植物生态学报 ›› 2008, Vol. 32 ›› Issue (2): 440-447.DOI: 10.3773/j.issn.1005-264x.2008.02.023
尹婧1(), 邱国玉1,*(
), 何凡1, 贺康宁2, 田晶会2, 张卫强2, 熊育久1, 赵少华1, 刘建新2
收稿日期:
2007-06-25
接受日期:
2007-11-05
出版日期:
2008-06-25
发布日期:
2008-03-30
通讯作者:
尹婧,邱国玉
作者简介:
E-mail: jingy-98@ires.cn基金资助:
YIN Jing1(), QIU Guo-Yu1,*(
), HE Fan1, HE Kang-Ning2, TIAN Jing-Hui2, ZHANG Wei-Qiang2, XIONG Yu-Jiu1, ZHAO Shao-Hua1, LIU Jian-Xin2
Received:
2007-06-25
Accepted:
2007-11-05
Online:
2008-06-25
Published:
2008-03-30
Contact:
YIN Jing,QIU Guo-Yu
摘要:
该文通过对黄土丘陵区4个密度的刺槐(Robinia pseudoacacia)人工林、3个密度的侧柏(Platycladus orientalis)人工林生长季叶面积变化的研究,揭示了不同密度林分叶面积生长与林分密度的关系;通过对灌木生长季叶面积变化的研究,建立了灌木柠条(Caragana korshinskii)、沙棘(Hippophae rhamnoides)和紫穗槐(Amorpha fruticosa)叶面积与叶鲜重、枝条基径的经验公式,为半干旱区灌木生长调查提供了一种方便、快捷的方法。结果表明:1)刺槐和侧柏各密度林分的单株林木叶面积和叶面积指数均在9月达到最大值,其中刺槐林叶面积指数峰值可达到10.5,侧柏峰值可达到3.2;灌木柠条、沙棘和紫穗槐叶面积和叶面积指数都在8月份达到各自的最大值,柠条、沙棘和紫穗槐的叶面积指数峰值分别为1.195、1.123和1.882;2)刺槐叶面积与叶鲜重具有极显著相关的幂函数关系,侧柏、柠条、沙棘、紫穗槐叶面积与叶鲜重具有极显著相关的线性函数关系,其中柠条枝条基径与叶面积还具有极显著相关的幂函数关系,沙棘、紫穗槐枝条基径与叶面积还具有极显著相关的线性函数关系;3)黄土丘陵区,由于林地土壤水分条件的限制,承载力有限。人工林进入生长盛期后,不同密度刺槐和侧柏林分叶面积指数趋于一致,与最初的造林密度和现存密度没有关系。在不同密度的刺槐和侧柏林分间,单株叶面积与其林分密度成反比。在对上述结果分析的基础上得出:黄土丘陵区,由于林地土壤水分条件的限制,承载力有限。该文所研究的刺槐和侧柏各林分均已达到了当地土地承载力的上限,基于提高单株林木质量的考虑,建议刺槐林郁闭后的密度不超过833株·hm-2,侧柏则不超过1 111株·hm-2。如以全林分生物量为目标,林分密度也可适当减小。
尹婧, 邱国玉, 何凡, 贺康宁, 田晶会, 张卫强, 熊育久, 赵少华, 刘建新. 半干旱黄土丘陵区人工林叶面积特征. 植物生态学报, 2008, 32(2): 440-447. DOI: 10.3773/j.issn.1005-264x.2008.02.023
YIN Jing, QIU Guo-Yu, HE Fan, HE Kang-Ning, TIAN Jing-Hui, ZHANG Wei-Qiang, XIONG Yu-Jiu, ZHAO Shao-Hua, LIU Jian-Xin. LEAF AREA CHARACTERISTICS OF PLANTATION STANDS IN SEMI-ARID LOESS HILL-GULLY REGION OF CHINA. Chinese Journal of Plant Ecology, 2008, 32(2): 440-447. DOI: 10.3773/j.issn.1005-264x.2008.02.023
树种 Species | 造林时间 Planting time | 林分密度 Density (株·hm-2) | 造林规格 Specification (m×m) | 平均树高 Average height (m) | 平均胸径 Average diameter (cm) | 郁闭度 Forest closure | 生物量 Biomass (kg·hm-2) | 坡向 Aspect | 坡度 Slope |
---|---|---|---|---|---|---|---|---|---|
刺槐 | 1986年 | 3 333 | 1.5×2 | 7.99 | 7.87 | 1.0 | 41 089 | N 180° | 20° |
Robinia | 1 666 | 1.5×4 | 8.61 | 9.14 | 1.0 | 78 583 | N 180° | 20° | |
pseudoacacia | 1111 | 1.5×6 | 8.98 | 10.47 | 0.8 | 74 625 | N 200° | 20° | |
833 | 1.5×8 | 9.82 | 11.62 | 0.7 | 69 058 | N 190° | 18° | ||
侧柏 | 1993年 | 3 333 | 1.5×2 | 5.43 | 5.93 | 0.8 | 34 070 | N 200° | 15° |
Platycladus | 1 666 | 1.5×4 | 5.77 | 6.55 | 0.7 | 43 632 | N 200° | 16° | |
orientalis | 1 111 | 1.5×6 | 6.08 | 6.81 | 0.6 | 41 058 | N 200° | 14° |
表1 各试验林分基本情况
Table 1 The basic conditions of each testing forest stands
树种 Species | 造林时间 Planting time | 林分密度 Density (株·hm-2) | 造林规格 Specification (m×m) | 平均树高 Average height (m) | 平均胸径 Average diameter (cm) | 郁闭度 Forest closure | 生物量 Biomass (kg·hm-2) | 坡向 Aspect | 坡度 Slope |
