植物生态学报 ›› 2012, Vol. 36 ›› Issue (12): 1226-1236.DOI: 10.3724/SP.J.1258.2012.01226
代景忠1,2, 卫智军1, 何念鹏2,*(), 王若梦3, 温学华2, 张云海4, 赵小宁2, 于贵瑞2
收稿日期:
2012-07-31
接受日期:
2012-09-03
出版日期:
2012-07-31
发布日期:
2012-11-28
通讯作者:
何念鹏
作者简介:
(E-mail: henp@igsnrr.ac.cn)
DAI Jing-Zhong1,2, WEI Zhi-Jun1, HE Nian-Peng2,*(), WANG Ruo-Meng3, WEN Xue-Hua2, ZHANG Yun-Hai4, ZHAO Xiao-Ning2, YU Gui-Rui2
Received:
2012-07-31
Accepted:
2012-09-03
Online:
2012-07-31
Published:
2012-11-28
Contact:
HE Nian-Peng
摘要:
土壤碳矿化(或土壤异养呼吸)的温度敏感性和激发效应是深入揭示土壤呼吸控制机理及其对未来气候变化响应与适应的重要研究方向。该文以自由放牧(FG0)、封育11年(FG11)、封育31年(FG31)的羊草(Leymus chinensis)草地为研究对象, 通过0、5、10、15、20、25 ℃培养, 探讨了封育对羊草草地土壤碳矿化激发效应和温度敏感性的影响。结果表明: 封育年限、添加葡萄糖、培养温度和培养时间对土壤碳矿化速率均具有显著的影响, 不同因素间存在显著的交互效应(p < 0.000 1)。FG0的羊草草地土壤碳矿化累积量显著高于FG11和FG31的, 在添加葡萄糖处理下也呈现相同的趋势。长期封育降低了羊草草地土壤碳矿化的激发效应。在添加葡萄糖后, 培养前7天的土壤碳矿化的激发效应随温度增加而增加, 增加2.28-9.01倍; 在整个56天培养期间, 激发效应介于2.21-5.10倍, 最高值出现在10或15 ℃。土壤碳矿化速率可用经典的指数方程来表示, FG0草地的土壤碳矿化的温度敏感性指数(Q10)大于长期封育草地(FG11和FG31); 与未添加处理相比, 添加葡萄糖显著增加了土壤碳矿化速率的温度敏感性, 即在添加葡萄糖后土壤微生物呼吸受温度的影响更大。长期封育会降低羊草草地土壤的碳矿化速率、温度敏感性和激发效应, 从而降低土壤碳周转速率和释放速率, 使内蒙古地区长期封育草地仍然具有碳固持能力。
代景忠, 卫智军, 何念鹏, 王若梦, 温学华, 张云海, 赵小宁, 于贵瑞. 封育对羊草草地土壤碳矿化激发效应和温度敏感性的影响. 植物生态学报, 2012, 36(12): 1226-1236. DOI: 10.3724/SP.J.1258.2012.01226
DAI Jing-Zhong, WEI Zhi-Jun, HE Nian-Peng, WANG Ruo-Meng, WEN Xue-Hua, ZHANG Yun-Hai, ZHAO Xiao-Ning, YU Gui-Rui. Effect of grazing enclosure on the priming effect and temperature sensitivity of soil C mineralization in Leymus chinensis grasslands, Inner Mongolia, China. Chinese Journal of Plant Ecology, 2012, 36(12): 1226-1236. DOI: 10.3724/SP.J.1258.2012.01226
地上生物量 Aboveground biomass (g·m-2) | 地表凋落物 Aboveground litter (g·m-2) | 土壤有机碳 Soil organic carbon (g·kg-1) | 土壤全氮 Soil total nitrogen (g·kg-1) | 土壤全磷 Soil total phosphorus (g·kg-1) | 土壤pH Soil pH | |
---|---|---|---|---|---|---|
自由放牧草地 (FG0) Grazing-free grassland | 60.3 ± 20.6a | 30.5 ± 13.8a | 13.4 ± 0.5a | 1.4 ± 0.1a | 0.22 ± 0.02a | 8.2 ± 0.3a |
封育11年草地 (FG11) 11-year fenced grassland | 171.6 ± 9.6b | 82.8 ± 18.3b | 18.2 ± 0.5b | 1.7 ± 0.1a | 0.30 ± 0.01b | 7.7 ± 0.2b |
封育31年草地 (FG31) 31-year fenced grassland | 148.3 ± 41.3b | 121.1 ± 32.7c | 18.8 ± 2.2b | 1.4 ± 0.7a | 0.28 ± 0.01b | 7.2 ± 0.3c |
F | 23.39 | 19.46 | 20.31 | 0.89 | 69.64 | 17.14 |
p | <0.001 | <0.001 | <0.001 | 0.437 | <0.001 | <0.001 |
表1 封育对羊草草地地上生物量和土壤化学性质的影响(平均值±标准偏差)
Table 1 Effect of enclosure on aboveground biomass and soil chemical properties of Leymus chinensis grassland (mean ± SD)
