植物生态学报 ›› 2008, Vol. 32 ›› Issue (2): 465-476.DOI: 10.3773/j.issn.1005-264x.2008.02.026
所属专题: 青藏高原植物生态学:植物-土壤-微生物; 碳储量
收稿日期:
2006-12-12
接受日期:
2007-07-10
出版日期:
2008-12-12
发布日期:
2008-03-30
通讯作者:
吴建国
作者简介:
E-mail: wujg@craes.org.cn基金资助:
Received:
2006-12-12
Accepted:
2007-07-10
Online:
2008-12-12
Published:
2008-03-30
Contact:
WU Jian-Guo
摘要:
测定分析了祁连山高寒草甸、山地森林和干草原土壤中微生物活性、生物量碳氮含量。结果显示:就土壤微生物生物量碳含量,森林比干草原和高寒草甸中分别高60%和120%以上,干草原比高寒草甸中高40%以上(p<0.05)。就土壤微生物生物量氮含量,0~5 cm土层,森林比高寒草甸和干草原中分别高64%和111%以上,高寒草甸比干草原中高29%;5~15 cm土层,森林比干草原和高寒草甸中分别高7%和191%以上,干草原比高寒草甸中高171% 以上(p<0.05)。森林和干草原中土壤微生物生物量碳比例比高寒草甸中高32%以上,0~5和5~15 cm土层,森林和干草原中土壤微生物生物量氮比例比高寒草甸中高150%以上(p<0.05)。就土壤微生物活性,0~5和5~15 cm土层,森林和高寒草甸比干草原中高26%以上;15~35 cm土层,森林比干草原和高寒草甸中高28%以上 (p<0.05)。土壤微生物生物量碳氮含量与有机碳含量及微生物生物量氮含量和比例与微生物生物量碳含量和比例呈现正相关(r2>0.30,p<0.000 1)。土壤微生物生物量氮含量、微生物生物量碳氮含量比例、微生物活性与土壤pH值呈显著负相关,土壤微生物生物量碳氮含量及其比例、微生物活性与土壤湿度呈正相关。说明祁连山3种生态系统土壤中微生物生物量和活性受气候要素、植被、有机碳、pH值和湿度等因素的共同影响。
吴建国, 艾丽. 祁连山3种典型生态系统土壤微生物活性和生物量碳氮含量. 植物生态学报, 2008, 32(2): 465-476. DOI: 10.3773/j.issn.1005-264x.2008.02.026
WU Jian-Guo, AI Li. SOIL MICROBIAL ACTIVITY AND BIOMASS C AND N CONTENT IN THREE TYPICAL ECOSYSTEMS IN QI LIAN MOUNTAINS, CHINA. Chinese Journal of Plant Ecology, 2008, 32(2): 465-476. DOI: 10.3773/j.issn.1005-264x.2008.02.026
植被类型 Vegetation type | 土壤类型 Soil type | 土层深度 Soil depth (cm) | pH | CaCO3 (%) | 全磷 Total P (%) | 全钾 Total K (%) | 土壤湿度 Soil water content (%) |
---|---|---|---|---|---|---|---|
高寒草甸 Alpine meadows | 高寒草甸土 Alpine meadow soil | 0~5 | 6.3 | 0.2 | 0.11 | 2.2 | 24 |
5~15 | 6.5 | 0.1 | 0.10 | 2.4 | 26 | ||
15~35 | 6.6 | 0.1 | 0.12 | 2.6 | 28 | ||
山地森林 Dragon spruce forest | 灰色森林土 Mountain gray cinnamon soil | 0~5 | 7.0 | 0.5 | 0.20 | 2.6 | 23 |
5~15 | 7.1 | 0.8 | 0.10 | 3.0 | 24 | ||
15~35 | 7.3 | 0.7 | 0.07 | 2.5 | 23 | ||
干草原 Steppe | 山地栗钙土 Mountain kastanozem | 0~5 | 8.1 | 7.3 | 0.14 | 2.5 | 22 |
5~15 | 8.3 | 8.2 | 0.12 | 2.4 | 23 | ||
15~35 | 8.4 | 8.3 | 0.11 | 2.5 | 21 |
表1 样地土壤的基本性质
Table 1 Basic characters of soil
植被类型 Vegetation type | 土壤类型 Soil type | 土层深度 Soil depth (cm) | pH | CaCO3 (%) | 全磷 Total P (%) | 全钾 Total K (%) | 土壤湿度 Soil water content (%) |
---|---|---|---|---|---|---|---|
高寒草甸 Alpine meadows | 高寒草甸土 Alpine meadow soil | 0~5 | 6.3 | 0.2 | 0.11 | 2.2 | 24 |
5~15 | 6.5 | 0.1 | 0.10 | 2.4 | 26 | ||
15~35 | 6.6 | 0.1 | 0.12 | 2.6 | 28 | ||
山地森林 Dragon spruce forest | 灰色森林土 Mountain gray cinnamon soil | 0~5 | 7.0 | 0.5 | 0.20 | 2.6 | 23 |
5~15 | 7.1 | 0.8 | 0.10 | 3.0 | 24 | ||
15~35 | 7.3 | 0.7 | 0.07 | 2.5 | 23 | ||
干草原 Steppe | 山地栗钙土 Mountain kastanozem | 0~5 | 8.1 | 7.3 | 0.14 | 2.5 | 22 |
5~15 | 8.3 | 8.2 | 0.12 | 2.4 | 23 | ||
15~35 | 8.4 | 8.3 | 0.11 | 2.5 | 21 |
植被类型 Vegetation type | 土层深度 Soil depth (cm) | 土壤有机碳含量 SOC content (g·kg-1) | 标准差 Standard deviation | 土壤全氮含量 Total soil N content (g·kg-1) | 标准差 Standard deviation | 土壤碳氮比 Soil C∶N | 标准差 Standard deviation |