---|---|---|---|---|---|---|---|---|---|
刺槐 | 1986年 | 3 333 | 1.5×2 | 7.99 | 7.87 | 1.0 | 41 089 | N 180° | 20° |
Robinia | 1 666 | 1.5×4 | 8.61 | 9.14 | 1.0 | 78 583 | N 180° | 20° | |
pseudoacacia | 1111 | 1.5×6 | 8.98 | 10.47 | 0.8 | 74 625 | N 200° | 20° | |
833 | 1.5×8 | 9.82 | 11.62 | 0.7 | 69 058 | N 190° | 18° | ||
侧柏 | 1993年 | 3 333 | 1.5×2 | 5.43 | 5.93 | 0.8 | 34 070 | N 200° | 15° |
Platycladus | 1 666 | 1.5×4 | 5.77 | 6.55 | 0.7 | 43 632 | N 200° | 16° | |
orientalis | 1 111 | 1.5×6 | 6.08 | 6.81 | 0.6 | 41 058 | N 200° | 14° |
树种 Species | 5月 May | 7月 July | 8月 August | 10月 October |
---|---|---|---|---|
柠条 Caragana korshinskii | 55.42 | 59.38 | 62.47 | 47.46 |
沙棘 Hippophae rhamnoides | 54.78 | 58.36 | 65.70 | 52.43 |
紫穗槐 Amorpha fruticosa | 56.47 | 61.15 | 59.50 | 52.83 |
刺槐 Robinia pseudoacacia | 51.03 | 71.74 | 65.60 | 59.98 |
侧柏 Platycladus orientalis | 52.26 | 58.24 | 57.65 | 55.46 |
表2 乔灌木叶片含水量月变化
Table 2 Monthly variation of leaf moisture content of trees and shrubs (%)
树种 Species | 5月 May | 7月 July | 8月 August | 10月 October |
---|---|---|---|---|
柠条 Caragana korshinskii | 55.42 | 59.38 | 62.47 | 47.46 |
沙棘 Hippophae rhamnoides | 54.78 | 58.36 | 65.70 | 52.43 |
紫穗槐 Amorpha fruticosa | 56.47 | 61.15 | 59.50 | 52.83 |
刺槐 Robinia pseudoacacia | 51.03 | 71.74 | 65.60 | 59.98 |
侧柏 Platycladus orientalis | 52.26 | 58.24 | 57.65 | 55.46 |
树种 Species | 月份 Month | 叶鲜重与叶面积回归方程 Regression equation of leaf fresh weight and leaf area | R2 | F | p | 自由度 Freeness |
---|---|---|---|---|---|---|
刺槐 Robinia pseudoacacia | 5~7 | Y=89.513 1X0.987 2 | 0.998** | 29 548.9 | 0.00 | 1 |
8~9 | Y=80.876 4X1.013 | 0.998** | 12 849.3 | 0.00 | 1 | |
10 | Y=73.975 9X0.985 5 | 0.996** | 5 167.5 | 0.00 | 1 | |
侧柏 Platycladus orientalis | 5~10 | Y=16.615 9X+0.774 7 | 0.981** | 2 317.2 | 0.00 | 1 |
表3 刺槐、侧柏叶鲜重与叶面积回归分析结果
Table 3 The results of regression analysis of leaf fresh weight and leaf area of Robinia pseudoacacia and Platycladus orientalis
树种 Species | 月份 Month | 叶鲜重与叶面积回归方程 Regression equation of leaf fresh weight and leaf area | R2 | F | p | 自由度 Freeness |
---|---|---|---|---|---|---|
刺槐 Robinia pseudoacacia | 5~7 | Y=89.513 1X0.987 2 | 0.998** | 29 548.9 | 0.00 | 1 |
8~9 | Y=80.876 4X1.013 | 0.998** | 12 849.3 | 0.00 | 1 | |
10 | Y=73.975 9X0.985 5 | 0.996** | 5 167.5 | 0.00 | 1 | |
侧柏 Platycladus orientalis | 5~10 | Y=16.615 9X+0.774 7 | 0.981** | 2 317.2 | 0.00 | 1 |
树种 Species | 月份 Month | 鲜重与叶面积回归方程 Regression equation of leaf fresh weight and leaf area | 枝条基径与叶面积回归方程 Regression equation of branch diameter and leaf area | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
回归方程 Regression equation | R2 | F | p | 自由度 Freeness | 回归方程 Regression equation | R2 | F | p | 自由度 Freeness | ||||
