of photosynthetic pigment content on photosynthetic characteristics of different leaf color phenotypes of Sinobambusa tootsik f. luteoloalbostriata. Scientia Silvae Sinicae, 55(12), 21-31. |
[陈凌艳, 谢德金, 荣俊冬, 赖金莉, 林雪玲, 郑郁善 (2019). 光合色素含量差异对花叶唐竹不同叶色表型光合特性的影响. 林业科学, 55(12), 21-31.] | |
[2] | Cheng MM, Chen KY, Zhu XY, Wang KL, Zhou MB, Yang HY (2018). Photosynthetic characteristics and chloroplast ultrastructure of Pseudosasa japonica f. akebonosuji during green-revertilble albino stage. Scientia Silvae Sinicae, 54(4), 1-10. |
[成敏敏, 陈柯伊, 朱雪玉, 王凯利, 周明兵, 杨海芸 (2018). 花叶矢竹复绿期光合特性及叶绿体结构. 林业科学, 54(4), 1-10.] | |
[3] |
Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
DOI PMID |
[4] |
Farquhar GD, von Caemmerer S, Berry JA (2001). Models of photosynthesis. Plant Physiology, 125, 42-45.
DOI PMID |
[5] |
Gu BW, Yang JF, Lu XL, Wu YH, Li N, Liu N, An N, Han XR (2021). Effects of continuous application of biochar on chlorophyll fluorescence characteristics of peanut at different growth stages. Scientia Agricultura Sinica, 54, 4552-4561.
DOI |
[顾博文, 杨劲峰, 鲁晓玲, 吴怡慧, 李娜, 刘宁, 安宁, 韩晓日 (2021). 连续施用生物炭对花生不同生育时期叶绿素荧光特性的影响. 中国农业科学, 54, 4552-4561.]
DOI |
|
[6] | Han T (2010). Effects of Chlorophyll Deficiency on Photosystem Photochemistry in Rice. Master degree dissertation, Nanjing Agricultural University, Nanjing. |
[韩涛 (2010). 叶绿素缺乏对水稻光系统光化学功能的影响. 硕士学位论文, 南京农业大学, 南京.] | |
[7] | Hikosaka K (2005). Nitrogen partitioning in the photosynthetic apparatus of Plantago asiatica leaves grown under different temperature and light conditions: similarities and differences between temperature and light acclimation. Plant & Cell Physiology, 46, 1283-1290. |
[8] | Hodgins RR, van Huystee RB (1986). Rapid simultaneous estimation of protoporphyrin and Mg-porphyrins in higher plants. Journal of Plant Physiology, 125, 311-323. |
[9] |
Jarvis P, López-Juez E (2013). Biogenesis and homeostasis of chloroplasts and other plastids. Nature Reviews Molecular Cell Biology, 14, 787-802.
DOI PMID |
[10] | Ji WW, Lu C, Liu ZH, Tan JZ (2008). Preliminary study on the characteristics of the photosynthetic pigment and chlorophyll biological synthesis in Chlorophytum comosum. Journal of Anhui Agricultural Sciences, 36, 14065-14066. |
[计玮玮, 鲁聪, 刘中华, 谈建中 (2008). 吊兰光合色素与叶绿素生物合成特性的初步研究. 安徽农业科学, 36, 14065-14066.] | |
[11] |
Kumar AM, Söll D (2000). Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiology, 122, 49-56.
DOI PMID |
[12] | Li C, Wang JW, Hu ZY, Xia YY, Huang Q, Yu T, Yi HY, Lu YL, Wang J, Cao MJ (2021). A valine residue deletion in ZmSig2A, a sigma factor, accounts for a revertible leaf-color mutation in maize. The Crop Journal, 9, 1330-1343. |
[13] |
Li L, Zhang XX, Zheng R, Guo JQ (2016). Photosynthetic characteristics and photosynthesis-light response curve models of summer maize. Chinese Journal of Plant Ecology, 40, 1310-1318.
DOI |
[李力, 张祥星, 郑睿, 郭建青 (2016). 夏玉米光合特性及光响应曲线拟合. 植物生态学报, 40, 1310-1318.]
