植物生态学报 ›› 2010, Vol. 34 ›› Issue (12): 1454-1462.DOI: 10.3773/j.issn.1005-264x.2010.12.012
收稿日期:
2009-09-15
接受日期:
2010-08-04
出版日期:
2010-09-15
发布日期:
2010-12-28
通讯作者:
王政权
作者简介:
(E-mail: wzqsilv@mail.nefu.edu.cn)
WEI Xing, WANG Zheng-Quan*(), ZHANG Guo-Zhen
Received:
2009-09-15
Accepted:
2010-08-04
Online:
2010-09-15
Published:
2010-12-28
Contact:
WANG Zheng-Quan
摘要:
根系依赖根细胞内线粒体呼吸代谢产生的能量, 不断从土壤中获取养分。在胁迫条件下, 线粒体的结构和功能会发生一定的变化, 从而影响根系的功能。土壤干旱是最容易引起苗木细根衰老死亡的非生物胁迫因子之一。为了更好地认识干旱胁迫下细根线粒体的结构和功能变化, 对土壤干旱胁迫下水曲柳(Fraxinus mandshurica)不同颜色细根皮层薄壁细胞内线粒体的超微结构(线粒体数量、形态)、线粒体的呼吸功能、线粒体膜脂质氧化(膜透性变化、过氧化氢含量等)情况进行了研究。结果表明: (1)干旱胁迫下, 水曲柳白色及黄色根皮层薄壁细胞内线粒体形状、结构及分布数量与对照相似, 无显著差异。干旱胁迫下产生的褐色根皮层薄壁细胞线粒体数量减少, 分布密度也变小。线粒体内、外膜先后发生不同程度的解体, 最后消失。(2)干旱胁迫显著干扰了线粒体膜的正常呼吸耦联作用, 细根线粒体呼吸控制率(RCR)与磷氧比(无机磷酸/分子氧, P/O)均显著低于对照(p < 0.05)。随着细根颜色加深, 线粒体RCR和P/O值逐渐下降, 白色根﹥黄色根﹥褐色根。褐色根线粒体RCR值最低, 接近极值1。说明褐色根线粒体结构完整性最差, 能量转化效率最低。(3)干旱胁迫下, 不同颜色细根线粒体内的H2O2含量、线粒体膜透性、膜脂氧化产物丙二醛(MDA)含量均显著高于对照(p < 0.05)。且随着细根颜色加深, 各个值增加明显。分析可能是由于干旱胁迫导致线粒体内H2O2含量升高, 线粒体膜脂质过氧化(MDA含量升高), 膜结构受到破坏(膜透性增加) (电镜下可见部分线粒体内膜电子密度下降及外膜解体)。线粒体膜结构完整性的破坏, 直接影响了线粒体呼吸代谢反应, 使线粒体呼吸功能下降。
卫星, 王政权, 张国珍. 干旱胁迫下水曲柳苗木细根线粒体的形态及活性变化. 植物生态学报, 2010, 34(12): 1454-1462. DOI: 10.3773/j.issn.1005-264x.2010.12.012
WEI Xing, WANG Zheng-Quan, ZHANG Guo-Zhen. Morphological and activity variation of mitochondria in fine roots of Fraxinus mandshurica seedling under drought stress. Chinese Journal of Plant Ecology, 2010, 34(12): 1454-1462. DOI: 10.3773/j.issn.1005-264x.2010.12.012
图1 水曲柳苗木细根皮层薄壁细胞线粒体超微结构。A, 对照白色根。B, 对照黄色根。C, 干旱胁迫下白色根。D, 干旱胁迫下黄色根。E-O, 干旱胁迫下褐色根。
Fig. 1 Mitochondrial ultrastructures in cotical parenchyma of fine roots in Fraxinus mandshurica seedlings. A, White root of control. B, Yellow root of control. C, White root under drought stress. D, Yellow root under drought stress. E-O, Brown root under drought stress.
图2 干旱胁迫对水曲柳苗木不同颜色细根线粒体数量的影响(平均值±标准误差)。不同的小写字母表示干旱胁迫与对照之间的差异显著(p < 0.05); 不同的大写字母表示干旱处理下不同颜色细根间的差异显著(p < 0.05)。
Fig. 2 Effects of drought stress on mitochondrial quantity of fine roots with different color in Fraxinus mandshurica seedlings (mean ± SE). Different small letters mean significant differences (p < 0.05) between drought treatments and control; different capital letters mean significant differences (p < 0.05) among different color fine roots.
