植物生态学报 ›› 2010, Vol. 34 ›› Issue (9): 1007-1015.DOI: 10.3773/j.issn.1005-264x.2010.09.001
所属专题: 全球变化与生态系统
• 研究论文 • 下一篇
收稿日期:
2010-04-22
接受日期:
2010-06-09
出版日期:
2010-04-22
发布日期:
2010-10-08
通讯作者:
郭大立
作者简介:
* E-mail: dlguo@urban.pku.edu.cn
CHEN Sha-Sha1, LIU Hong-Yan1,2, GUO Da-Li1,2,*()
Received:
2010-04-22
Accepted:
2010-06-09
Online:
2010-04-22
Published:
2010-10-08
Contact:
GUO Da-Li
摘要:
作为碳素和养分循环的重要组分, 地表凋落物如何响应全球气候变化日益受到重视。中国北方半干旱地区森林草原过渡带斑块状分布的森林对气候变化引起的水热变化的响应较为敏感, 但是对这些森林地表处于不同分解阶段的凋落物的化学性质和储量的格局及其如何响应温度、降水变化的报道较少。该研究分析了内蒙古东部地区处于年平均气温和年降水量梯度上的12个天然白桦(Betula platyphylla)林不同凋落物层次(最上层的初步分解层L1, 中间的半分解层L2, 最下层的腐殖质层L3)的化学性质及现存量后发现: 1)随着分解的进行(即从L1到L3层), 氮、磷浓度显著增加, 可提取物浓度基本不变, 酸溶性组分(acid soluble fraction, AS)浓度下降, 酸不溶性组分(acid insoluble fraction, AIF)浓度增加。2)各元素现存量均在L3层最高, 表明凋落物分解缓慢, 养分积累。3)年平均气温和年降水量对凋落物有机组分(AS组分和AIF组分)的性质无显著影响, 但L3层元素储量随年平均气温升高而增加, 可能由于年平均气温较高的地点森林生产力更高, 从而导致叶凋落物量增加, 但由于受水分限制(尤其是在夏天), 这些地点的凋落物分解速率不变或更低, 使凋落物积累更为明显。上述结果表明: 腐殖质层是这些白桦林的一个重要的碳及养分库, 未来在降水没有明显变化的情况下, 这一区域的升温可能会增加白桦林地表凋落物储量。
陈莎莎, 刘鸿雁, 郭大立. 内蒙古东部天然白桦林的凋落物性质和储量及其随温度和降水梯度的变化格局. 植物生态学报, 2010, 34(9): 1007-1015. DOI: 10.3773/j.issn.1005-264x.2010.09.001
CHEN Sha-Sha, LIU Hong-Yan, GUO Da-Li. Litter stocks and chemical quality of natural birch forests along temperature and precipitation gradients in eastern Inner Mongolia, China. Chinese Journal of Plant Ecology, 2010, 34(9): 1007-1015. DOI: 10.3773/j.issn.1005-264x.2010.09.001
地点 Site | 缩写 Abbreviation | 经度 Longitude (°) (E) | 纬度 Latitude (°) (N) | 海拔 Altitude (m) | 坡度 Slope (°) | 温度梯度 Temperature gradient | 降水梯度 Precipitation gradient | 胸径 DBH (cm) | 胸高断面积 Basal area (m2·hm-2) | 凋落物现存量 Litter stock (g·m-2) |
---|---|---|---|---|---|---|---|---|---|---|
罕山 Hanshan | HS | 118.71 | 44.19 | 1389.0 | 26 | T4 | Pre3 | 14.8 | 59.7 | 3 614.2 |
太本 Taiben | TB | 118.64 | 44.57 | 1330.0 | 23 | T4 | Pre2 | 23.0 | 48.1 | 3 686.9 |
高力罕 Gaolihan | GLH | 118.35 | 44.85 | 1214.0 | 17 | T4 | Pre1 | 18.2 | 10.6 | 3 194.5 |
海日罕 Hairihan | HRH | 120.33 | 45.99 | 884.8 | 15 | T3 | Pre3 | 7.2 | 12.7 | 1 694.8 |
阿尔昆 A’erkun | AEK | 119.82 | 45.33 | 962.8 | 28 | T3 | Pre2 | 7.6 | 20.0 | 614.5 |
宝日格斯台 Baorigesitai | BRG | 118.92 | 44.99 | 1 176.0 | 16 | T3 | Pre1 | 15.1 | 58.4 | 3 881.0 |
阿尔山 A’ershan | AES | 119.98 | 47.16 | 1 125.0 | 8 | T2 | Pre3 | 9.5 | 35.3 | 3 183.7 |
杜拉尔 Dula’er | DLE | 119.69 | 47.34 | 940.0 | 13 | T2 | Pre2 | 10.8 | 42.8 | 1 520.3 |
罕达盖 Handagai | HDG | 119.47 | 47.45 | 885.5 | 33 | T2 | Pre1 | 9.6 | 36.9 | 2 285.1 |