地上生物量 Aboveground biomass (g·m-2) | 地表凋落物 Aboveground litter (g·m-2) | 土壤有机碳 Soil organic carbon (g·kg-1) | 土壤全氮 Soil total nitrogen (g·kg-1) | 土壤全磷 Soil total phosphorus (g·kg-1) | 土壤pH Soil pH | |
---|---|---|---|---|---|---|
自由放牧草地 (FG0) Grazing-free grassland | 60.3 ± 20.6a | 30.5 ± 13.8a | 13.4 ± 0.5a | 1.4 ± 0.1a | 0.22 ± 0.02a | 8.2 ± 0.3a |
封育11年草地 (FG11) 11-year fenced grassland | 171.6 ± 9.6b | 82.8 ± 18.3b | 18.2 ± 0.5b | 1.7 ± 0.1a | 0.30 ± 0.01b | 7.7 ± 0.2b |
封育31年草地 (FG31) 31-year fenced grassland | 148.3 ± 41.3b | 121.1 ± 32.7c | 18.8 ± 2.2b | 1.4 ± 0.7a | 0.28 ± 0.01b | 7.2 ± 0.3c |
F | 23.39 | 19.46 | 20.31 | 0.89 | 69.64 | 17.14 |
p | <0.001 | <0.001 | <0.001 | 0.437 | <0.001 | <0.001 |
df | F | p | |
---|---|---|---|
封育时间 Enclosure duration (G) | 2 | 1 299.1 | <0.000 1 |
葡萄糖添加 Glucose addition (A) | 1 | 15 682.9 | <0.000 1 |
培养温度 Incubation temperature (T) | 5 | 1 716.5 | <0.000 1 |
培养时间 Incubation time (I) | 14 | 455.4 | <0.000 1 |
G × A | 2 | 618.3 | <0.000 1 |
G × T | 10 | 131.5 | <0.000 1 |
G × I | 28 | 15.9 | <0.000 1 |
A × T | 5 | 960.3 | <0.000 1 |
A × I | 14 | 383.9 | <0.000 1 |
T × I | 70 | 68.1 | <0.000 1 |
G × A × T | 10 | 59.5 | <0.000 1 |
G × A × I | 28 | 11.6 | <0.000 1 |
G × T × I | 140 | 7.3 | <0.000 1 |
A × T × I | 70 | 55.8 | <0.000 1 |
G × A × T × I | 140 | 6.7 | <0.000 1 |
表2 封育时间、葡萄糖添加、培养温度和培养时间对土壤碳矿化速率的影响
Table 2 Effects of enclosure duration, glucose addition, incubation temperature and time on soil C mineralization rate
df | F | p | |
---|---|---|---|
封育时间 Enclosure duration (G) | 2 | 1 299.1 | <0.000 1 |
葡萄糖添加 Glucose addition (A) | 1 | 15 682.9 | <0.000 1 |
培养温度 Incubation temperature (T) | 5 | 1 716.5 | <0.000 1 |
培养时间 Incubation time (I) | 14 | 455.4 | <0.000 1 |
G × A | 2 | 618.3 | <0.000 1 |
G × T | 10 | 131.5 | <0.000 1 |
G × I | 28 | 15.9 | <0.000 1 |
A × T | 5 | 960.3 | <0.000 1 |
A × I | 14 | 383.9 | <0.000 1 |
T × I | 70 | 68.1 | <0.000 1 |
G × A × T | 10 | 59.5 | <0.000 1 |
G × A × I | 28 | 11.6 | <0.000 1 |
G × T × I | 140 | 7.3 | <0.000 1 |
A × T × I | 70 | 55.8 | <0.000 1 |
G × A × T × I | 140 | 6.7 | <0.000 1 |
图2 土壤碳矿化速率随培养温度和葡萄糖添加的变化。FG0, 自由放牧草地; FG0-GLU, 添加葡萄糖的自由放牧草地; FG11, 封育11年的草地; FG11-GLU, 添加葡萄糖的封育11年的草地; FG31, 封育31年的草地; FG31-GLU, 添加葡萄糖的封育31年的草地。
Fig. 2 Changes in soil C mineralization rate with incubation temperature and glucose addition. FG0, grazing-free grassland; FG0-GLU, grazing-free grassland with glucose addition; FG11, 11-year fenced grassland; FG11-GLU, 11-year fenced grassland with glucose addition; FG31, 31-year fenced grassland; FG31-GLU, 31-year fenced grassland with glucose addition.