柠条 | 5~7 | Y=51.272X-0.593 | 0.998 | 26 519.8 | 0.00 | 1 | Y=1 490X2.058 5 | 0.959 | 948.4 | 0.00 | 1 | ||
Caragana | 8~9 | Y=51.125X+1.488 4 | 0.999 | 19 009.8 | 0.00 | 1 | |||||||
korshinskii | 10 | Y=48.692X-0.451 5 | 0.999 | 27 615.3 | 0.00 | 1 | |||||||
沙棘 | 5~7 | Y=49.143X-0.223 4 | 0.999 | 15 226.8 | 0.00 | 1 | Y=1 490.55- 3 404.2X+4 182.47X2 | 0.960 | 708.5 | 0.00 | 2 | ||
Hippophae | 8~9 | Y=40.122X+3.381 1 | 0.999 | 45 583.0 | 0.00 | 1 | |||||||
rhamnoides | 10 | Y=39.573X-1.258 9 | 0.999 | 28 254.0 | 0.00 | 1 | |||||||
紫穗槐 Amorpha fruticosa | 5~10 | Y=91.076X+5.391 7 | 0.999 | 19 697.6 | 0.00 | 1 | Y=-2 390.9+ 5 139.04X | 0.803 | 151.2 | 0.00 | 1 |
表4 灌木叶鲜重、枝条基径与叶面积的回归分析结果
Table 4 The results of regression relation between leaf fresh weight, branch diameter and leaf area of shrubs
树种 Species | 月份 Month | 鲜重与叶面积回归方程 Regression equation of leaf fresh weight and leaf area | 枝条基径与叶面积回归方程 Regression equation of branch diameter and leaf area | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
回归方程 Regression equation | R2 | F | p | 自由度 Freeness | 回归方程 Regression equation | R2 | F | p | 自由度 Freeness | ||||
柠条 | 5~7 | Y=51.272X-0.593 | 0.998 | 26 519.8 | 0.00 | 1 | Y=1 490X2.058 5 | 0.959 | 948.4 | 0.00 | 1 | ||
Caragana | 8~9 | Y=51.125X+1.488 4 | 0.999 | 19 009.8 | 0.00 | 1 | |||||||
korshinskii | 10 | Y=48.692X-0.451 5 | 0.999 | 27 615.3 | 0.00 | 1 | |||||||
沙棘 | 5~7 | Y=49.143X-0.223 4 | 0.999 | 15 226.8 | 0.00 | 1 | Y=1 490.55- 3 404.2X+4 182.47X2 | 0.960 | 708.5 | 0.00 | 2 | ||
Hippophae | 8~9 | Y=40.122X+3.381 1 | 0.999 | 45 583.0 | 0.00 | 1 | |||||||
rhamnoides | 10 | Y=39.573X-1.258 9 | 0.999 | 28 254.0 | 0.00 | 1 | |||||||
紫穗槐 Amorpha fruticosa | 5~10 | Y=91.076X+5.391 7 | 0.999 | 19 697.6 | 0.00 | 1 | Y=-2 390.9+ 5 139.04X | 0.803 | 151.2 | 0.00 | 1 |
树种 Species | 刺槐 Robinia pseudoacacia | 侧柏 Platycladus orientalis | |||||||
---|---|---|---|---|---|---|---|---|---|
造林规格 Specification (m×m) | 1.5×2 | 1.5×4 | 1.5×6 | 1.5×8 | 1.5×2 | 1.5×4 | 1.5×6 | ||
5月 May | 5.2 | 5.1 | 5.4 | 5.4 | 0.9 | 0.8 | 0.8 | ||
6月 Jun. | 5.8 | 5.9 | 6.1 | 5.9 | 1.1 | 1.0 | 1.0 | ||
7月 Jul. | 7.6 | 7.7 | 7.8 | 7.9 | 1.8 | 1.8 | 1.8 | ||
8月 Aug. | 9.3 | 9.5 | 9.2 | 9.4 | 3.0 | 2.8 | 2.9 | ||
9月 Sept. | 10.3 | 10.5 | 10.0 | 10.5 | 3.2 | 2.9 | 3.1 | ||
10月Oct. | 4.4 | 4.4 | 4.3 | 4.3 | 2.4 | 2.6 | 2.7 | ||
平均值Average | 7.1 | 7.2 | 7.1 | 7.2 | 2.1 | 2.0 | 2.1 |
表5 刺槐和侧柏不同密度林分叶面积指数
Table 5 The leaf area index of Robinia pseudoacacia and Platycladus orientalis forest in different densities
树种 Species | 刺槐 Robinia pseudoacacia | 侧柏 Platycladus orientalis | |||||||
---|---|---|---|---|---|---|---|---|---|
造林规格 Specification (m×m) | 1.5×2 | 1.5×4 | 1.5×6 | 1.5×8 | 1.5×2 | 1.5×4 | 1.5×6 | ||
5月 May | 5.2 | 5.1 | 5.4 | 5.4 | 0.9 | 0.8 | 0.8 | ||