姑子庙 Guzimiao | GZM | 120.69 | 50.40 | 662.7 | 14 | T1 | Pre3 | 12.3 | 64.6 | 2 760.8 |
小乌尔根 Xiaowu’ergen | XWEG | 120.48 | 50.38 | 633.5 | 26 | T1 | Pre2 | 13.7 | 47.5 | 2 756.4 |
额尔古纳 E’erguna | EEGN | 120.23 | 50.35 | 666.0 | 15 | T1 | Pre1 | 9.4 | 40.2 | 2 370.1 |
表1 内蒙古东部12个天然白桦林样点描述
Table 1 Site description of 12 sampling sites in Eastern Inner Mongolia
地点 Site | 缩写 Abbreviation | 经度 Longitude (°) (E) | 纬度 Latitude (°) (N) | 海拔 Altitude (m) | 坡度 Slope (°) | 温度梯度 Temperature gradient | 降水梯度 Precipitation gradient | 胸径 DBH (cm) | 胸高断面积 Basal area (m2·hm-2) | 凋落物现存量 Litter stock (g·m-2) |
---|---|---|---|---|---|---|---|---|---|---|
罕山 Hanshan | HS | 118.71 | 44.19 | 1389.0 | 26 | T4 | Pre3 | 14.8 | 59.7 | 3 614.2 |
太本 Taiben | TB | 118.64 | 44.57 | 1330.0 | 23 | T4 | Pre2 | 23.0 | 48.1 | 3 686.9 |
高力罕 Gaolihan | GLH | 118.35 | 44.85 | 1214.0 | 17 | T4 | Pre1 | 18.2 | 10.6 | 3 194.5 |
海日罕 Hairihan | HRH | 120.33 | 45.99 | 884.8 | 15 | T3 | Pre3 | 7.2 | 12.7 | 1 694.8 |
阿尔昆 A’erkun | AEK | 119.82 | 45.33 | 962.8 | 28 | T3 | Pre2 | 7.6 | 20.0 | 614.5 |
宝日格斯台 Baorigesitai | BRG | 118.92 | 44.99 | 1 176.0 | 16 | T3 | Pre1 | 15.1 | 58.4 | 3 881.0 |
阿尔山 A’ershan | AES | 119.98 | 47.16 | 1 125.0 | 8 | T2 | Pre3 | 9.5 | 35.3 | 3 183.7 |
杜拉尔 Dula’er | DLE | 119.69 | 47.34 | 940.0 | 13 | T2 | Pre2 | 10.8 | 42.8 | 1 520.3 |
罕达盖 Handagai | HDG | 119.47 | 47.45 | 885.5 | 33 | T2 | Pre1 | 9.6 | 36.9 | 2 285.1 |
姑子庙 Guzimiao | GZM | 120.69 | 50.40 | 662.7 | 14 | T1 | Pre3 | 12.3 | 64.6 | 2 760.8 |
小乌尔根 Xiaowu’ergen | XWEG | 120.48 | 50.38 | 633.5 | 26 | T1 | Pre2 | 13.7 | 47.5 | 2 756.4 |
额尔古纳 E’erguna | EEGN | 120.23 | 50.35 | 666.0 | 15 | T1 | Pre1 | 9.4 | 40.2 | 2 370.1 |
图1 内蒙古12个样地凋落物各个层次在不同年降水量(Pre)和年平均气温(T)梯度下的平均碳(A-C)、氮(D-F)、磷(G-I)的浓度。 T1-T4分别表示-3.0、-2.4、2.3和3.2 ℃ 4个温度梯度, Pre1-Pre3分别表示373、394和415 mm 3个降水梯度。不同小写字母表示在某个降水条件下同一层次不同温度间元素浓度的差异显著, p < 0.05。小于3个数据的没有标注字母。
Fig. 1 Mean C (A-C), N (D-F) and P (G-I) concentrations of different litter layers along precipitation and temperature gradients. T1-T4 represent four annual average air temperature gradients of -3.0, -2.4, 2.3 and 3.2 ℃, respectively. Pre1-Pre3 represent three annual average precipitation gradients of 373, 394 and 415 mm, respectively. Different lower-case letters represent significant differences (p < 0.05) in elemental concentrations of the same layer in a certain precipitation gradient among four temperature gradients. Item that has less than three values has no letter labelled.
