植物生态学报 ›› 2008, Vol. 32 ›› Issue (6): 1248-1257.DOI: 10.3773/j.issn.1005-264x.2008.06.005
收稿日期:
2008-04-25
接受日期:
2008-05-23
出版日期:
2008-04-25
发布日期:
2008-11-30
通讯作者:
郭大立
作者简介:
*(dlguo@urban.pku.edu.cn)基金资助:
CHANG Wen-Jing1, GUO Da-Li2,*()
Received:
2008-04-25
Accepted:
2008-05-23
Online:
2008-04-25
Published:
2008-11-30
Contact:
GUO Da-Li
摘要:
细根在发挥植物功能以及生态系统碳和养分循环过程中起着重要作用。为了解我国不同森林生态系统细根直径变化规律, 提供建立根系模型的基础, 该文研究了我国温带、亚热带和热带45个常见树种1~5级根直径的变异以及直径与根序的关系。结果表明: 1)在所有树种中, 1级根直径最细, 5级根直径最粗, 直径随根序的增加而增加。此外, 同一根序的直径在不同树种间变异较大, 在不同生态系统中, 各树种1级根的总体平均直径呈现温带<亚热带<热带的格局。2)不同生态系统树种同一根序平均直径变异程度不同, 各个根序都是温带最小, 亚热带次之, 热带最大。3)细根内部各个根序的平均直径变异的52%由根序解释, 33%由树种解释, 生态系统类型和生活型分别解释7%和2%。不同系统不同树种直径的变异说明无法用统一的直径级来研究根的功能, 也无法用统一的根序和直径间的关系来建立根系形态模型。今后的研究需要进一步认识根序和直径在不同树种中如何与根的功能相联系。
常文静, 郭大立. 中国温带、亚热带和热带森林45个常见树种细根直径变异. 植物生态学报, 2008, 32(6): 1248-1257. DOI: 10.3773/j.issn.1005-264x.2008.06.005
CHANG Wen-Jing, GUO Da-Li. VARIATION IN ROOT DIAMETER AMONG 45 COMMON TREE SPECIES IN TEMPERATE, SUBTROPICAL AND TROPICAL FORESTS IN CHINA. Chinese Journal of Plant Ecology, 2008, 32(6): 1248-1257. DOI: 10.3773/j.issn.1005-264x.2008.06.005
地点 Site | 经纬度 Longitude & latitude | 海拔 (m) Altitude | 树种 Species | 种拉丁名 Latin |
---|---|---|---|---|
百花山 Bai Hua Mtain | 115.3°~115.5° E 39.5°~39.9° N | 700~2 000 | 春榆 | Ulmus propingqua |
蒙椴 | Tilia mongolica | |||
黄花柳 | Salix caprea | |||
接骨木 | Sambucus williamsii | |||
大叶白蜡 | Fraxinus rhynchophylla | |||
关帝山 Guan Di Mtain | 111.4°~111.6° E 37.8°~37.9° N | 500~2 000 | 白杄 | Picea meyeri |
青杄 | Picea wilsonii | |||
油松 | Pinus tabulaeformis | |||
辽东栎 | Quercus liaotungensis | |||
千金榆 | Carpinus cordata | |||
华北落叶松 | Larix principis-rupprechtii | |||
中条山 Zhong Tiao Mtain | 112.4°~112.5° E 35.2°~35.3° N | 1 000~3 000 | 红桦 | Betula albo-sinensis |
青杨 | Populus cathayana | |||
青榨槭 | Acer davidii | |||
华山松 | Pinus armandii | |||
鼎湖山 Ding Hu Mtain | 112.5°~112.6° E 23.1°~23.2° N | 100~600 | 藜蒴 | Chenopodium serotinum |
樟树 | Cinnamomum camphora | |||
红车木 | Syzygium hancei | |||
毛柿 | Diospyros strigosa | |||
柃木 | Eurya japonica | |||
阴香 | Cinnamomum burmannii | |||
山参子 | Sanguisorba officinalis | |||
鸡毛松 | Podocarpus imbricatus | |||
火力楠 | Michelia macclurei | |||
密花树 | Rapanea neriifolia | |||
香叶树 | Lindera communis | |||
短序润楠 | Machilus breviflora | |||
鼎湖血桐 | Macaranga sampsonii | |||