---|---|---|---|---|---|---|---|
干草原Steppe | 0~5 | 27.35a | 5.32 | 2.31a | 0.40 | 11.81a | 0.73 |
山地森林Dragon spruce forest | 101.26b | 5.41 | 4.26b | 0.11 | 23.76b | 1.11 | |
高寒草甸Alpine meadows | 70.44c | 6.23 | 5.07c | 0.35 | 13.92c | 1.26 | |
干草原Steppe | 5~15 | 23.73a | 2.13 | 2.27a | 0.11 | 10.45a | 1.14 |
山地森林Dragon spruce forest | 91.09b | 6.51 | 3.35b | 0.18 | 27.20b | 2.05 | |
高寒草甸Alpine meadows | 55.90c | 5.57 | 4.21c | 0.37 | 13.25c | 0.44 | |
干草原Steppe | 15~35 | 23.51a | 1.51 | 2.41a | 0.21 | 9.79a | 0.77 |
山地森林Dragon spruce forest | 81.48b | 5.40 | 2.67a | 0.33 | 30.78b | 3.84 | |
高寒草甸Alpine meadows | 47.70c | 2.14 | 3.86b | 0.07 | 12.35c | 0.42 |
表2 不同植被的土壤有机碳和全氮含量
Table 2 Soil organic carbon (SOC) and total N content under different vegetation types
植被类型 Vegetation type | 土层深度 Soil depth (cm) | 土壤有机碳含量 SOC content (g·kg-1) | 标准差 Standard deviation | 土壤全氮含量 Total soil N content (g·kg-1) | 标准差 Standard deviation | 土壤碳氮比 Soil C∶N | 标准差 Standard deviation |
---|---|---|---|---|---|---|---|
干草原Steppe | 0~5 | 27.35a | 5.32 | 2.31a | 0.40 | 11.81a | 0.73 |
山地森林Dragon spruce forest | 101.26b | 5.41 | 4.26b | 0.11 | 23.76b | 1.11 | |
高寒草甸Alpine meadows | 70.44c | 6.23 | 5.07c | 0.35 | 13.92c | 1.26 | |
干草原Steppe | 5~15 | 23.73a | 2.13 | 2.27a | 0.11 | 10.45a | 1.14 |
山地森林Dragon spruce forest | 91.09b | 6.51 | 3.35b | 0.18 | 27.20b | 2.05 | |
高寒草甸Alpine meadows | 55.90c | 5.57 | 4.21c | 0.37 | 13.25c | 0.44 | |
干草原Steppe | 15~35 | 23.51a | 1.51 | 2.41a | 0.21 | 9.79a | 0.77 |
山地森林Dragon spruce forest | 81.48b | 5.40 | 2.67a | 0.33 | 30.78b | 3.84 | |
高寒草甸Alpine meadows | 47.70c | 2.14 | 3.86b | 0.07 | 12.35c | 0.42 |
植被类型 Vegetation type | 土层深度 Soil depth (cm) | 微生量生物量碳含量 SMBC content (mg·kg-1) | 标准差 Standard deviation | 微生物生物量氮含量 SMBN content (mg·kg-1) | 标准差 Standard deviation | 微生物生物量C∶N Ratio of SMBC and N content | 标准差 Standard deviation |
---|---|---|---|---|---|---|---|
干草原Steppe | 0~5 | 665.06a | 220.88 | 55.96a | 30.74 | 17.43a | 14.17 |
山地森林Dragon spruce forest | 1206.89b | 306.21 | 118.13b | 13.80 | 10.45a | 3.63 | |
高寒草甸Alpine meadows | 428.15c | 231.21 | 72.00c | 37.68 | 7.09b | 3.49 | |
干草原Steppe | 5~15 | 652.84a | 158.74 | 60.48a | 24.53 | 12.92a | 6.07 |
山地森林Dragon spruce forest | 1073.56b | 165.03 | 64.95b | 15.92 | 17.81a | 7.08 | |
高寒草甸Alpine meadows | 466.92c | 233.77 | 22.31c | 14.00 | 39.19b | 27.84 | |
干草原Steppe | 15~35 | 387.24a | 154.95 | 22.03a | 9.03 | 27.17a | 26.94 |
山地森林Dragon spruce forest | 732.52b | 98.64 | 21.49a | 12.45 | 43.62b | 22.29 | |
高寒草甸Alpine meadows | 191.23c | 109.02 | 19.58a | 9.22 | 12.10c | 9.05 |
表3 不同植被下土壤微生物生物量碳氮含量
Table 3 Soil microbial biomass C and N content under different vegetation types
