植物生态学报 ›› 2005, Vol. 29 ›› Issue (6): 901-909.DOI: 10.17521/cjpe.2005.0118
收稿日期:
2004-12-21
接受日期:
2005-07-07
出版日期:
2005-12-21
发布日期:
2005-09-30
通讯作者:
马克平
作者简介:
*E-mail:makp@brim.ac.cn基金资助:
REN Hai-Bao1, ZHANG Lin-Yan2, MA Ke-Ping1,*()
Received:
2004-12-21
Accepted:
2005-07-07
Online:
2005-12-21
Published:
2005-09-30
Contact:
MA Ke-Ping
摘要:
格局和过程一直是生态学的核心问题,该文应用“非布朗运动随机分形”模型,在北京东灵山远离人为干扰地区的阴坡设置了两条宽2 m的样带,描述和比较了暖温带落叶阔叶林区乔木、灌木、草本以及总的植物物种丰富度在不同尺度上沿海拔梯度变异特征,以及相关的生态过程。研究结果表明:1)直接梯度法刻画了植物物种丰富度在海拔梯度上的总体变化趋势,并不能从中获得更多的信息。“非布朗运动随机分形”模型揭示了不同尺度上物种丰富度的空间变化并能和生态过程相联系,研究表明该模型适合对乔木、灌木和草本植物物种丰富度的垂直梯度格局特征进行描述,但对总的植物物种丰富度有一定的局限性。2)乔木物种丰富度在海拔梯度上的变化主要受两种生态过程的控制,小尺度上分形维数接近于2,主要受独立的不具有长程相关的生态过程控制,呈近随机分布;大尺度上分形维数接近于1,主要受自相关范围大、具有长程关联特性的生态过程控制,随海拔上升呈近似单调下降的趋势。灌木和草本物种丰富度在海拔梯度上的变化主要受3种生态过程的控制,小尺度和大尺度上的特征与乔木相似;但在中等尺度上,分形维数接近于1.5,它们以近似布朗运动的形式变化。虽然乔木和灌木物种丰富度在海拔梯度上变化的尺度范围相似,但决定它们的主要生态过程完全不同,或相同的生态过程以截然不同的方式作用于两种不同的植物类群。总的植物物种丰富度在整个尺度范围内呈现标度不变性,这可能是由于决定其变化的生态过程作用尺度紧密相关,也可能因为该文研究范围的局限性。
任海保, 张林艳, 马克平. 不同植物类群物种丰富度垂直格局分形特征的比较. 植物生态学报, 2005, 29(6): 901-909. DOI: 10.17521/cjpe.2005.0118
REN Hai-Bao, ZHANG Lin-Yan, MA Ke-Ping. COMPARISON OF FRACTAL CHARACTERISTICS OF SPECIES RICHNESS PATTERNS BETWEEN DIFFERENT PLANT TAXONOMIC GROUPS ALONG AN ALTITUDINAL GRADIENT. Chinese Journal of Plant Ecology, 2005, 29(6): 901-909. DOI: 10.17521/cjpe.2005.0118
样带号 Code of transects | 海 拔 Elevation (m) | 宽 度 Width(m) | 坡 向 Slope aspect |
---|---|---|---|
A | 1 800~1 280 | 2 | 东北 |
B | 2 300~1 940 | 2 | 北 |
表1 两条垂直样带的基本状况
Table 1 Characteristics of two transects along altitudinal gradient
样带号 Code of transects | 海 拔 Elevation (m) | 宽 度 Width(m) | 坡 向 Slope aspect |
---|---|---|---|
A | 1 800~1 280 | 2 | 东北 |
B | 2 300~1 940 | 2 | 北 |
图1 a.总的植物丰富度沿海拔梯度的变化 b.总的植物物种丰富度沿海拔梯度变化的半方差函数双对数图
Fig.1 a. Patterns of total plant species richness along altitudinal gradient b. Double-log variogram for total plant species richness along altitudinal gradient
图2 a.乔木物种丰富度沿海拔梯度的变化 b.乔木物种丰富度沿海拔梯度变化的半方差函数双对数图
Fig.2 a. Patterns of tree species richness along altitudinal gradient b. Double-log variogram for tree species richness along altitudinal gradient
图3 a.灌木物种丰富度沿海拔梯度的变化 b.灌木物种丰富度沿海拔梯度变化的半方差函数双对数图
Fig.3 a. Patterns of shrub species richness along altitudinal gradient b. Double-log variogram for shrub species richness along altitudinal gradient
图4 a.草本物种丰富度沿海拔梯度的变化 b.草本物种丰富度沿海拔梯度变化的半方差函数双对数图
Fig.4 a. Patterns of shrub species richness along altitudinal gradient b. Double-log variogram for herb species richness along altitudinal gradient
[1] |
Burrough PA (1981). Fractal dimension of landscapes and other environmental data. Nature, 294,240-242.