L | L × T | L × Pre | L × T × Pre | T | Pre | T × Pre | |
---|---|---|---|---|---|---|---|
碳浓度 C concentration | <0.001 | 0.327 | 0.746 | 0.885 | 0.000 | 0.136 | 0.037 |
氮浓度 N concentration | <0.001 | 0.006 | 0.929 | 0.006 | 0.018 | 0.065 | 0.021 |
磷浓度 P concentration | <0.001 | 0.004 | 0.397 | 0.002 | <0.001 | 0.013 | <0.001 |
可提取物浓度 Extractives concentration | 0.010 | 0.242 | 0.623 | 0.105 | 0.412 | 0.772 | 0.021 |
酸溶性组分浓度 Acid soluble fraction concentration | <0.001 | 0.029 | 0.054 | 0.028 | 0.406 | 0.122 | 0.009 |
酸不溶性组分浓度 Acid insoluble fraction concentration | 0.005 | 0.091 | 0.246 | 0.037 | 0.239 | 0.212 | 0.021 |
碳储量 C stock | <0.001 | 0.018 | 0.173 | 0.017 | 0.018 | 0.446 | 0.003 |
氮储量 N stock | <0.001 | 0.003 | 0.094 | 0.002 | 0.001 | 0.446 | 0.001 |
磷储量 P stock | <0.001 | 0.001 | 0.012 | <0.001 | <0.001 | 0.225 | <0.001 |
表2 凋落物层次、温度、降水对凋落物平均碳、氮、磷浓度, 储量以及有机组分含量的影响的方差分析结果
Table 2 ANOVA results of the effects of litter layer, temperature and precipitation on the mean concentrations and stocks of C, N, and P, and concentrations of chemical fractions
L | L × T | L × Pre | L × T × Pre | T | Pre | T × Pre | |
---|---|---|---|---|---|---|---|
碳浓度 C concentration | <0.001 | 0.327 | 0.746 | 0.885 | 0.000 | 0.136 | 0.037 |
氮浓度 N concentration | <0.001 | 0.006 | 0.929 | 0.006 | 0.018 | 0.065 | 0.021 |
磷浓度 P concentration | <0.001 | 0.004 | 0.397 | 0.002 | <0.001 | 0.013 | <0.001 |
可提取物浓度 Extractives concentration | 0.010 | 0.242 | 0.623 | 0.105 | 0.412 | 0.772 | 0.021 |
酸溶性组分浓度 Acid soluble fraction concentration | <0.001 | 0.029 | 0.054 | 0.028 | 0.406 | 0.122 | 0.009 |
酸不溶性组分浓度 Acid insoluble fraction concentration | 0.005 | 0.091 | 0.246 | 0.037 | 0.239 | 0.212 | 0.021 |
碳储量 C stock | <0.001 | 0.018 | 0.173 | 0.017 | 0.018 | 0.446 | 0.003 |
氮储量 N stock | <0.001 | 0.003 | 0.094 | 0.002 | 0.001 | 0.446 | 0.001 |
磷储量 P stock | <0.001 | 0.001 | 0.012 | <0.001 | <0.001 | 0.225 | <0.001 |
L1 | L2 | L3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T | Pre | T × Pre | T | Pre | T × Pre | T | Pre | T × Pre | |||
碳浓度 C concentration | > 0.05 | > 0.05 | > 0.05 | 0.001 | > 0.05 | 0.004 | 0.015 | > 0.05 | > 0.05 | ||
氮浓度 N concentration | 0.014 | 0.017 | 0.002 | < 0.001 | 0.022 | 0.004 | > 0.05 | 0.021 | > 0.05 | ||
磷浓度 P concentration | < 0.001 | 0.031 | < 0.001 | < 0.001 | 0.004 | 0.010 | > 0.05 | 0.038 | < 0.001 | ||
可提取物浓度 Extractives concentration | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | 0.002 | > 0.05 | > 0.05 | > 0.05 | ||
酸溶性组分浓度 Acid soluble fraction concentration | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | ||
酸不溶性组分浓度 Acid insoluble fraction concentration | > 0.05 | > 0.05 | > 0.05 | > 0.05 | 0.045 | 0.002 | > 0.05 | > 0.05 | > 0.05 | ||
碳储量 C stock | > 0.05 | 0.035 | > 0.05 | > 0.05 | 0.037 | > 0.05 | 0.003 | 0.024 | 0.002 | ||
氮储量 N stock | 0.044 | > 0.05 | 0.011 | > 0.05 | 0.026 | > 0.05 | < 0.001 | 0.009 | < 0.001 | ||
磷储量 P stock | 0.025 | > 0.05 | 0.020 | > 0.05 | 0.019 | > 0.05 | < 0.001 | 0.002 | 0.001 |