植被类型 Vegetation type | 土层深度 Soil depth (cm) | 微生量生物量碳含量 SMBC content (mg·kg-1) | 标准差 Standard deviation | 微生物生物量氮含量 SMBN content (mg·kg-1) | 标准差 Standard deviation | 微生物生物量C∶N Ratio of SMBC and N content | 标准差 Standard deviation |
---|---|---|---|---|---|---|---|
干草原Steppe | 0~5 | 665.06a | 220.88 | 55.96a | 30.74 | 17.43a | 14.17 |
山地森林Dragon spruce forest | 1206.89b | 306.21 | 118.13b | 13.80 | 10.45a | 3.63 | |
高寒草甸Alpine meadows | 428.15c | 231.21 | 72.00c | 37.68 | 7.09b | 3.49 | |
干草原Steppe | 5~15 | 652.84a | 158.74 | 60.48a | 24.53 | 12.92a | 6.07 |
山地森林Dragon spruce forest | 1073.56b | 165.03 | 64.95b | 15.92 | 17.81a | 7.08 | |
高寒草甸Alpine meadows | 466.92c | 233.77 | 22.31c | 14.00 | 39.19b | 27.84 | |
干草原Steppe | 15~35 | 387.24a | 154.95 | 22.03a | 9.03 | 27.17a | 26.94 |
山地森林Dragon spruce forest | 732.52b | 98.64 | 21.49a | 12.45 | 43.62b | 22.29 | |
高寒草甸Alpine meadows | 191.23c | 109.02 | 19.58a | 9.22 | 12.10c | 9.05 |
植被类型 Vegetation type | 土层深度 Soil depth(cm) | 土壤微生物生物量碳比例 Ratio of SMBC (%) | 标准差 Standard deviation | 土壤微生物生物量氮比例 Ratio of SMBN (%) | 标准差 Standard deviation |
---|---|---|---|---|---|
干草原Steppe | 0~5 | 2.59a | 1.20 | 2.58a | 1.87 |
山地森林Dragon spruce forest | 2.75a | 0.72 | 2.66b | 1.23 | |
高寒草甸Alpine meadows | 1.67b | 0.80 | 0.92c | 0.44 | |
干草原Steppe | 5~15 | 1.20a | 0.33 | 2.78a | 0.40 |
山地森林Dragon spruce forest | 1.19a | 0.26 | 1.96b | 0.62 | |
高寒草甸Alpine meadows | 0.90b | 0.16 | 0.78c | 0.43 | |
干草原Steppe | 15~35 | 0.62a | 0.37 | 1.47a | 0.91 |
山地森林Dragon spruce forest | 0.86b | 0.50 | 0.54b | 0.38 | |
高寒草甸Alpine meadows | 0.41c | 0.27 | 0.51c | 0.27 |
表4 土壤微生物生物量碳氮含量占土壤有机碳和全氮含量比例
Table 4 Ratio of soil microbial biomass C and N
植被类型 Vegetation type | 土层深度 Soil depth(cm) | 土壤微生物生物量碳比例 Ratio of SMBC (%) | 标准差 Standard deviation | 土壤微生物生物量氮比例 Ratio of SMBN (%) | 标准差 Standard deviation |
---|---|---|---|---|---|
干草原Steppe | 0~5 | 2.59a | 1.20 | 2.58a | 1.87 |
山地森林Dragon spruce forest | 2.75a | 0.72 | 2.66b | 1.23 | |
高寒草甸Alpine meadows | 1.67b | 0.80 | 0.92c | 0.44 | |
干草原Steppe | 5~15 | 1.20a | 0.33 | 2.78a | 0.40 |
山地森林Dragon spruce forest | 1.19a | 0.26 | 1.96b | 0.62 | |
高寒草甸Alpine meadows | 0.90b | 0.16 | 0.78c | 0.43 | |
干草原Steppe | 15~35 | 0.62a | 0.37 | 1.47a | 0.91 |
山地森林Dragon spruce forest | 0.86b | 0.50 | 0.54b | 0.38 | |
高寒草甸Alpine meadows | 0.41c | 0.27 | 0.51c | 0.27 |
图2 土壤有机碳含量和微生物生物量碳氮含量(a)、全氮和微生物生物量碳氮含量(b)、土壤微生物生物量碳和土壤微生物生物量氮(c)、土壤微生物生物量碳比例和土壤微生物量氮比例(d)、土壤碳氮比和土壤微生物生物量碳氮比(e)关系
Fig.2 Relationship between the content of soil organic carbon (SOC) and SMB C or N (a),the content of soil N and SMB C or N (b), the content of SMB C and N (c), the ratio of SMB C and N (d), soil C∶N and SMB C∶N (e)
植被类型 Vegetation type | 土层深度 Soil depth (0~5 cm) | 土层深度 Soil depth (5~15 cm) | ||||||
