植物生态学报 ›› 2014, Vol. 38 ›› Issue (10): 1082-1092.DOI: 10.3724/SP.J.1258.2014.00102
李俊楠1, 王文娜1, 谢玲芝1, 王政权1, 谷加存1,*()
收稿日期:
2014-07-01
接受日期:
2014-08-29
出版日期:
2014-07-01
发布日期:
2021-04-20
通讯作者:
谷加存
作者简介:
* E-mail: gjcnefu@163.com基金资助:
LI Jun-Nan1, WANG Wen-Na1, XIE Ling-Zhi1, WANG Zheng-Quan1, GU Jia-Cun1,*()
Received:
2014-07-01
Accepted:
2014-08-29
Online:
2014-07-01
Published:
2021-04-20
Contact:
GU Jia-Cun
摘要:
叶片被取食会导致树木生长发育和生理代谢发生显著的变化。目前对细根动态如何对叶片损失做出响应的了解仍然有限。以生物量分配和高生长策略不同的水曲柳(Fraxinus mandschurica)和落叶松(Larix gmelinii)苗木为研究对象, 进行了不同强度的人为去叶处理(叶面积去除0% (对照)、40%和80%), 采用微根管技术对细根(直径≤2 mm)生产和死亡的季节动态进行了定量观测, 同期测定了地上部分(苗高和地径)的生长。结果表明: 1)去叶降低了两树种苗高(统计上均不显著)和地径的生长, 但是对苗高生长的影响小于地径。随着去叶强度的提高, 苗木地上生长受到的影响加大, 生长季末期水曲柳苗高比对照降低3.3%-12.1%, 地径降低5.7%-23.1%; 而落叶松苗高和地径降低相对较少(< 12%)。2)去叶显著地减少了水曲柳和落叶松细根现存量(p< 0.001), 其相对增长量((去叶后现存量高峰-去叶当日现存量)/去叶当日现存量)随着去叶强度的加大而降低。3)与对照相比, 去叶后两树种细根生产量显著减少(p< 0.05), 而细根死亡量在不同处理间没有显著差异。综合来看, 去叶对水曲柳地上部分(特别是地径)生长影响较大, 而对落叶松地下部分(主要是新根)生长影响较大。研究结果为理解冠层碳供应对根系动态影响的种间差异及其机制提供了必要的理论依据。
李俊楠, 王文娜, 谢玲芝, 王政权, 谷加存. 去叶对水曲柳和落叶松苗木当年生长及细根动态的影响. 植物生态学报, 2014, 38(10): 1082-1092. DOI: 10.3724/SP.J.1258.2014.00102
LI Jun-Nan, WANG Wen-Na, XIE Ling-Zhi, WANG Zheng-Quan, GU Jia-Cun. Effects of defoliation on current-year stem growth and fine root dynamics in Fraxinus mandschurica and Larix gmelinii seedlings. Chinese Journal of Plant Ecology, 2014, 38(10): 1082-1092. DOI: 10.3724/SP.J.1258.2014.00102
图1 水曲柳(A, C)和落叶松(B, D)苗高与地径动态(平均值+标准误差)。 不同小写字母表示相同取样日期处理间差异显著(p < 0.05); *表示去叶日期。
Fig. 1 Dynamics of the height and stem collar diameter in Fraxinus mandschurica (A, C) and Larix gmelinii (B, D) seedlings (mean + SE). Different lowercase letters indicate significant differences among treatments on the same sampling dates (p < 0.05); * indicates the date of defoliation.
图2 水曲柳(A)和落叶松(B)苗木细根现存量动态(平均值+标准误差)。 不同小写字母表示相同取样日期处理间差异显著(p < 0.05); *表示去叶日期。
Fig. 2 Dynamics of fine root standing crops in Fraxinus mandschurica (A) and Larix gmelinii (B) seedlings (mean + SE). Different lowercase letters indicate significant differences among treatments on the same sampling dates (p < 0.05); * indicates the date of defoliation.