图3 培养前7天和培养前56天土壤碳矿化累积量(平均值±标准偏差)。FG0、FG11、FG31同图2。
Fig. 3 Accumulated soil C mineralization in the duration 7 days and 56 days incubation (mean ± SD). FG0, FG11, FG31 see Fig. 2.
图4 培养温度对土壤碳矿化激发效应的影响。激发效应是添加葡萄糖和未添加葡萄糖处理间土壤碳矿化量之比。
Fig. 4 Effect of incubation temperatures on priming effect of soil C mineralization. Priming effect is calculated by the soil C mineralization of glucose addition divided by soil C mineralization of no glucose addition.
处理 Treatment | 基质质量指数 Substrate quality index | Q10 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
培养前7天 Duration of 7 days incubation | 培养前56天 Duration of 56 days incubation | 培养前7天 Duration of 7 days incubation | 培养前56天 Duration of 56 days incubation | ||||||||
F | p | F | p | F | p | F | p | ||||
封育 Enclosure (G) | 22.7 | <0.000 1 | 123.5 | <0.000 1 | 113.6 | <0.000 1 | 86.2 | <0.000 1 | |||
葡萄糖添加 Glucose addition (A) | 378.8 | <0.000 1 | 2 076.1 | <0.000 1 | 828.3 | <0.000 1 | 101.6 | <0.000 1 | |||
G × A | 4.9 | 0.020 1 | 108.3 | <0.000 1 | 17.2 | 0.000 1 | 9.2 | 0.001 8 |
表3 封育和葡萄糖添加对基质质量指数和土壤碳矿化的温度敏感性指数(Q10)的影响
Table 3 Effects of enclosure and glucose addition on the substrate quality index and temperature sensitivity index (Q10) of soil C mineralization
处理 Treatment | 基质质量指数 Substrate quality index | Q10 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
培养前7天 Duration of 7 days incubation | 培养前56天 Duration of 56 days incubation | 培养前7天 Duration of 7 days incubation | 培养前56天 Duration of 56 days incubation | ||||||||
F | p | F | p | F | p | F | p | ||||
封育 Enclosure (G) | 22.7 | <0.000 1 | 123.5 | <0.000 1 | 113.6 | <0.000 1 | 86.2 | <0.000 1 | |||
葡萄糖添加 Glucose addition (A) | 378.8 | <0.000 1 | 2 076.1 | <0.000 1 | 828.3 | <0.000 1 | 101.6 | <0.000 1 | |||
G × A | 4.9 | 0.020 1 | 108.3 | <0.000 1 | 17.2 | 0.000 1 | 9.2 | 0.001 8 |
Y = C0 + A × exp (B × T) | |||||
---|---|---|---|---|---|
A | B | R2 | Q10 | ||
培养前7天 Duration of 7 days incubation | |||||
自由放牧草地 Grazing-free grassland (FG0) | CK | 52.3 ± 0.9a | 0.052 ± 0.006 | 0.939 | 1.682 ± 0.031a |
GLU | 133.9 ± 3.5b | 0.104 ± 0.002 | 0.938 | 2.838 ± 0.068b | |
封育11年的草地 11-year fenced grassland (FG11) | CK | 52.7 ± 1.0a | 0.040 ± 0.002 | 0.950 | 1.496 ± 0.025c |
GLU | 118.1 ± 13.6b | 0.083 ± 0.004 | 0.918 | 2.296 ± 0.086d | |
封育31年的草地 31-year fenced grassland (FG31) | CK | 61.2 ± 0.8a | 0.039 ± 0.002 | 0.943 | 1.480 ± 0.025c |
GLU | 171.9 ± 14.2c | 0.075 ± 0.001 | 0.933 | 2.120 ± 0.017f | |
培养前56天 Duration of 56 days incubation | |||||
自由放牧草地 Grazing-free grassland (FG0) | CK | 374.0 ± 54.6a | 0.055 ± 0.008 | 0.965 | 1.742 ± 0.046a |
GLU | 1 421.1 ± 58.4b | 0.065 ± 0.001 | 0.899 | 1.918 ± 0.022b | |
封育11年的草地 11-year fenced grassland (FG11) | CK | 345.1 ± 33.3a | 0.016 ± 0.005 | 0.692 | 1.540 ± 0.010b |
GLU | 842.7 ± 37.2c | 0.048 ± 0.001 | 0.819 | 1.615 ± 0.023c | |
封育31年的草地 31-year fenced grassland (FG31) | CK | 396.0 ± 6.7a | 0.038 ± 0.002 | 0.880 | 1.527 ± 0.062b |
GLU | 1 026.1 ± 13.5d | 0.052 ± 0.003 | 0.813 | 1.675 ± 0.058ac |
表4 封育和葡萄糖添加对土壤碳矿化的温度敏感性的影响(平均值±标准偏差)
Table 4 Effect of enclosure and glucose addition on temperature sensitivity of soil C mineralization (mean ± SD)