---|---|---|---|---|---|---|---|---|
土壤微生物活性 Soil microbial activity (10-6 g CO2-C·g-1 soil·h-1) | 标准差 Standard deviation (10-6) | 土壤微生物活性 Soil microbial activity (10-6 g CO2-C·g-1 soil·h-1) | 标准差 Standard deviation (10-6) | 土壤微生物活性 Soil microbial activity (10-6 g CO2-C·g-1 soil·h-1) | 标准差 Standard deviation (10-6) | |||
干草原Dry grassland | 7.50aA | 2.33 | 10.87bA | 2.07 | 7.07cA | 1.95 | ||
山地森林Dragon forest | 18.25aB | 0.60 | 13.90bB | 1.35 | 9.04cB | 5.43 | ||
高寒草甸Alpine meadows | 17.18aB | 2.66 | 13.73bB | 2.79 | 6.90cB | 1.41 |
表5 不同植被下土壤微生物活性
Table 5 Soil microbial activity under different vegetation types
植被类型 Vegetation type | 土层深度 Soil depth (0~5 cm) | 土层深度 Soil depth (5~15 cm) | ||||||
---|---|---|---|---|---|---|---|---|
土壤微生物活性 Soil microbial activity (10-6 g CO2-C·g-1 soil·h-1) | 标准差 Standard deviation (10-6) | 土壤微生物活性 Soil microbial activity (10-6 g CO2-C·g-1 soil·h-1) | 标准差 Standard deviation (10-6) | 土壤微生物活性 Soil microbial activity (10-6 g CO2-C·g-1 soil·h-1) | 标准差 Standard deviation (10-6) | |||
干草原Dry grassland | 7.50aA | 2.33 | 10.87bA | 2.07 | 7.07cA | 1.95 | ||
山地森林Dragon forest | 18.25aB | 0.60 | 13.90bB | 1.35 | 9.04cB | 5.43 | ||
高寒草甸Alpine meadows | 17.18aB | 2.66 | 13.73bB | 2.79 | 6.90cB | 1.41 |
图3 土壤有机碳含量和微生物活性(a)、全氮和土壤微生物量活性(b)、土壤微生物碳含量和微生物量活性(c)、土壤微生物氮含量和土壤微生物活性(d)的关系
Fig.3 Relationship between the content of soil organic carbon (SOC) and soil microbe activity (a), the content of soil N and soil microbe activity (b), the content of SMB C and soil microbe activity (c), the content of SMB N and soil microbe activity (d)
[1] | Allen AS, Schlesinger WH (2004). Nutrient limitations to soil microbial biomass and activity in loblolly pine forests. Soil Biology and Biochemistry, 36, 581-589. |
[2] | Alvarez CR, Alvarez R, Grigera MS, Lavado RS (1998). Associations between organic matter fractions and the active soil microbial biomass. Soil Biology and Biochemistry, 30, 767-773. |
[3] | Anderson JPE, Domash KH (1980). Quantities of plant nutrients in the microbial biomass of selected soils. Soil Science, 130, 211-216. |
[4] | Balota EL, Colozzi-Filho A, Andrade DS, Dick RP (2003). Microbial biomass in soils under different tillage and crop rotation systems. Biology and Fertility of Soils, 38, 15-20. |
[5] | Bao SD (鲍士旦) (2000). The Analysis of Agriculture Soil Chemistry (土壤农化分析). China Agriculture Press, Beijing. 14-61. (in Chinese) |
[6] | Bardgett RD, Shine A (1999). Linkages between plant litter diversity, soil microbial biomass and ecosystem function in the temperature grasslands. Soil Biology and Biochemistry, 31, 317-321. |
[7] | Bauhus J, Pare D, Cote L (1998). Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biology and Biochemistry, 30, 1077-1089. |