黑叶谷木 | Memecylon nigrescens | |||
黄果厚壳桂 | Cryptocarya concinna | |||
西双版纳 Xishuangbanna | 99.5°~101.6° E 21.1°~22.4° N | 200~500 | 橄榄 | Canarium album |
玉蕊 | Barringtonia racemosa | |||
萍婆 | Sterculia nobilis | |||
山柚柑 | Acronychia pedunculata | |||
假广子 | Knema erratica | |||
葱臭木 | Dysoxylum gobara | |||
大叶山楝 | Aphanamixis grandifolia | |||
圆果罗伞 | Ardisia depressa | |||
尖叶茜树 | Randia oxyodonta | |||
瑞丽润楠 | Machilus shweliensis | |||
披针叶楠 | Phoebe lanceolata | |||
思茅蒲桃 | Syzygium szemaoense | |||
华南石栎 | Lithocarpus fenestratus | |||
椴叶山麻杆 | Alchornea tiliaefolia | |||
大花哥纳香 | Goniothalamus griffithii |
表1 本研究3个森林生态系统(温带、亚热带和热带)的代表性样地及其经纬度、海拔, 所选取的常见种的拉丁名
Table 1 General situation of three forest ecosystem
地点 Site | 经纬度 Longitude & latitude | 海拔 (m) Altitude | 树种 Species | 种拉丁名 Latin |
---|---|---|---|---|
百花山 Bai Hua Mtain | 115.3°~115.5° E 39.5°~39.9° N | 700~2 000 | 春榆 | Ulmus propingqua |
蒙椴 | Tilia mongolica | |||
黄花柳 | Salix caprea | |||
接骨木 | Sambucus williamsii | |||
大叶白蜡 | Fraxinus rhynchophylla | |||
关帝山 Guan Di Mtain | 111.4°~111.6° E 37.8°~37.9° N | 500~2 000 | 白杄 | Picea meyeri |
青杄 | Picea wilsonii | |||
油松 | Pinus tabulaeformis | |||
辽东栎 | Quercus liaotungensis | |||
千金榆 | Carpinus cordata | |||
华北落叶松 | Larix principis-rupprechtii | |||
中条山 Zhong Tiao Mtain | 112.4°~112.5° E 35.2°~35.3° N | 1 000~3 000 | 红桦 | Betula albo-sinensis |
青杨 | Populus cathayana | |||
青榨槭 | Acer davidii | |||
华山松 | Pinus armandii | |||
鼎湖山 Ding Hu Mtain | 112.5°~112.6° E 23.1°~23.2° N | 100~600 | 藜蒴 | Chenopodium serotinum |
樟树 | Cinnamomum camphora | |||
红车木 | Syzygium hancei | |||
毛柿 | Diospyros strigosa | |||
柃木 | Eurya japonica | |||
阴香 | Cinnamomum burmannii | |||
山参子 | Sanguisorba officinalis | |||
鸡毛松 | Podocarpus imbricatus | |||
火力楠 | Michelia macclurei | |||
密花树 | Rapanea neriifolia | |||
香叶树 | Lindera communis | |||
短序润楠 | Machilus breviflora | |||
鼎湖血桐 | Macaranga sampsonii | |||
黑叶谷木 | Memecylon nigrescens | |||
黄果厚壳桂 | Cryptocarya concinna | |||
西双版纳 Xishuangbanna | 99.5°~101.6° E 21.1°~22.4° N | 200~500 | 橄榄 | Canarium album |
玉蕊 | Barringtonia racemosa | |||
萍婆 | Sterculia nobilis | |||
山柚柑 | Acronychia pedunculata | |||
假广子 | Knema erratica | |||
葱臭木 | Dysoxylum gobara | |||
大叶山楝 | Aphanamixis grandifolia | |||
圆果罗伞 | Ardisia depressa | |||
尖叶茜树 | Randia oxyodonta | |||