变异来源 Source of variation | df | 水曲柳 Fraxinus mandschurica | 落叶松 Larix gmelinii | |||||||
---|---|---|---|---|---|---|---|---|---|---|
现存量 Standing crop | 生产量 Production | 死亡量a Mortalitya | 死亡量b Mortalityb | 现存量 Standing crop | 生产量Production | 死亡量a Mortalitya | 死亡量b Mortalityb | |||
去叶 Defoliation | 2 | <0.001 | <0.001 | 0.814 | 0.934 | <0.001 | 0.042 | 0.230 | 0.318 | |
取样时间 Sampling time | 6 | <0.001 | <0.001 | <0.001 | 0.013 | <0.001 | <0.001 | <0.001 | <0.001 | |
去叶×取样时间 Defoliation × sampling time | 12 | 0.113 | 0.020 | 0.636 | 0.338 | 0.868 | 0.211 | 0.804 | 0.512 |
表1 去叶和取样时间对水曲柳和落叶松细根现存量、生产量与死亡量影响的双因素方差分析
Table 1 Summary of the two-way ANOVA testing the effects of defoliation and sampling time on fine root standing crop, production and mortality in Fraxinus mandschurica and Larix gmelinii seedlings
变异来源 Source of variation | df | 水曲柳 Fraxinus mandschurica | 落叶松 Larix gmelinii | |||||||
---|---|---|---|---|---|---|---|---|---|---|
现存量 Standing crop | 生产量 Production | 死亡量a Mortalitya | 死亡量b Mortalityb | 现存量 Standing crop | 生产量Production | 死亡量a Mortalitya | 死亡量b Mortalityb | |||
去叶 Defoliation | 2 | <0.001 | <0.001 | 0.814 | 0.934 | <0.001 | 0.042 | 0.230 | 0.318 | |
取样时间 Sampling time | 6 | <0.001 | <0.001 | <0.001 | 0.013 | <0.001 | <0.001 | <0.001 | <0.001 | |
去叶×取样时间 Defoliation × sampling time | 12 | 0.113 | 0.020 | 0.636 | 0.338 | 0.868 | 0.211 | 0.804 | 0.512 |
图3 水曲柳(A)和落叶松(B)苗木细根生产量动态(平均值+标准误差)。 不同小写字母表示相同取样日期处理间差异显著(p < 0.05)。
Fig. 3 Dynamics of fine root production in Fraxinus mandschurica (A) and Larix gmelinii (B) seedlings (mean + SE). Different lowercase letters indicate significant differences among treatments on the same sampling dates (p < 0.05).
图4 水曲柳和落叶松不同出生根群(2012年和2013年生)各取样时间段的死亡比例(平均值+标准误差)。 A, 水曲柳2012年出生根。B, 落叶松2012年出生根。C, 水曲柳2013年出生根。D, 落叶松2013年出生根。*表示去叶日期。
Fig. 4 Percentage of mortality during each sampling period of fine roots initiated in 2012 and 2013 in Fraxinus mandschurica and Larix gemelinii seedlings (mean + SE). A, roots initiated in 2012 in Fraxinus mandschurica. B, roots initiated in 2012 in Larix gmelinii. C, roots initiated in 2013 in Fraxinus mandschurica. D, roots initiated in 2013 in Larix gmelinii. * indicates the date of defoliation.