DOI |
|
[14] | Li PM, Gao HY, Strasser RJ (2005). Application of rapid chlorophyll fluorescence induced kinetic analysis in photosynthesis research. Physiology and Molecular Biology of Plants, 31, 559-566. |
[李鹏民, 高辉远, Strasser RJ (2005). 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 31, 559-566.] | |
[15] |
Liu LY, Feng JX, Liu WX, Wan XC (2020). Effects of drought stress on photosynthesis, growth and root structure of transgenic PtPIP2;8 poplar 84K (Populus alba × P. glandulosa). Chinese Journal of Plant Ecology, 44, 677-686.
DOI |
[刘丽燕, 冯锦霞, 刘文鑫, 万贤崇 (2020). 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响. 植物生态学报, 44, 677-686.]
DOI |
|
[16] | Liu SL, Ma MD, Pan YZ, Wei LL, He CX, Yang KM (2012). Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species. Chinese Journal of Plant Ecology, 36, 1062-1074. |
[刘柿良, 马明东, 潘远智, 魏刘利, 何成相, 杨开茂 (2012). 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响. 植物生态学报, 36, 1062-1074.]
DOI |
|
[17] | Lu ML, Chen MJ, Zhang JJ, Zhao JX, Zhu JL, Du HY (2021). Leaf physiological indicator changes in the transformation of leaves color of Eucommia ulmoides ‘Hongye’. Journal of Nanjing Forestry University (Natural Science Edition), 45(1), 86-92. |
[路买林, 陈梦娇, 张嘉嘉, 赵建霞, 朱景乐, 杜红岩 (2021). ‘红叶’杜仲叶色转变过程中叶片生理指标变化. 南京林业大学学报(自然科学版), 45(1), 86-92.]
DOI |
|
[18] | Luo J, Ding XY, Xu YN, Wang JY, Zhang Q, Sun S, Li YT, Gao HY, Zhang ZS (2022). Effects of growth light intensity on the activity of photosystem in cucumber leaves. Plant Physiology Journal, 58, 1790-1800. |
[罗蛟, 丁新宇, 徐燕妮, 王俊彦, 张强, 孙山, 李玉婷, 高辉远, 张子山 (2022). 生长光强对黄瓜叶片光合机构活性影响研究. 植物生理学报, 58, 1790-1800.] | |
[19] | Rahma GABC, Arafet MB, Walid DAB, Simone CC, Chedly AB, Roberto BC (2018). Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea. Journal of Photochemistry and Photobiology B: Biology, 183, 275-287. |
[20] |
Schansker G, Srivastava A, Strasser RJ (2003). Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biology, 30, 785-796.
DOI PMID |
[21] | Shang CL, Liu Q, Wang MX, Hou L, Zhao CZ, Wang XJ, Xia H (2021). Research progress on molecular mechanisms of leaf color variation in plants. Shandong Agricultural Sciences, 53(7), 127-134. |
[商彩丽, 刘青, 王明晓, 侯蕾, 赵传志, 王兴军, 夏晗 (2021). 植物叶色变异的分子机理研究进展. 山东农业科学, 53(7), 127-134.] | |
[22] | Su JL, Shi WS, Yang YY, Wang X, Ding YL, Lin SY (2020). Comparison of leaf color and pigment content and observation of leaf structure at different growth stages from six bamboo species. Scientia Silvae Sinicae, 56(7), 194-203. |
[苏佳露, 史无双, 杨雅运, 王星, 丁雨龙, 林树燕 (2020). 6个竹种叶色与光合色素含量及叶片结构比较. 林业科学, 56(7), 194-203.] | |
[23] |
Su XD, Li M (2021). Advances in structural biology of photosystem complexes in higher plants. Chinese Journal of Nature, 43(3), 165-175.