Y = C0 + A × exp (B × T) | |||||
---|---|---|---|---|---|
A | B | R2 | Q10 | ||
培养前7天 Duration of 7 days incubation | |||||
自由放牧草地 Grazing-free grassland (FG0) | CK | 52.3 ± 0.9a | 0.052 ± 0.006 | 0.939 | 1.682 ± 0.031a |
GLU | 133.9 ± 3.5b | 0.104 ± 0.002 | 0.938 | 2.838 ± 0.068b | |
封育11年的草地 11-year fenced grassland (FG11) | CK | 52.7 ± 1.0a | 0.040 ± 0.002 | 0.950 | 1.496 ± 0.025c |
GLU | 118.1 ± 13.6b | 0.083 ± 0.004 | 0.918 | 2.296 ± 0.086d | |
封育31年的草地 31-year fenced grassland (FG31) | CK | 61.2 ± 0.8a | 0.039 ± 0.002 | 0.943 | 1.480 ± 0.025c |
GLU | 171.9 ± 14.2c | 0.075 ± 0.001 | 0.933 | 2.120 ± 0.017f | |
培养前56天 Duration of 56 days incubation | |||||
自由放牧草地 Grazing-free grassland (FG0) | CK | 374.0 ± 54.6a | 0.055 ± 0.008 | 0.965 | 1.742 ± 0.046a |
GLU | 1 421.1 ± 58.4b | 0.065 ± 0.001 | 0.899 | 1.918 ± 0.022b | |
封育11年的草地 11-year fenced grassland (FG11) | CK | 345.1 ± 33.3a | 0.016 ± 0.005 | 0.692 | 1.540 ± 0.010b |
GLU | 842.7 ± 37.2c | 0.048 ± 0.001 | 0.819 | 1.615 ± 0.023c | |
封育31年的草地 31-year fenced grassland (FG31) | CK | 396.0 ± 6.7a | 0.038 ± 0.002 | 0.880 | 1.527 ± 0.062b |
GLU | 1 026.1 ± 13.5d | 0.052 ± 0.003 | 0.813 | 1.675 ± 0.058ac |
1 | Allison SD, Wallenstein MD, Bradford MA ( 2010). Soil- carbon response to warming dependent on microbial physiology. Nature Geoscience, 3, 336-340. |
2 | Bai JB ( 白洁冰), Xu XL ( 徐兴良), Song MH ( 宋明华), He YT ( 何永涛), Jiang J ( 蒋婧), Shi PL ( 石培礼 ) ( 2011). Effects of temperature and added nitrogen on carbon mineralization in alpine soils on the Tibetan Plateau. Ecology and Environmental Sciences (生态环境学报), 20, 855-859. (in Chinese with English abstract) |
3 | Balogh J, Pintér K, Foti S, Cserhalmi D, Papp M, Nagy Z ( 2011). Dependence of soil respiration on soil mois- ture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biology & Biochemistry, 43, 1006-1013. |
4 | Chen CM ( 陈春梅), Xie ZB ( 谢祖彬), Zhu JG ( 朱建国 ) ( 2006). Advances in research on priming effect of soil organic carbon. Soils (土壤), 38, 359-365. (in Chinese with English abstract) |
5 | Chen QS ( 陈全胜), Li LH ( 李凌浩), Han XG ( 韩兴国), Yan ZD ( 阎志丹), Wang YF ( 王艳芬), Zhang Y ( 张焱), Xiong XG ( 熊小刚), Chen SP ( 陈世苹), Zhang LX ( 张丽霞), Gao YZ ( 高英志), Tang F ( 唐芳), Yang J ( 杨晶), Dong YS ( 董云社 ) ( 2004). Temperature sensitivity of soil respiration in relation to soil mois- ture in 11 communities of typical temperate steppe in Inner Mongolia. Acta Ecologica Sinica (生态学报), 24, 831-836. (in Chinese with English abstract) |
6 | Chen ZZ ( 陈佐忠), Wang SP ( 汪诗平), Wang YF ( 王艳芬 ) (2000). Typical Grassland Ecosystems in China (中国典型草地生态系统). Science Press, Beijing. (in Chinese) |
7 | Dalenberg JW, Jager G ( 1981). Priming effect of small glucose additions to 14C-labeled soil . Soil Biology & Biochemistry, 13, 219-223. |
8 | Fan FL ( 范分良), Huang PR ( 黄平容), Tang YJ ( 唐勇军), Li ZJ ( 李兆君), Liang YC ( 梁永超 ) ( 2012). Altered microbial communities change soil respiration rates and their temperature sensitivity. Environmental Sciences (环境科学), 33, 932-937. (in Chinese with English abstract) |