[8] | Beck T, Joergenson RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S (1997). An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biology and Biochemistry, 29, 1023-1032. |
[9] | Bonito GM, Coleman DC, Haines BL, Cabrera ML (2003). Can nitrogen budgets explain differences in soil nitrogen mineralization rates of forest stands along an elevation gradient. Forest Ecology and Management, 176, 563-574. |
[10] | Chen CR, Xu ZH, Hughes JM (2002). Effects of nitrogen fertilization on soil nitrogen pools and microbial properties in a hoop pine (Araucaria cunninghamii) plantation in Southeast Queensland, Australia. Biology and Fertility of Soils, 36, 276-283. |
[11] | Chen GC (陈国潮), He ZL (何振立), Huang CY (黄昌勇)(2002). Turnover of microbial biomass C in red soils and its significance in soil fertility evaluation. Acta Pedologica Sinica (土壤学报), 39, 152-160. (in Chinese with English abstract) |
[12] | Fauci MF, Dick RP (1994). Soil microbial dynamics: short and long term effects of inorganic and organic nitrogen. Soil Science Society of American Journal, 58, 801-806. |
[13] | Iyyemperumala K, Israela DW, Shi W (2007). Soil microbial biomass, activity and potential nitrogen mineralization in a pasture: impact of stock camping activity. Soil Biology and Biochemistry, 39, 149-157. |
[14] | Jackson RB, Schenk HJ, JobbáGy EG, Canadell J, Colello GD, Dickinson RE, Field CB, Friedlingstein P, Heimann M, Kicklighter DW, Kleidon A, Neilson RP, Parton WJ, Sala OE, Sykes MT (2000). Belowground consequences of vegetation change and their treatment in models. Ecological Applications, 10, 470-483. |
[15] | Jenkinson DS, Brookes PC, Powlson DS (2004). Measuring soil microbial biomass. Soil Biology and Biochemistry, 36, 5-7. |
[16] | Jiang PK (姜培坤), Zhou GM (周国模) (2003). Change in soil microbial biomass carbon and nitrogen under eroded red soil by vegetation recovery. Journal of Soil and Water Conservation (水土保持学报), 17, 112-127. (in Chinese with English abstract) |
[17] | Jobbágy EG, Jackson RB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423-436. |
[18] | Li F (李阜), Yu ZN (喻子牛), He SJ (何绍江) (1996). The Methods of Agriculture Microbiology (农业微生物学实验技术). China Agriculture Press, Beijing. 82-83. (in Chinese) |
[19] | Li TJ (李天杰), Zheng YS (郑应顺), Wang Y (王云)(1997). Soil Geography (土壤地理学). Higher Education Press, Beijing. (in Chinese) |
[20] | Li XZ (李香真), Qu QH (曲秋皓)(2002). Soil microbial biomass carbon and nitrogen in Mongolian grassland. Acta Pedologica Sinica (土壤学报), 39, 97-104. (in Chinese with English abstract) |
[21] | Lovell RD, Jarvis SC (1998). Soil microbial biomass and activity in soil from different grassland management treatments stored under controlled conditions. Soil Biology and Biochemistry, 30, 2077-2085. |