DOI |
[苏小东, 李梅 (2021). 高等植物光系统复合物结构生物学研究进展. 自然杂志, 43(3), 165-175.] | |
[24] | Sun JY, Zhang NH, Du LF (2007). Chlorophyll biosynthesis in a chlorophyll b-deficient oilseed rape mutant Cr3529. Acta Botanica Boreali-Occidentalia Sinica, 27, 1962-1966. |
[孙捷音, 张年辉, 杜林方 (2007). 油菜叶绿素b减少突变体Cr3529叶绿素生物合成的研究. 西北植物学报, 27, 1962-1966.] | |
[25] | von Caemmerer S, Evans JR, Hudson GS, Andrews TJ (1994). The kinetics of ribulose-1,5-bisphosphate carboxylase/ oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta, 195, 88-97. |
[26] | Wang RJ, Zhu F, Liang HZ, Huang XH, Wang XX, Chu JJ (2020). Effects of Manganese (Mn) on the performances of photosystems I and II in Melia azedarach young plant. Acta Ecologica Sinica, 40, 2019-2027. |
[王仁杰, 朱凡, 梁惠子, 黄鑫浩, 王旭旭, 楚晶晶 (2020). 重金属Mn对苦楝叶片光系统性能的影响. 生态学报, 40, 2019-2027.] | |
[27] | Wang XX (2016). Analyses of Photosynthetic Characteristics and Chlorophyll Biosynthesis of Allotetraploid in Cucumis. Master degree dissertation, Nanjing Agricultural University, Nanjing. |
[王希希 (2016). 甜瓜属异源四倍体光合特性及其叶绿素生物合成研究. 硕士学位论文, 南京农业大学, 南京.] | |
[28] | Xu XL, Cao O, Qin M, Yao WJ, Din YL, Lin SY (2022). Research advances in plant leaf color variation. Molecular Plant Breeding. [2023-09-08] https://kns.cnki.net/kcms/detail/46.1068.S.20220517.1326.020.html. |
[徐薪璐, 蔡鸥, 秦敏, 姚文静, 丁雨龙, 林树燕 (2022). 植物叶色变异研究进展. 分子植物育种. [2023-09-08] https://kns.cnki.net/kcms/detail/46.1068.S.20220517.1326.020.html.] | |
[29] | Yang HY (2015). Study on Mechanism of Color Variation of Pseudosasa japonica f. akebonosuji. PhD dissertation, Beijing Forestry University, Beijing. |
[杨海芸 (2015). 花叶矢竹叶色变异机理研究. 博士学位论文, 北京林业大学, 北京.] | |
[30] | Zhang ZS, Jia YJ, Gao HY, Zhang LT, Li HD, Meng QW (2011). Characterization of PSI recovery after chilling- induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta, 234, 883-889. |
[31] | Zong XF, Luo L, Lv DH, Wang SG, He GH (2013). Research on chlorophyll synthesis characteristics of the yellow- green leaf mutant ylg 3 throughout its life cycle. Journal of Southwest University (Natural Science), (11), 21-26. |
[宗学凤, 罗力, 吕典华, 王三根, 何光华 (2013). 水稻叶片全生育期黄化突变体ylg3叶绿素合成特性研究. 西南大学学报(自然科学版), (11), 21-26.] |
[1] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[2] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[3] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[4] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[5] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[6] | 冼应男, 张瑛, 李宝珍, 罗沛, 肖润林, 吴金水. 绿狐尾藻光合色素组成及氮磷化学计量学特征对外源铵的响应[J]. 植物生态学报, 2022, 46(4): 451-460. |
[7] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[8] | 程汉亭, 李勤奋, 刘景坤, 严廷良, 张俏燕, 王进闯. 橡胶林下益智光合特性的季节动态变化[J]. 植物生态学报, 2018, 42(5): 585-594. |
[9] | 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响[J]. 植物生态学报, 2017, 41(2): 196-208. |
[10] | 郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪. 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016, 40(1): 69-79. |
[11] | 邹长明, 王允青, 刘英, 张晓红, 唐杉. 四种豆科作物的光合生理和生长发育对弱光的响应[J]. 植物生态学报, 2015, 39(9): 909-916. |
[12] | 胡俊靖, 陈双林, 郭子武, 陈卫军, 杨清平, 李迎春. 美丽箬竹水分生理整合的分株比例效应——基于叶片抗氧化系统与光合色素[J]. 植物生态学报, 2015, 39(7): 762-772. |
[13] | 厉广辉, 万勇善, 刘风珍, 张昆. 苗期干旱及复水条件下不同花生品种的光合特性[J]. 植物生态学报, 2014, 38(7): 729-739. |
[14] | 张翠萍, 孟平, 李建中, 万贤崇. 磷元素和土壤酸化交互作用对核桃幼苗光合特性的影响[J]. 植物生态学报, 2014, 38(12): 1345-1355. |
[15] | 武辉, 戴海芳, 张巨松, 焦晓玲, 刘翠, 石俊毅, 范志超, 阿丽艳·肉孜. 棉花幼苗叶片光合特性对低温胁迫及恢复处理的响应[J]. 植物生态学报, 2014, 38(10): 1124-1134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19