[1] | Alcorn PJ, Bauhus J, Smith RGB, Thomas D, James R, Nicotra A (2008). Growth response following green crown pruning in plantation-grown Eucalyptus pilularis and Eucalyptus cloeziana. Canadian Journal of Forest Research, 38,770-781. |
[2] | Anderson LJ, Comas LH, Lakso AN, Eissenstat DM (2003). Multiple risk factors in root survivorship: a 4-year study in Concord grape. New Phytologist, 158,489-501. |
[3] | Anttonen S, Piispanen R, Ovaska J, Mutikainen P, Saranpää P, Vapaavuori E (2002). Effects of defoliation on growth, biomass allocation, and wood properties of Betula pendula clones grown at different nutrient levels. Canadian Journal of Forest Research, 32,498-508. |
[4] | Barry KM, Quentin A, Eyles A, Pinkard EA (2011). Consequences of resource limitation for recovery from repeated defoliation in Eucalyptus globulus Labilladière. Tree Physiology, 32,24-35. |
[5] | Bassman JH, Zwier JC (1993). Effect of partial defoliation on growth and carbon exchange of two clones of young Populus trichocarpa Torr & Gray. Forest Science, 39,419-431. |
[6] | Beyer F, Hertel D, Jung K, Fender A, Leuschner C (2013). Competition effects on fine root survival of Fagus sylvatica and Fraxinus excelsior. Forest Ecology and Management, 302,14-22. |
[7] | Bloomfield J, Vogt K, Wargo PM (1996). Tree root turnover and senescence. In: Waisel Y, Eshel A, Kafkaki U eds. Plant Roots, the Hidden Half. Marcel Dekker, New York. 363-382. |
[8] | Coleman MD, Dickson RE, Isebrands JG (2000). Contrasting fine-root production, survival and soil CO2efflux in pine and poplar plantations. Plant and Soil, 225,129-139. |
[9] | Collett NG, Neumann FG (2002). Effects of simulated chronic defoliation in summer on growth and survival of blue gum (Eucalyptus globulus Labill) within young plantations in northern Victoria. Australian Forestry, 65,99-106. |
[10] | Craine J, Tremmel D (1995). Improvements to the minirhizo- tron system. Bulletin of the Ecological Society of America, 76,234-235. |
[11] | Crocker TL, Hendrick RL, Ruess RW, Pregitzer KS, Burton AJ, Allen MF, Shan JP, Morris LA (2003). Substituting root numbers for length: improving the use of minirhizo- trons to study fine root dynamics. Applied Soil Ecology, 23,127-135. |
[12] |
Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014). Nonstructural carbon in woody plants. The Annual Review of Plant Biology, 65,667-687.
DOI URL PMID |
[13] |
Eissenstat DM, Duncan LW (1992). Root growth and carbohydrate responses in bearing citrus trees following partial canopy removal. Tree Physiology, 10,245-257.
URL PMID |
[14] | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan. Advances in Ecological Research, 27,1-60. |
[15] | Elek JA (1997). Assessing the impact of leaf beetles in eucalypt plantations and exploring options for their management. Forestry Tasmania, 9,139-154. |
[16] |
Eyles A, Pinkard EA, Mohammed C (2009). Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiology, 29,753-764.
URL PMID |
[17] | Gieger T, Thomas FM (2002). Effects of defoliation and drought stress on biomass partitioning and water relations of Quercus robur and Quercus petraea. Basic and Applied Ecology, 3,171-181. |
[18] | Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147,13-31. |
[19] | Handa IT, Körner C, Hättenschwiler S (2005). A test of the treeline carbon limitation hypothesis by in situ CO2 enrichment and defoliation. Ecology, 86,1288-1300. |
[20] | Hendrick RL, Pregitzer KS (1992). The demography of fine roots in a northern hardwood forest. Ecology, 73,1094-1104. |
[21] | Hoogesteger J, Karlsson PS (1992). Effects of defoliation on radial stem growth and photosynthesis in the mountain birch (Betula pubescens ssp. tortuosa). Functional Ecology, 6,317-323. |
[22] |
Jacquet JS, Bosc A, O’Grady A, Jactel H (2014). Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates. Tree Physiology, 34,367-376.
DOI URL PMID |
[23] |
Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001). Advancing fine root research with minirhizotrons. Environmental and Experimental Botany, 45,263-289.