表3 温度、降水对叶片和凋落物各个层次碳、氮、磷浓度和储量以及有机组分含量的影响的方差分析结果
Table 3 ANOVA results of the effects of temperature and precipitation on the concentrations and stocks of C, N, and P, and the concentrations of organic fractions of leaf and litter layers
L1 | L2 | L3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T | Pre | T × Pre | T | Pre | T × Pre | T | Pre | T × Pre | |||
碳浓度 C concentration | > 0.05 | > 0.05 | > 0.05 | 0.001 | > 0.05 | 0.004 | 0.015 | > 0.05 | > 0.05 | ||
氮浓度 N concentration | 0.014 | 0.017 | 0.002 | < 0.001 | 0.022 | 0.004 | > 0.05 | 0.021 | > 0.05 | ||
磷浓度 P concentration | < 0.001 | 0.031 | < 0.001 | < 0.001 | 0.004 | 0.010 | > 0.05 | 0.038 | < 0.001 | ||
可提取物浓度 Extractives concentration | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | 0.002 | > 0.05 | > 0.05 | > 0.05 | ||
酸溶性组分浓度 Acid soluble fraction concentration | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | ||
酸不溶性组分浓度 Acid insoluble fraction concentration | > 0.05 | > 0.05 | > 0.05 | > 0.05 | 0.045 | 0.002 | > 0.05 | > 0.05 | > 0.05 | ||
碳储量 C stock | > 0.05 | 0.035 | > 0.05 | > 0.05 | 0.037 | > 0.05 | 0.003 | 0.024 | 0.002 | ||
氮储量 N stock | 0.044 | > 0.05 | 0.011 | > 0.05 | 0.026 | > 0.05 | < 0.001 | 0.009 | < 0.001 | ||
磷储量 P stock | 0.025 | > 0.05 | 0.020 | > 0.05 | 0.019 | > 0.05 | < 0.001 | 0.002 | 0.001 |
图2 不同层次凋落物可提取物(A)、酸溶性组分(B)、酸不溶性组分(C)浓度。 不同小写字母表示某个有机组分在3个凋落物层次间的差异显著, p < 0.05。L1- L3同表3。
Fig. 2 Average concentrations of extractives (A), acid soluble fraction (B), and acid insoluble fraction (C) of different litter layers. Different lower-case letters represent significant differences (p < 0.05) in the concentrations of organic fractions among three litter layers. L1- L3 see Table 3.
图3 12个样地凋落物各个层次在不同降水梯度(Pre1-Pre3)和温度梯度(T1-T4)下的平均可提取物(A-C)、酸溶性组分(D-F)、酸不溶性组分(G-I)的浓度。 不同小写字母表示在某个降水条件下同一层次不同温度间有机组分浓度的差异显著, p < 0.05。小于3个数据的没有标注字母。T1-T4, Prel-Pre3, 同图1。
Fig. 3 Mean concentrations of extractives (A-C), acid soluble fraction (D-F), and acid insoluble fraction (G-I) of different litter layers along precipitation (Pre1-Pre3) and temperature gradients (T1-T4). Different lower-case letters represent significant differences (p < 0.05) in concentrations of organic fractions of the same layer in a certain precipitation gradient among four temperature gradients. Item that has less than three values has no letter labelled. T1-T4, Prel-Pre3, see Fig. 1.
图4 内蒙古12个样地凋落物各个层次在不同降水梯度(Pre1-Pre3)和温度梯度(T1-T4)下的平均碳(A-C)、氮(D-F)、磷(G-I)储量。 不同小写字母表示在某个降水条件下同一层次不同温度间元素储量间的差异显著, p < 0.05。小于3个数据的没有标注字母。T1-T4, Prel-Pre3, 同图1。
Fig. 4 Mean stocks of C (A-C), N (D-F) and P (G-I) of different litter layers along precipitation (Pre1-Pre3) and temperature gradients (T1-T4). Different lower-case letters represent significant differences (p < 0.05) in the stocks of C, N, and P of the same layer in a certain precipitation gradient among four temperature gradients. Item that has less than three values has no letter labelled. T1-T4, Prel-Pre3, see Fig. 1.