6月 Jun. | 5.8 | 5.9 | 6.1 | 5.9 | 1.1 | 1.0 | 1.0 | ||
7月 Jul. | 7.6 | 7.7 | 7.8 | 7.9 | 1.8 | 1.8 | 1.8 | ||
8月 Aug. | 9.3 | 9.5 | 9.2 | 9.4 | 3.0 | 2.8 | 2.9 | ||
9月 Sept. | 10.3 | 10.5 | 10.0 | 10.5 | 3.2 | 2.9 | 3.1 | ||
10月Oct. | 4.4 | 4.4 | 4.3 | 4.3 | 2.4 | 2.6 | 2.7 | ||
平均值Average | 7.1 | 7.2 | 7.1 | 7.2 | 2.1 | 2.0 | 2.1 |
造林规格 Specification (m×m) | 1.5×2 | 1.5×4 | 1.5×6 | 1.5×8 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
t值 | Sig.(2-tailed) | t值 | Sig.(2-tailed) | t值 | Sig.(2-tailed) | t值 | Sig.(2-tailed) | ||||
1.5×4 | -1.746 | 0.141 | - | - | - | - | - | - | |||
1.5×6 | -0.349 | 0.741 | 0.397 | 0.704 | - | - | - | - | |||
1.5×8 | -2.706 | 0.093 | -1.387 | 0.224 | -1.397 | 0.221 | - | - |
表6 刺槐不同密度林分叶面积指数配对样本t检验结果
Table 6 Results of paired-samples t-test to leaf area index of Robinia pseudoacacia forest in different densities
造林规格 Specification (m×m) | 1.5×2 | 1.5×4 | 1.5×6 | 1.5×8 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
t值 | Sig.(2-tailed) | t值 | Sig.(2-tailed) | t值 | Sig.(2-tailed) | t值 | Sig.(2-tailed) | ||||
1.5×4 | -1.746 | 0.141 | - | - | - | - | - | - | |||
1.5×6 | -0.349 | 0.741 | 0.397 | 0.704 | - | - | - | - | |||
1.5×8 | -2.706 | 0.093 | -1.387 | 0.224 | -1.397 | 0.221 | - | - |
造林规格 Specification (m×m) | 1.5×2 | 1.5×4 | 1.5×6 | |||||
---|---|---|---|---|---|---|---|---|
t值 | Sig.(2-tailed) | t值 | Sig.(2-tailed) | t值 | Sig.(2-tailed) | |||
1.5×4 | 1.185 | 0.289 | - | - | - | - | ||
1.5×6 | 0.255 | 0.809 | 0.200 | 0.102 | - | - |
表7 侧柏不同密度林分叶面积指数差异显著性检验
Table 7 Results of paired-samples t-test to leaf area index of Platycladus orientalis forest in different densities
造林规格 Specification (m×m) | 1.5×2 | 1.5×4 | 1.5×6 | |||||
---|---|---|---|---|---|---|---|---|
t值 | Sig.(2-tailed) | t值 | Sig.(2-tailed) | t值 | Sig.(2-tailed) | |||
1.5×4 | 1.185 | 0.289 | - | - | - | - | ||
1.5×6 | 0.255 | 0.809 | 0.200 | 0.102 | - | - |
[1] | Bai YL (白由路), Yang LP (杨俐苹) (2004). An approach to measure plant leaf area using image process. Agricultural Network Information (农业网络信息), (1), 36-38. (in Chinese with English abstract) |
[2] | Bao JY (鲍雅静), Li ZH (李政海), Zhang Y (张颖) (2002). Comparison of measure methods of Leymus chinensis leaf area. Acta Scientiarun Naturalium Universitatis Neimongol (Nature Science Edition) (内蒙古大学学报(自然科学版)), 33, 63-64. (in Chinese with English abstract) |
[3] | Cheng H (程红), Lü JF (吕军芬) (2003). Measurement of plant leaf area using CAD image processing techniques. Journal of Gansu Agricultural University (甘肃农业大学学报), 38, 467-470. (in Chinese with English abstract) |
[4] | Chen X (陈夏), Sang WG (桑卫国) (2007). Dynamics of leaf area index and canopy openness for three forest communities in the warm temperate zone of China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 431-436. (in Chinese with English abstract) |