DOI URL |
[2] |
Burrough PA (1983a) Multiscale sources of spatial variation in soil.Ⅰ. A non-Brownian fractal model and its application in soil survey. Journal of Soil Science, 34,577-597.
DOI URL |
[3] |
Burrough PA (1983b). Multiscale sources of spatial variation in soil.Ⅱ. A non-Brownian fractal model and its application in soil survey. Journal of Soil Science, 34,599-620.
DOI URL |
[4] | Chen CD (陈昌笃) (1996). To follow the world's new tendency of ecological development in developing China's ecology. Science and Technology Review (科技导报), 2,7-9. (in Chinese) |
[5] | Dale MRT (1999). Basic methods for one dimension and one species. In: Dale MRT ed. Spatial Pattern Analysis in Plant Ecology. Cambridge University Press, Cambridge,50-99. |
[6] |
Dale MRT, Dixon P, Fortin MJ, Legendre P, Myers DE, Rosenberg MS (2002). Conceptual and mathematical relationships among methods for spatial analysis. Ecography, 25,558-577.
DOI URL |
[7] | Dong Q (董全), Li XJ (李晓军) (1996). Western ecology toward the 21 st century. Science and Technology Review (科技导报), 2,14-17. (in Chinese) |
[8] |
Gaston KJ (2000). Global patterns in biodiversity. Nature, 405,220-227.
DOI URL PMID |
[9] |
Jelinski DE, Wu J (1996). The modifiable areal unit problem and implications for landscape ecology. Landscape Ecology, 11,129-140.
DOI URL |
[10] |
Kørner Ch (2000). Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology & Evolution, 15,513-514.
DOI URL |
[11] |
Legendre P (1993). Spatial autocorrelation: trouble or new paradigm? Ecology, 74,1659-1673.
DOI URL |
[12] |
Legendre P, Fortin MJ (1989). Spatial pattern and ecological analysis. Vegetatio, 80,107-138.
DOI URL |
[13] |
Levin SA (1992). The problem of pattern and scale in ecology. Ecology, 73,1943-1967.
DOI URL |
[14] | Li HQ (李后强), Wang FQ (汪富泉) (1997). Fractal Theory and Its Application in Molecular Discipline (分形理论及其在分子科学中的应用) 2nd edn. Science Press, Beijing,157-178. (in Chinese) |
[15] | Lomolino MV (2001). Elevation gradients of species-density: historical and prospective views. Global Ecology & Biogeography, 10,3-13. |
[16] |
Lyons SK, Willig MR (1999). A hemispheric assessment of scale dependence in latitudinal gradients of species richness. Ecology, 80,2483-2491.
DOI URL |
[17] | Ma KM (马克明), Ye WH (叶万辉), Sang WG (桑卫国), Ma KP (马克平), Guan WB (关文彬) (1997). Study on plant community diversity in Donglingshan Mountain, Beijing, China Ⅹ. Diversity and fractal analysis on transect on different scales. Acta Ecologica Sinica (生态学报), 17,626-634. (in Chinese with English abstract) |
[18] | Ma KP (马克平), Yu SL (于顺利), Gao XM (高贤明) (1997). Study on the flora of Dongling Mountain area. In: Chen LZ (陈灵芝), Huang JH (黄建辉) eds. Researches on Structure and Function of Forest Ecosystem in Warm-Temperate Zone (暖温带森林生态系统结构与功能的研究). Science Press, Beijing,38-55. (in Chinese with English abstract) |
[19] |
Marceau DJ, Hay GJ (1999). Remote sensing contributions to the scale issue. Canadian Journal of Remote Sensing, 25,357-366.