瑞丽润楠 | Machilus shweliensis | |||
披针叶楠 | Phoebe lanceolata | |||
思茅蒲桃 | Syzygium szemaoense | |||
华南石栎 | Lithocarpus fenestratus | |||
椴叶山麻杆 | Alchornea tiliaefolia | |||
大花哥纳香 | Goniothalamus griffithii |
变异来源 Source of variation | df | 直径 Diameter F | p | |||||
---|---|---|---|---|---|---|---|---|
根序 Order | 4 | 47.42 | < 0.01 | |||||
树种 Species | 44 | 2.25 | < 0.01 | |||||
生态系统类型 Ecosystem type | 2 | 6.13 | < 0.01 | |||||
根序×树种 Order×species | 224 | 104.82 | < 0.01 | |||||
根序×生态系统类型 Order×ecosystem type | 224 | 133.94 | < 0.01 | |||||
树种×生态系统类型 Species×ecosystem type | 224 | 10.94 | < 0.01 | |||||
根序×树种×生态系统类型 Order×species×ecosystem type | 224 | 73.56 | < 0.01 |
表2 Results of ANOVA testing the effects of branch order, species and ecosystem 。计算各个根序之间直径的变异程度,47,oot turnover for terrestrial ecosystems. in the fine-root syetem type on root diameter
Table 2
变异来源 Source of variation | df | 直径 Diameter F | p | |||||
---|---|---|---|---|---|---|---|---|
根序 Order | 4 | 47.42 | < 0.01 | |||||
树种 Species | 44 | 2.25 | < 0.01 | |||||
生态系统类型 Ecosystem type | 2 | 6.13 | < 0.01 | |||||
根序×树种 Order×species | 224 | 104.82 | < 0.01 | |||||
根序×生态系统类型 Order×ecosystem type | 224 | 133.94 | < 0.01 | |||||
树种×生态系统类型 Species×ecosystem type | 224 | 10.94 | < 0.01 | |||||
根序×树种×生态系统类型 Order×species×ecosystem type | 224 | 73.56 | < 0.01 |
根序 Order | 根序 Order | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
温带 Temperate | |||||
1 | 1.00 | ||||
2 | 0.97** | 1.00 | |||
3 | 0.92** | 0.95** | 1.00 | ||
4 | 0.85** | 0.87** | 0.94** | 1.00 | |
5 | 0.19 | 0.27 | 0.33 | 0.51* | 1.00 |
亚热带 Subtropical | |||||
1 | 1.00 | ||||
2 | 0.80** | 1.00 | |||
3 | 0.70** | 0.95** | 1.00 | ||
4 | 0.61* | 0.85** | 0.88** | 1.00 | |
5 | 0.49 | 0.52* | 0.58* | 0.78** | 1.00 |
热带 Tropical | |||||
1 | 1.00 | ||||
2 | 0.99** | 1.00 | |||
3 | 0.98** | 0.99** | 1.00 | ||
4 | 0.93** | 0.94** | 0.97** | 1.00 | |
5 | 0.93** | 0.94** | 0.93** | 0.90** | 1.00 |
表3 温带、亚热带和热带树种各个根序平均直径之间相关系数(n=15)
Table 3 Correlation coefficients among diameters of the first five orders in temperate, subtropical and tropical forest ecosystems (n=15)
根序 Order | 根序 Order | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
温带 Temperate | |||||
1 | 1.00 | ||||
2 | 0.97** | 1.00 | |||
3 | 0.92** | 0.95** | 1.00 | ||
4 | 0.85** | 0.87** | 0.94** | 1.00 | |