DOI URL PMID |
[24] |
Kosola KR, Dickmann DI, Paul EA, Parry D (2001). Repeated insect defoliation effects on growth, nitrogen acquisition, carbohydrates, and root demography of poplars. Oecologia, 129,65-74.
DOI URL PMID |
[25] |
Kosola KR, Gross KL (1999). Resource competition and suppression of plants colonizing early successional old fields. Oecologia, 118,69-75.
DOI URL PMID |
[26] | Kramer P, Kozlowski TT (1979). Physiology of Woody Plants. Academic Press, New York. |
[27] | Krause SC, Raffa KF (1996). Differential growth and recovery rates following defoliation in related deciduous and evergreen trees. Trees, 10,308-316. |
[28] | Landhäusser SM, Lieffers VJ (2003). Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones. Trees, 17,471-476. |
[29] | Li MH, Hoch G, Körner C (2002). Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline. Trees, 16,331-337. |
[30] | McCormack ML, Adams TS, Smithwick EAH, Eissenstat DM (2012). Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist, 195,823-831. |
[31] | Mainiero R, Kazda M, Schmid I (2010). Fine root dynamics in 60-year-old stands of Fagus sylvatica and Picea abies growing on haplic luvisol soil. European Journal of Forest Research, 129,1001-1009. |
[32] | Mei L (2006). Fine Root Turnover and Carbon Allocation in Manchurian Ash and Dahurian Larch Plantations. PhD dissertation, Northeast Forestry University, Harbin. 25-28. (in Chinese with English abstract) |
[ 梅莉 (2006). 水曲柳落叶松人工林细根周转与碳分配. 博士学位论文, 东北林业大学, 哈尔滨. 25-28.] | |
[33] |
Mei L, Zhang ZW, Gu JC, Quan XK, Yang LJ, Huang D (2009). Carbon and nitrogen storages and allocation in tree layers of Fraxinus mandschurica and Larix gmelinii plantations. Chinese Journal of Applied Ecology, 20,1791-1796. (in Chinese with English abstract)
URL PMID |
[ 梅莉, 张卓文, 谷加存, 全先奎, 杨丽君, 黄冬 (2009). 水曲柳和落叶松人工林乔木层碳、氮储量及分配. 应用生态学报, 20,1791-1796.]
PMID |
|
[34] | Palacio S, Hester AJ, Maestro M, Millard P (2008). Browsed Betula pubescens trees are not carbon-limited. Functional Ecology, 22,808-815. |
[35] | Pinkard EA, Beadle CL (1998). Effects of green pruning on growth and stem shape of Eucalyptus nitens (Deane and Maiden) Maiden. New Forests, 15,107-126. |
[36] | Ponti F, Minotta G, Cantoni L, Bagnaresi U (2004). Fine root dynamics of pedunculate oak and narrow-leaved ash in a mixed-hardwood plantation in clay soils. Plant and Soil, 259,39-49. |
[37] | Qiu J, Gu JC, Jiang HY, Wang ZQ (2010). Factors influencing fine root longevity of plantation-grown Pinus sylvestris var. mongolica. Chinese Journal of Plant Ecology, 34,1066-1074. (in Chinese with English abstract) |
[ 邱俊, 谷加存, 姜红英, 王政权 (2010). 樟子松人工林细根寿命估计及影响因子研究. 植物生态学报, 34,1066-1074.] | |
[38] | Ruess RW, Hendrick RL, Bryant JP (1998). Regulation of fine root dynamics by mammalian browsers in early successional Alaskan taiga forests. Ecology, 79,2706-2720. |