[5] | Eriksson H, Eklundh L, Hall K, Lindroth A (2005). Estimating LAI in deciduous forest stands. Agricultural and Forest Meteorology, 129, 27-37. |
[6] | Leblanc SG, Chen JM (2001). A practical scheme for correcting multiple scattering effects on optical LAI measurements. Agricultural and Forest Meteorology, 110, 125-139. |
[7] | Li KL (李克亮) (1986). Research on the Stratagies of China Forestry Development (中国林业发展战略问题研究) 1st edn. China Forestry Publishing House, Beijing, 3. (in Chinese) |
[8] | Lü Y (吕勇) (1996). Prediction of the leaf area for Pinus massonina stand. Hubei Forestry Science and Technology (湖北林业科技), (3), 38~41. (in Chinese with English abstract) |
[9] | Nackaerts K, Coppin P, Muys B, Hermy M (2000). Sampling methodology for LAI measurements with LAI-2000 in small forest stands. Agricultural and Forest Meteorology, 101, 247-250. |
[10] | Nagler PL, Glenn EP, Thompson TL, Huete A (2004). Leaf area index and normalized difference vegetation index as predictors of canopy characteristics and light interception by riparian species on the Lower Colorado River. Agricultural and Forest Meteorology, 125, 1-17. |
[11] | Pei BH (裴保华), Zhou BS (周宝顺) (1993). A study on the drought resistance of three shrub species. Forest Research (林业科学研究), 6, 597-598. (in Chinese with English abstract) |
[12] | Qin GF (秦国峰), Zhou ZC (周志春), Jin GQ (金国庆), Rong WS (荣文琛), Wu TL (吴天林)(1999). Determining optimum planting density of masson pine fast-growing and high yielding plantations for various cultivation objectives. Forest Research (林业科学研究), 12, 620-627. (in Chinese with English abstract) |
[13] | Sonnentag O, Talbot J, Chen JM, Roulet NT (2007). Using direct and indirect measurements of leaf area index to characterize the shrub canopy in an ombrotrophic peatland. Agricultural and Forest Meteorology, 144, 200-212. |
[14] | Wang KQ (王克勤), Wang BT (王百田), Wang BR (王斌瑞) (2002). Study on the growth of forests with different density in the system of afforestation by water-harvesting. Scientia Silvas Sinicae (林业科学), 38, 54-60. (in Chinese with English abstract) |
[15] | Wang SJ (王世绩) (1995). Leaf Photosynthetic Model of Valsa sordida Plantation under the Intensive and Extensive Management (集约与粗放经营杨树人工林叶片光合作用模型). China Forestry Publishing House, Beijing. 38-43. (in Chinese) |
[16] | Wang XQ (王希群), Ma LY (马履一), Jia ZK (贾忠奎) (2005). Research and application advances in leaf area index (LAI). Chinese Journal of Ecology (生态学杂志), 24, 537-541. (in Chinese with English abstract) |
[17] | Wang XQ (王希群), Ma LY (马履一), Zhang YF (张永福) (2006). Change patterns of leaf area index (LAI) of Pinus tabulaeformis and Platycladus orientalis plantations in Beijing. Chinese Journal of Ecology (生态学杂志), 25, 1486-1489. (in Chinese with English abstract) |