5 | 0.19 | 0.27 | 0.33 | 0.51* | 1.00 |
亚热带 Subtropical | |||||
1 | 1.00 | ||||
2 | 0.80** | 1.00 | |||
3 | 0.70** | 0.95** | 1.00 | ||
4 | 0.61* | 0.85** | 0.88** | 1.00 | |
5 | 0.49 | 0.52* | 0.58* | 0.78** | 1.00 |
热带 Tropical | |||||
1 | 1.00 | ||||
2 | 0.99** | 1.00 | |||
3 | 0.98** | 0.99** | 1.00 | ||
4 | 0.93** | 0.94** | 0.97** | 1.00 | |
5 | 0.93** | 0.94** | 0.93** | 0.90** | 1.00 |
生态系统类型 Ecosystem type | 方程 Regression model | R2 | p | 样本量 Sample size |
---|---|---|---|---|
温带 Temperate | y=0.132 7exp0. 3555x | 0.61 | < 0.01 | 75 |
亚热带 Subtropical | y=0.193 4exp0. 3437x | 0.56 | < 0.01 | 75 |
热带 Tropical | y=0. 209 8exp0. 3381x | 0.44 | < 0.01 | 75 |
总体 Total | y=0.175 3exp0. 3458x | 0.49 | < 0.01 | 225 |
表4 温带、亚热带和热带常见树种平均直径(y)与根序(x)之间回归模型
Table 4 The regression model between diameter (y) and root order (x) in temperate, subtropical and tropical forests in China
生态系统类型 Ecosystem type | 方程 Regression model | R2 | p | 样本量 Sample size |
---|---|---|---|---|
温带 Temperate | y=0.132 7exp0. 3555x | 0.61 | < 0.01 | 75 |
亚热带 Subtropical | y=0.193 4exp0. 3437x | 0.56 | < 0.01 | 75 |
热带 Tropical | y=0. 209 8exp0. 3381x | 0.44 | < 0.01 | 75 |
总体 Total | y=0.175 3exp0. 3458x | 0.49 | < 0.01 | 225 |
[1] | Bohm W (1979). Methods of Studying Root Systems. Ecological Series No. 33. Springer-Verlag, Berlin. |
[2] | Chapin FS, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag,New York. |
[3] | Chen TG (陈廷贵), Zhang JT (张金屯) (2000). The study of diversity in Shenweigou of Guandi Mountain,Shanxi Province. Acta Botanica Boreal-Occident Sinica (西北植物学报), 20,638-646. (in Chinese with English abstract) |
[4] | Cleal CJ, Thomas BA (1999). Plant Fossils: the History of Land Vegetation. Boydell Press, New York. |
[5] | Du YJ (杜彦君), Peng SJ (彭闪江), Xu GL (徐国良), Huang ZL (黄忠良), Huang YJ (黄玉佳) (2007). Study of distance-dependence on Castanopsis chinensis seed in coniferous and broad-leaved mixed forest of Dinghushan, China. Journal of Plant Ecology(Chinese Version) (植物生态学报), 31,998-1006. (in Chinese with English abstract) |
[6] | Eissenstat DM, Yanai RD (2002). Root lifespan, efficiency, and turnover. In: Waisel Y, Eshe E, Kafkafi U eds. Plant Roots: the Hiden Half. Marcel Dekker Inc., New York, 221-238. |
[7] |
Fang JY, Peng CH (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292,2320-2322.