[22] | Luizło RCC, Luizło FJ, Paiva RQ, Monteiro TF, Sousa LS, Kruijt B (2004). Variation of carbon and nitrogen cycling processes along a topographic gradient in a Amazonian forest. Global Change Biology, 10, 592-600. |
[23] | Menyailo OV, Hungate BA, Zech W (2002). The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment. Plant and Soil, 242, 183-196. |
[24] | Merilä P, Strummer R, Fritze H (2002). Soil microbial activity and community structure along a primary succession transect on the land-uplift coast in western Finland. Soil Biology and Biochemistry, 34, 1647-1654. |
[25] | Post WM, Emanuel WR, Zinke PJ, Stangenberger G (1982). Soil carbon pools and world life zones. Nature, 298, 156-159. |
[26] | Prescott CE, Chappell NH, Vesterdal L (2000). Nitrogen turnover in forest floors of coastal Douglas-fir at sites differing in soil nitrogen capital. Ecology, 81, 1878-1886. |
[27] | Scholes MC, Powlson D, Tian GL (1997). Input control of organic matter dynamics. Geoderma, 79, 25-47. |
[28] | Smith JL, Halvorson JJ, Bolton H Jr (2002). Soil properties and microbial activity across a 500 m elevation gradient in a semi-arid environment. Soil Biology and Biochemistry, 34, 1749-1757. |
[29] | Sparling GP (1992). Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of change in soil organic matter. Australian Journal of Soil Research, 30, 195-207. |
[30] | Stenberg B, Johansson M, Pell M, Sjodahl-Svensson K, Stenstrom J, Torstensson L (1998). Microbial biomass and activities in soil as affected by frozen and cold storage. Soil Boilogy and Biochemistry, 30, 393-402. |
[31] | Sun HL (孙鸿烈), Zheng D (郑度) (1998). Produce, Evaluation and Development for the Qinghai-Tibet Plateau Environmental (青藏高原形成、演化与发展). Guangdong Science and Technology Press, Guangzhou. (in Chinese) |
[32] | Tang GY (唐国勇), Huang DY (黄道友), Tong CL (童成立), Zhang WJ (张文菊), Xiao HA (肖和艾), Su YR (苏以荣), Wu JS (吴金水) (2006). Characteristics of soil organic carbon and microbial biomass carbon in hilly red soil region. Chinese Journal of Applied Ecology (应用生态学报), 17, 429-433. (in Chinese with English abstract) |
[33] | Tang MC (汤懋苍), Cheng GD (程国栋) (1998). Modern Climate Change in Qinghai-Tibet Plateau and Its Effects on Environment (青藏高原近代气候变化及其对环境的影响). Guangdong Science and Technology Press, Guangzhou. (in Chinese) |
[34] | Tate RL III (2000). Soil Microbiology 2nd edn. John Wiley, New York. |
[35] | Tu C, Rustaino JB, Hu S (2006). Soil microbial biomass and activity in organic tomato farming systems: effects of organic inputs and straw mulching. Soil Biology and Biochemistry, 38, 247-255. |
[36] | Vanlauwe B, Nwoke OC, Sanginga N, Merckx R (1999). Evaluation of methods for measuring microbial biomass C and N and relationships between microbial biomass and soil organic matter particle size classes in West-African soils. Soil Biology and Biochemistry, 31, 1071-1082. |