图3 干旱胁迫对水曲柳苗木不同颜色细根线粒体呼吸态3的影响(平均值±标准误差)。注释同图2。
Fig. 3 Effects of drought stress on mitochondrial respiratory state 3 of fine roots with different color in Fraxinus mandshurica seedlings (mean ± SE). Notes see Fig. 2.
图4 干旱胁迫对水曲柳苗木不同颜色细根线粒体呼吸态4的影响(平均值±标准误差)。注释同图2。
Fig. 4 Effects of drought stress on mitochondrial respiratory state 4 of fine roots with different color in Fraxinus mandshurica seedlings (mean ± SE). Notes see Fig. 2.
图5 干旱胁迫对水曲柳苗木不同颜色细根线粒体呼吸控制率的影响(平均值±标准误差)。注释同图2。
Fig. 5 Effects of drought stress on mitochondrial respiratory control ratio (RCR) variations of fine roots with different color in Fraxinus mandshurica seedlings (mean ± SE). Notes see Fig. 2.
图6 干旱胁迫对水曲柳苗木不同颜色细根线粒体P/O值的影响(平均值±标准误差)。注释同图2。
Fig. 6 Effects of drought stress on mitochondrial P/O value of fine roots with different color in Fraxinus mandshurica seedlings (mean ± SE). Notes see Fig. 2.
图7 干旱胁迫对水曲柳苗木不同颜色细根线粒体膜吸收光度的影响(平均值±标准误差)。注释同图2。
Fig. 7 Effects of drought stress on mitochondrial membrane light absorbability of fine roots with different color in Fraxinus mandshurica seedlings (mean ± SE). Notes see Fig. 2.
图8 干旱胁迫对水曲柳苗木不同颜色细根线粒体丙二醛(MDA)含量的影响(平均值±标准误差)。注释同图2。
Fig. 8 Effects of drought stress on mitochondrial malondiadehyde (MDA) content of fine roots with different color in Fraxinus mandshurica seedlings (mean ± SE). Notes see Fig. 2.
图9 干旱胁迫对水曲柳苗木不同颜色细根线粒体H2O2含量的影响(平均值±标准误差)。注释同图2。
Fig. 9 Effects of drought stress on mitochondrial H2O2 content of fine roots with different color in Fraxinus mandshurica seedlings (mean ± SE). Notes see Fig. 2.
[1] | Bryla DR, Bouma TJ, Eissenstat DM (1997). Root respiration in Citrus acclimates to temperature and slows during drought. Plant, Cell and Environment, 20, 1411-1420. |
[2] | Cakmak I, Marschner H (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascrobate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98, 1222-1227. |
[3] | Dat JF, Pellinen R, Beeckman T, van de Cotte B, Langebartels C, Kangasjärvi J, Inzé D, van Breusegem F (2003). Changes in hydrogen peroxide homeostasis trigger active cell death process in tobacco. Plant Journal, 33, 621-632. |
[4] | Elstner EF (1982). Oxygen Activation and oxygen toxicity. Annual Review of Plant Physiology, 33, 73-96. |
[5] | Eissenstat DM, Achor DS (1999). Anatomical characteristics of roots of citrus rootstocks that vary in specific root length. New Phytologist, 141, 309-321. |
[6] |
He HY (何虎翼), He LF (何龙飞), Li XF (黎晓峰), Gu MH (顾明华) (2006). Effects of sodium nitroprusside on mitochondrial function of rye and wheat root tip under aluminum stress. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 32, 239-244. (in Chinese with English abstract )
URL PMID |
[7] |
Hishi T, Takeda H (2005). Life cycles of individual roots in fine root system of Chamaecyparis obtuse. Journal of Forest Research, 10, 181-187.