DOI URL PMID |
[8] | Feng ZW (冯宗炜), Wang XK (王效科), WU Gang (吴刚) (1999). Biomass and Primary Production of China’s Forest Ecosystems (中国森林生态系统的生物量生产力). Science Press, Beijing. (in Chinese) |
[9] | Fitter AH (1982). Morphological analysis of root systems: application of the techique and influence of soil fertility on root system development in two herbaceous species. Plant,Cell and Environment, 5,313-322. |
[10] | Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140,450-457. |
[11] | Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ, Hendrick RL (2008a). Heterogeneity by root branch order: exploring the discrepancy in root longevity and turnover estimates between minirhizotron and C isotope methods. New Phytologist, 177,443-456. |
[12] | Guo DL, Mitchell RJ, Withington JM, Fan PP, Hendricks JJ (2008b). Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. Journal of Ecology, 96,734-745. |
[13] | He JS (贺金生), Wang ZQ (王政权), Fang JY (方精云) (2004). Underground ecology with global changes: problems and prospects. Chinese Science Bulletin(科学通报), 49,1226-1233. (in Chinese) |
[14] | Huang JH (黄建辉), Han XG (韩兴国), Chen LZ (陈灵芝) (1999). Research on biomass of roots in forest ecosystems. Acta Ecologica Sinica(生态学报), 19,270-277. (in Chinese with English abstract) |
[15] | Hishi T, Takeda H (2005). Dynamics of heterorhizic root systems: protoxylem groups within the fine-root syetem of Chamaecyparis obtuse. New Phytologist, 167,509-521. |
[16] | Hishi T (2007). Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions. Journal of Forest Research, 12,126-133. |
[17] | Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United State of America, 94,7362-7366. |
[18] | Lambers H, Chapin FS, Pons TL (1998). Plant Physiology Ecology. Springer, Berlin,Heidelberg, New York. |
[19] |
Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL (1997). Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia, 111,302-308.
DOI URL PMID |
[20] | Pregitzer KS, de Forest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72,293-309. |
[21] |
Trumbore SE, Gaudinski JB (2003). The secret lives of roots. Science, 302,1344-1345.
DOI URL PMID |
[22] | Tang JW (唐建伟), Shi JP (施济普), Zhang GM (张光明), Bai KJ (白坤甲) (2008). Density, structure and biomass of Papashorea chinensis population in different patches in Xishuangbanna, SW, China. Journal of Plant Ecology(Chinese version)(植物生态学报), 32,40-54. (in Chinese with English abstract) |
[23] | Zhang YB (张殷波), Zhang F (张峰) (2003). Analysis on the flora of seed plants in Manghe Nature Reserve, Shanxi. Botanical Research (植物研究), 23,500-506. |
[24] | Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Advantage in Ecological Research, 15,303-377. |
[25] | Vogt KA, Persson (1991). Measuring growth and development of roots. In: Sprugel D, Benecke U, Lassoie JP, Hinckley TM eds. Techniques and Approaches in Forest Tree Ecophysiology. CRC Press, Boston. |
[26] | Wang XR (王向荣), Gu JC (谷加存), Mei L (梅莉), Han YZ (韩有志), Yu SQ (于水强), Shi JW (史建伟), Yu LZ (于立忠) (2006). Fine root order morphology and proportion between mother roots and daughter roots in Fraxiuus mandshurica and Larix gmelinii plantations. Acta Ecologica Sinica(生态学报), 26,1686-1692. (in Chinese with English abstract) |
[27] | Wang ZQ, Guo DL, Wang XR, Gu JC, Mei L (2006). Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species. Plant and Soil, 288,155-171. |
[28] |
Wells CE, Glenn DM, Eissenstat DM (2002). Changes in the risk of fine root mortality with age: a case study in peach,Prunus persica (Rosaceae). American Journal of Botany, 89,79-87.
DOI URL PMID |
[29] | Wells CE, Eissenstat DM (2003). Beyond the roots of young seedlings: the influence of age and order on fine root physiology. Journal of Plant Growth Regulation, 21,324-334. |
[30] | West GB, Brown JH, Enquist BJ (1999). A general model for structure and allometry of plant vascular systems. Nature, 400,664-667. |
[31] | Xu Bin (许彬), Zhang JT (张金屯) (2007). Species diversity of Baihua Mountain in forest plant community. Botanical Research (植物研究), 27,112-118. (in Chinese with English abstract) |
[32] | Zhang XQ (张小全) (2001). Fine-root biomass, production and turnover of trees in relations to environmental conditions. Forest Research (林业科学研究), 14,566-573. (in Chinese with English abstract) |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[5] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[6] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[7] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[8] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[9] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[10] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[11] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[12] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[13] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[14] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[15] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19