9 | Fang CM, Smith P, Moncrieff JB, Smith JU ( 2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57-59. |
10 | Gershenson A, Bader NE, Cheng WX ( 2009). Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Global Change Biology, 15, 176-183. |
11 | Hamer U, Marschner B ( 2005). Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biology & Biochemistry, 37, 445-454. |
12 |
He NP, Han XG, Yu GR, Chen QS, Justin W ( 2011 a). Divergent changes in plant community composition under 3-decade grazing exclusion in continental steppe. PLOS ONE, 6(11), e26506. doi: 10.1371/ journal.pone.0026506.
DOI URL |
13 | He NP ( 何念鹏), Han XG ( 韩兴国), Yu GR ( 于贵瑞 ) ( 2011). Carbon and nitrogen sequestration rate in long-term fenced grasslands in Inner Mongolia, China. Acta Ecologica Sinica (生态学报), 31, 4270-4276. (in Chinese with English abstract) |
14 | He NP ( 何念鹏), Han XG ( 韩兴国), Yu GR ( 于贵瑞), Dai JZ ( 代景忠 ) ( 2012). Effects of prescribed fire on carbon sequestration of long-term grazing-excluded grasslands in Inner Mongolia. Acta Ecologica Sinica (生态学报), 32, 4388-4395. (in Chinese with English abstract) |
15 | He NP, Yu Q, Wu L, Wang YS, Han XG ( 2008). Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biology & Biochemistry, 40, 2952-2959. |
16 | He NP, Zhang YH, Dai JZ, Han XG, Baoyin T, Yu GR ( 2012). Land-use impact on soil carbon and nitrogen sequestration in typical steppe ecosystems, Inner Mongolia. Journal of Geographical Sciences, 22, 859-873. |
17 | He NP, Zhang YH, Yu Q, Cheng QS, Pan QM, Zhang GM, Han XG ( 2011b). Grazing intensity impacts soil carbon and nitrogen storage of continental steppe. Ecosphere, 2, doi: 10.1890/ES1810-00017.00011. |
18 | IPCC(Intergovernmental Panel on Climate Change) ( 2007). Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds. Climatic Change in 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
19 | Jia BR, Zhou GS ( 2009). Integrated diurnal soil respiration model during growing season of a typical temperate steppe: effects of temperature, soil water content and biomass production. Soil Biology & Biochemistry, 41, 681-686. |
20 | Jia BR, Zhou GS, Yuan WP ( 2007). Modeling and coupling of soil respiration and soil water content in fenced Leymus chinensis steppe, Inner Mongolia. Ecological Modeling, 201, 157-162. |
21 | Kuzyakov Y ( 2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Bioche- mistry, 42, 1363-1371. |
22 | Lal R ( 2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627. |
23 | Laura RD ( 1975). On the “priming effect” of organic materials. Soil Science Society of America Journal, 39, 807-808. |
24 | Liu LX ( 刘立新), Dong YS ( 董云社), Qi YC ( 齐玉春), Zhou LX ( 周凌晞 ) ( 2007). Study on the temperature sensitivity of soil respiration in Xilin River of Inner Mongolia, China. China Environmental Science (中国环境科学), 27, 226-230. (in Chinese with English abstract) |
25 | Lloyd J, Taylor JA ( 1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323. |
26 | Luo YQ, Wan SQ, Hui DF, Wallace LL ( 2001). Acclimati- zation of soil respiration to warming in a tall grass prairie. Nature, 413, 622-625. |