[37] | Wang JY (王金叶), Chang XX (常学向), Ge SL (葛双兰), Miao YX (苗毓新), Chang ZQ (常宗强), Zhang H (张虎) (2001). The vertical distribution of temperature and precipitation on the northern slop in Qi Lian Mountains. Journal of Northwest Forestry College (西北林学院学报), 16(Suppl.), 1-3. (in Chinese with English abstract) |
[38] | Warder DAA (1992). Comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews, 67, 321-356. |
[39] | Wen QX (文启孝)(1984). The Methods of Soil Organic Matter (土壤有机质研究法). China Agriculture Press, Beijing. 301-302. (in Chinese) |
[40] | Xie ZM (谢正苗), Ka LD (卡里德), Huang CY (黄昌勇), Yu JY (俞尽炎)(2000). Effects of cadmium, lead and zinc onmicrobial biomass carbon, nitrogen, and phosphorus in red soil. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 6, 69-74. (in Chinese with English abstract) |
[41] | Xiong Y (熊毅), Li QK (李庆逵) (1990). Chinese Soil (中国土壤). Science Press, Beijing. (in Chinese) |
[42] | Zak DR, Tilman D, Parmenter RR, Rice CW, Fisher RM, Vose J, Milchunas D, Martin CW (1994). Plant production and soil microorganisms in late-successional ecosystems: a continental-scale study. Ecology, 75, 2333-2347. |
[43] | Zhang DX (张电学), Han ZQ (韩志卿), Li DP (李东坡), Liu W (刘微), Gao SG (高书国), Hou DJ (侯东军), Chang LS (常连生) (2005). Effects of returning maize straw into field on dynamic change of soil microbial biomass C, N, P under different promoted decay condition. Chinese Journal of Applied Ecology (应用生态学报), 16, 1903-1908. (in Chinese with English abstract) |
[44] | Zhang H (张虎), Wen YL (温娅丽), Ma L (马力), Chang ZQ (常宗强), Wang JY (王金叶) (2001). The characterizers of climate and vertical climate zone classification in Qi Lian Mountain. Journal of Mountain Science (山地学报), 19, 497-503. (in Chinese with English abstract) |
[1] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[2] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[3] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[4] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[5] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[6] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[7] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[8] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[9] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[10] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[11] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[12] | 拓锋, 刘贤德, 刘润红, 赵维俊, 敬文茂, 马剑, 武秀荣, 赵晶忠, 马雪娥. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183. |
[13] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
[14] | 李娜, 张一鹤, 韩晓增, 尤孟阳, 郝翔翔. 长期不同植被覆盖对黑土团聚体内有机碳组分的影响[J]. 植物生态学报, 2019, 43(7): 624-634. |
[15] | 张富广, 曾彪, 杨太保. 气候变化背景下近30年祁连山高寒荒漠分布时空变化[J]. 植物生态学报, 2019, 43(4): 305-319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19