DOI URL |
[20] |
Meentemeyer V (1989). Geographical perspectives of space, time and scale. Landscape Ecology, 3,163-173.
DOI URL |
[21] |
Nelson A (2001). Analyzing data across geographic scales in Honduras: detecting levels of organization within systems. Agriculture, Ecosystem and Environment, 85,107-131.
DOI URL |
[22] |
O'Neill RV, Hunsaker CT, Timmins SP, Jackson BL, Jones KB, Riitters KH, Wickham JD (1996). Scale problems in reporting landscape pattern at the regional scale. Landscape Ecology, 11,169-180.
DOI URL |
[23] |
Palmer MW (1988). Fractal geometry: a tool for describing spatial patterns of plant communities. Vegetatio, 75,91-102.
DOI URL |
[24] |
Perry JN, Liebhold AM, Rosenberg MS, Dungan J, Miriti M, Jakomulska A, Citron-Pousty S (2002). Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data. Ecography, 25,578-600.
DOI URL |
[25] |
Pimm SL, Ayres M, Balmford A, Branch G, Brandon K, Brooks T, Bustamante R, Costanza R, Conling R, Curran LM, Dobson A, Farber S, da Fonseca CAB, Gascon C, Kitching R, McNeely J, Lovejoy T, Mittermeier RA, Myers N, Patz JA, Raffle B, Rapport D, Raven P, Roberts C, Rodriguez JP, Rylands AB, Tucker C, Safina C, Samper C, Stiassny MLJ, Supriatna J, Wall DH, Wilcove D (2001). Can we defy nature's end? Science, 293,2207-2208.
URL PMID |
[26] |
Rahbek C (1995). The elevational gradient of species richness: a uniform pattern? Ecography, 18,200-205.
DOI URL |
[27] | Rahbek C, Graves GR (2001). Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences USA, 98,4534-4539. |
[28] | Rossi RE, Mulla DJ, Journel AG, Franz EH (1992). Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs, 62,277-314. |
[29] | Wang DS (王东生), Cao L (曹磊) (1995). Chaos, Fractal and Their Application (混沌、分形及其应用). University of Science and Technology of China Press, Hefei. (in Chinese) |
[30] | Whittaker RJ, Willis KJ, Field R (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28,453-470. |
[31] | Willig MR, Kaufman DM, Stevens RD (2003). Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology Evolution and Systematics, 34,273-309. |
[32] | Zu YG (祖元刚), Ma KM (马克明), Zhang XJ (张喜军) (1997). Fractal method for analyzing spatial heterogeneity of vegetation. Acta Ecologica Sinica (生态学报), 17,333-337. (in Chinese with English abstract) |
[1] | 冉松松, 余再鹏, 万晓华, 傅彦榕, 邹秉章, 王思荣, 黄志群. 邻域树种多样性对杉木叶片氮磷生态化学计量比的影响[J]. 植物生态学报, 2023, 47(7): 932-942. |
[2] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[3] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[4] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[5] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[6] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[7] | 钟姣, 姜超, 刘世荣, 龙文兴, 孙建新. 海南长臂猿食源植物的潜在物种丰富度分布格局[J]. 植物生态学报, 2023, 47(4): 491-505. |
[8] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[9] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[10] | 崔光帅, 罗天祥, 梁尔源, 张林. 干旱半干旱区灌丛对草本植物的促进作用研究进展[J]. 植物生态学报, 2022, 46(11): 1321-1333. |
[11] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[12] | 田佳玉, 王彬, 张志明, 林露湘. 光谱多样性在植物多样性监测与评估中的应用[J]. 植物生态学报, 2022, 46(10): 1129-1150. |
[13] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[14] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[15] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2699
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 6102
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La