27 | Mahecha MD, Reichstein M, Carvalhais N, Lasslop G, Lange H, Seneviratne SI, Vargas R, Ammann C, Arain MA, Cescatti A, Janssens IA, Migliavacca M, Monta- gnani L, Richardson AD ( 2010). Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329, 838-840. |
28 | Mcintosh RP, Odum EP ( 1969). Ecological succession. Science, 166, 403-404. |
29 | Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ ( 2009). Soil priming by sugar and leaf- litter substrates: a link to microbial groups. Applied Soil Ecology, 42, 183-190. |
30 | Odum EP ( 1957). The ecosystem approach in the teaching of ecology illustrated with sample class data. Ecology, 38, 531-535. |
31 | Perkins DM, Yvon-Durocher G, Demars BOL, Reiss J, Pichler DE, Friberg N, Trimmer M, Woodward G ( 2012). Consistent temperature dependence of respira- tion across ecosystems contrasting in thermal history. Global Change Biology, 18, 1300-1311. |
32 | Sierra CA ( 2012). Temperature sensitivity of organic matter decomposition in the Arrhenius equation: some theore- tical considerations. Biogeochemistry, 108, 1-15. |
33 | von Lützow M, Kögel-Knabner I ( 2009). Temperature sensitivity of soil organic matter decomposition: What do we know? Biology and Fertility of Soils, 46, 1-15. |
34 |
Wu L, He N, Wang Y, Han X ( 2008). Storage and dynamics of carbon and nitrogen in soil after grazing exclusion in Leymus chinensis grasslands of northern China. Journal of Environmental Quality, 37, 663-668.
DOI URL PMID |
35 | Yang QP ( 杨庆朋), Liu HS ( 刘洪升), Wang JS ( 王劲松), Liu LX ( 刘丽香), Chi YG ( 迟永刚), Zheng YP ( 郑云普 ) ( 2011). Impact factors and uncertainties of the temperature sensitivity of soil respiration. Acta Ecologica Sinica (生态学报), 31, 2301-2311. (in Chinese with English abstract) |
36 | Zhang JB ( 张金波), Song CC ( 宋长春), Yang WY ( 杨文燕 ) ( 2005). Temperature sensitivity of soil respiration and its effecting factors in the different land use. Acta Scientiae Circumstantiae (环境科学学报), 25, 1537-1542. (in Chinese with English abstract) |
37 | Zhou JZ, Xue K, Xie JP, Deng Y, Wu LY, Cheng XH, Fei SF, Deng SP, He ZL, van Nostrand JD, Luo YQ ( 2012). Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2, 106-110. |
38 | Zhu PL ( 朱培立), Huang DM ( 黄东迈 ) ( 1994). Discussion on priming effect of soil nitrogen. Scientia Agricultura Scinica (中国农业科学), 27, 45-52. (in Chinese with English abstract) |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[3] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[4] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[5] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[6] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[7] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[8] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[9] | 缪丽娟, 张宇阳, 揣小伟, 包刚, 何昱, 朱敬雯. 亚洲旱区草地NDVI对气候变化的响应及滞后效应[J]. 植物生态学报, 2023, 47(10): 1375-1385. |
[10] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[11] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[12] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[13] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[14] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[15] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19