[39] | Schowalter TD, Hargrove W, Crossley Jr DA (1986). Herbivory in forested ecosystems. Annual Review of Entomology, 31,177-196. |
[40] | Shen GF, Zhai MP (2011). Silviculture. 2nd edn. China Forestry Publishing House, Beijing. (in Chinese) |
[ 沈国舫, 翟明普 (2011). 森林培育学. 第二版. 中国林业出版社, 北京.] | |
[41] | Shi JW, Wang ZQ, Yu SQ, Quan XK, Sun Y, Jia SX, Mei L (2007). Estimating fine root production, mortality and turnover with minirhizotrons in Larix gmelinii and Fraxinus mandschurica plantations. Journal of Plant Ecology (Chinese Version), 31,333-342. (in Chinese with English abstract) |
[ 史建伟, 王政权, 于水强, 全先奎, 孙玥, 贾淑霞, 梅莉 (2007). 落叶松和水曲柳人工林细根生长、死亡和周转. 植物生态学报, 31,333-342.] | |
[42] | Song S, Gu JC, Quan XK, Guo DL, Wang ZQ (2008). Fine-root decomposition of Fraxinus mandschurica and Larix gmelinii plantations. Journal of Plant Ecology (Chinese Version), 32,1227-1237. (in Chinese with English abstract) |
[ 宋森, 谷加存, 全先奎, 郭大立, 王政权 (2008). 水曲柳和兴安落叶松人工林细根分解研究. 植物生态学报, 32,1227-1237.] | |
[43] |
Tschaplinski TJ, Blake TJ (1994). Carbohydrate mobilization following shoot defoliation and decapitation in hybrid poplar. Tree Physiology, 14,141-151.
URL PMID |
[44] | Waring RH, Schlesinger WH (1985). Forest Ecosystems: Concepts and Management. Academic Press, Orlando. |
[45] | Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76,381-397. |
[46] | Yu SQ, Wang ZQ, Shi JW, Quan XK, Mei L, Sun Y, Jia SX, Yu LZ (2007). Estimating fine-root longevity of Fraxinus mandschurica and Larix gmelinii using minirhizotrons. Journal of Plant Ecology (Chinese Version), 31,102-109. (in Chinese with English abstract) |
[ 于水强, 王政权, 史建伟, 全先奎, 梅莉, 孙玥, 贾淑霞, 于立忠 (2007). 水曲柳和落叶松细根寿命的估计. 植物生态学报, 31,102-109.] | |
[47] | Zhou R, Quebedeaux B (2003). Changes in photosynthesis and carbohydrate metabolism in mature apple leaves in response to whole plant source-sink manipulation. Journal of the American Society for Horticultural Science, 128,113-119. |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[5] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[6] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[7] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[8] | 方文静, 蔡琼, 朱江玲, 吉成均, 岳明, 郭卫华, 张峰, 高贤明, 唐志尧, 方精云. 华北地区落叶松林的分布、群落结构和物种多样性[J]. 植物生态学报, 2019, 43(9): 742-752. |
[9] | 焦亮, 王玲玲, 李丽, 陈晓霞, 闫香香. 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应[J]. 植物生态学报, 2019, 43(4): 320-330. |
[10] | 温晓示, 陈彬杭, 张树斌, 徐凯, 叶新宇, 倪伟杰, 王襄平. 不同林龄、树种落叶松人工林径向生长与气候变化的关系[J]. 植物生态学报, 2019, 43(1): 27-36. |
[11] | 字洪标, 陈焱, 胡雷, 王长庭. 氮肥添加对川西北高寒草甸植物群落根系动态的影响[J]. 植物生态学报, 2018, 42(1): 38-49. |
[12] | 解雅麟, 王海燕, 雷相东. 基于过程模型的气候变化对长白落叶松人工林净初级生产力的影响[J]. 植物生态学报, 2017, 41(8): 826-839. |
[13] | 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760. |
[14] | 常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3): 279-289. |
[15] | 史顺增, 熊德成, 邓飞, 冯建新, 许辰森, 钟波元, 陈云玉, 陈光水, 杨玉盛. 土壤增温、氮添加及其交互作用对杉木幼苗细根生产的影响[J]. 植物生态学报, 2017, 41(2): 186-195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19