[18] | Wang YM (王佑民), Liu BZ (刘秉正) (1994). Shelter-Forest Ecological Characteristics on Semi-arid Region of the Loess Plateau (黄土高原防护林生态特征)1st edn. China Forestry Publishing House, Beijing. 105-132. (in Chinese) |
[19] | Will RE, Narahari NV, Shiver BD, Teskey RO (2005). Effect of planting density on canopy dynamics and stem growth for intensively managed Loblolly Pine stands. Forest Ecology and Management, 205, 29-41. |
[20] | Wu HG (武红敢), Qiao YY (乔彦友), Chen LL (陈林洪), Yan XJ (严小君) (1997). Remote sensing monitoring of dynamic changes of leaf area index in masson pine stands. Acta Phytoecologica Sinica (植物生态学报), 21, 485-488. (in Chinese with English abstract) |
[21] | Yang JF (杨劲峰), Chen Q (陈清) (2002). Measurement of vegetable leaf area using digital image processing techniques. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 18, 155-158. (in Chinese with English abstract) |
[22] | Yu JY (郁进元), He Y (何岩), Zhao ZF (赵忠福), Wang D (王栋) (2007). Research on the corrective system of using length-width method to measure leaf area. Jiangsu Agriculture Sciences (江苏农业科学), (2), 37-39. (in Chinese) |
[23] | Yu MK (虞沐奎), Qiu H (邱辉), Yang LX (杨灵仙), Xu LY (徐六一), Chen YL (陈应龙)(1999). Study on afforestation of Pinus taeda. Journal of Anhui Agricultural University (安徽农业大学学报), 26, 398-402. (in Chinese with English abstract) |
[24] | Zhu CQ (朱春全), Lei JP (雷静品), Liu XD (刘晓东) (2001). The distribution and seasonal change of leaf area in poplar plantations managed in different ways. Scientia Silvae Sinicae (林业科学), 37, 46-51. (in Chinese with English abstract) |
[1] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[2] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[3] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[4] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[5] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[6] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[7] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[8] | 张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响[J]. 植物生态学报, 2021, 45(3): 253-264. |
[9] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[10] | 秦天姿, 任安芝, 樊晓雯, 高玉葆. 内生真菌种类和母本基因型对内生真菌-禾草共生体叶形状和叶面积的影响[J]. 植物生态学报, 2020, 44(6): 654-660. |
[11] | 李群, 赵成章, 王继伟, 文军, 李子琴, 马俊逸. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应[J]. 植物生态学报, 2019, 43(8): 685-696. |
[12] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[13] | 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健. 测定森林树木叶面积的最适叶片数是多少?[J]. 植物生态学报, 2018, 42(9): 917-925. |
[14] | 何秋月, 闫美杰, 张建国, 杜盛. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应[J]. 植物生态学报, 2018, 42(4): 466-474. |
[15] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19