[1] | Alarcon-Gutierrez E, Floch C, Ziarelli F, Albrecht R, Le Petit J, Augur C, Criquet S (2008). Characterization of a Mediterranean litter by C-13 CPMAS NMR: relationships between litter depth, enzyme activities and temperature. European Journal of Soil Science, 59, 486-495. |
[2] | Albers D, Migge S, Schaefer M, Scheu S (2004). Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biology and Biochemistry, 36, 155-164. |
[3] | Almendros G, Dorado J, Gonzalez-Vila FJ, Blanco MJ, Lankes U (2000). C-13 NMR assessment of decomposition patterns during composting of forest and shrub biomass. Soil Biology and Biochemistry, 32, 793-804. |
[4] | Berg B (2000). Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133, 13-22. |
[5] | Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000). Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6, 751-765. |
[6] | Graca M, Barlocher F, Gessner M (2005). Methods to Study Litter Decomposition: a Practical Guide. Part 2. Springer, Berlin. 115-120. |
[7] |
Grant RF, Margolis HA, Barr AG, Black TA, Dunn AL, Bernier PY, Bergeron O (2009). Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales. Tree Physiology, 29, 1-17.
URL PMID |
[8] | Hilli S, Stark S, Derome J (2008). Carbon quality and stocks in organic horizons in boreal forest soils. Ecosystems, 11, 270-282. |
[9] | Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006). Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology, 87, 2288-2297. |
[10] | Jin HL, Su ZZ, Sun LY, Sun Z, Zhang H, Jin LY (2004). Holocene climatic change in Hunshandake Desert. Chinese Science Bulletin, 49, 1730-1735. |
[11] | Kogel-Knabner I (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 34, 139-162. |
[12] | Kuo S (1996). Phosphorus. In: Bigham JM ed. Methods of Soil Analysis.Part 3. Chemical Methods. Soil Science Society of America, American Society of Agronomy, Madison, Wis. 869-919. |
[13] | Lin B (林波), Liu Q (刘庆), Wu Y (吴彦), He H (何海) (2004). Advances in the studies of forest litter. Chinese Journal of Ecology (生态学杂志), 23, 60-64. (in Chinese with English abstract) |
[14] | Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, 173, 611-620. |
[15] | Liu CJ, Westman CJ, Berg B, Kutsch W, Wang GZ, Man RZ, Ilvesniemi H (2004). Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia. Global Ecology and Biogeography, 13, 105-114. |
[16] | Liu WX, Zhang Z, Wan SQ (2009). Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 15, 184-195. |
[17] | Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ (1989). Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant and Soil, 115, 189-198. |
[18] |
Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364.
URL PMID |
[19] | Polyakova O, Billor N (2007). Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands. Forest Ecology and Management, 253, 11-18. |
[20] | Sjoberg G, Nilsson SI, Persson T, Karlsson P (2004). Degradation of hemicellulose, cellulose and lignin in decomposing spruce needle litter in relation to N. Soil Biology and Biochemistry, 36, 1761-1768. |
[21] | Wang CK (王传宽), Yang JY (杨金艳) (2005). Carbon dioxide fluxes from soil respiration and woody debris decomposition in boreal forests. Acta Ecologica Sinica (生态学报), 25, 633-638. (in Chinese with English abstract) |
[22] | Welp LR, Randerson JT, Liu HP (2007). The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agricultural and Forest Meteorology, 147, 172-185. |
[23] | Zhang DQ (张德强), Yu QF (余清发), Kong GH (孔国辉), Zhang YC (张佑倡) (1998). Chemical properties of forest floor litter in Dinghushan monsoon evergreen broadleaved forest. Acta Ecologica Sinica (生态学报), 18, 96-100. (in Chinese with English abstract) |
[24] | Zhong GH (钟国辉), Xin XB (辛学兵) (2004). Chemical properties of litter in dark coniferous forest of Sejila Mountains in Tibet. Chinese Journal of Applied Ecology (应用生态学报), 15, 167-169. (in Chinese with English abstract) |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[3] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[4] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[5] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[6] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[7] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[8] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[9] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[10] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[11] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[12] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[13] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[14] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[15] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19