DOI URL |
[8] | Halestrap AP, Gillespie JP, O’toole A, Doran E (2000). Mitochondria and cell death: A pore way to die? In: Bryant JA, Hughes SG, Garland JM eds. Programmed Cell Death in Animals and Plants. BIOS Scientific Publishers, Oxford, UK. 149-162. |
[9] | Jin CF (金超芳), Shen SR (沈生荣), Zhao BL (赵保路) (2002). Influences of EGCG on mitochondrial PTP opening and Ca 2+ transportation . Journal of Tea Science (茶叶科学), 22(1), 14-18. (in Chinese) |
[10] | Liu ZY (刘振岩), Li ZS (李震三) (2000). Fruit Tree in Shandong Province (山东果树). Shanghai Science and Technology Press, Shanghai. 70-80. (in Chinese) |
[11] | Luo YL (罗银玲), Song SQ (宋松泉) (2004). Plant mitochondria, reactive oxygen species and signaling transduction. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 24, 737-747. (in Chinese with English abstract) |
[12] |
Loeffler M, Kroemer G (2000). The mitochondrion in cell death control: certainties and incognita. Experimental Cell Research, 256, 19-26.
DOI URL PMID |
[13] | Ma HY (马怀宇), Yang HQ (杨洪强) (2006). The effect of exogenous H2O2 on mitochondrial membrane permeability and cell nuclear DNA in roots of Malus hupehensis. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 32, 551-556. |
[14] | Ma HY (马怀宇), Xiao J (肖静), Yang HQ (杨洪强) (2007). Study on root mitochondrial characteristics and root cell death of Malus hupehensis Rehd. under water stress. Acta Horticulturae Sinica (园艺学报), 34, 549-554. (in Chinese with English abstract) |
[15] | Pirtro AS (1981). The Method of Phytophysiologica. Translated by the Physiology Teaching and Research Group of Beijing Agricultural University (北京农业大学植物生理学教研组)(1981). Science Press, Beijing. 191-204. (in Chinese) |
[16] | Patterson BD, Mackae EA, Ferguson IB (1984). Estimation of hydrogen peroxide in plant extracts using titanium (IV). Analatical Biochemistry, 139, 487-492. |
[17] |
Puntarulo S, Ksanchez R, Akboveris B (1988). Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination. Plant Physiology, 86, 626-630.
DOI URL PMID |
[18] |
Reed JC, Green DR (2002). Remodeling for demolition: changes in mitochondrial ultrastructure during apoptosis. Molecular Cell, 9, 1-9.
DOI URL PMID |
[19] |
Smith MM, Hodson MJ, Öpik H, Wainwright SJ (1982). Salt induced ultrastructural damage to mitochondria in root tips of a salt-sensitive ecotype of Agrostis stolonifera. Journal of Experimental Botany, 33, 886-895.
DOI URL |
[20] | Shen J (沈嘉), Zhang ZW (张振文) (2009). Cytomorphological studies of programmed cell death in cabernet sauvignon induced by artificial drought stress. Journal of Northwest A&F University (Natural Science Edition) (西北农林科技大学学报(自然科学版)), 37(10), 125-132. (in Chinese with English abstract) |
[21] |
Wells CE, Eissenstat DM (2001). Marked differences in survivorship among apple roots of different diameters. Ecology, 82, 882-892.
DOI URL |
[22] | Wu YW (吴亚维), Ma FW (马锋旺), Zou YJ (邹养军) (2009). The effect of soil compaction on root growth and root activity of Malus prunifolia seedlings. Guizhou Agricultural Sciences (贵州农业科学), 37(3), 118-120. (in Chinese) |
[23] | Xu JX (徐建兴) (2003). The role of electron leakage of mitochondrial respiratory chain in cell apoptosis. Progress in Biochemistry and Biophysics (生物化学与生物物理进展), 30, 655-657. (in Chinese) |
[24] | Xiao XX (肖祥希), Yang ZW (杨宗武), Zheng R (郑蓉), Chen LS (陈立松), Liu XH (刘星辉) (2003). Effect of aluminum stress on cell ultra-structure of leaf and root of longan (Dimocarpus longan). Scientia Silvae Sinicae (林业科学), 39(1), 58-61. |
[25] |
Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002). Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiology, 128, 63-72.
URL PMID |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[4] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[5] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[6] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[7] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[8] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[9] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[10] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[11] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[12] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[13] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[14] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[15] | 孙文泰, 马明. 黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J]. 植物生态学报, 2021, 45(9): 972-986. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19