植物生态学报 ›› 2007, Vol. 31 ›› Issue (4): 673-679.DOI: 10.17521/cjpe.2007.0087
收稿日期:
2006-08-03
接受日期:
2007-01-05
出版日期:
2007-08-03
发布日期:
2007-07-30
作者简介:
E-mail: wangzw@ibcas.ac.cn
Received:
2006-08-03
Accepted:
2007-01-05
Online:
2007-08-03
Published:
2007-07-30
Supported by:
摘要:
该研究针对根茎型克隆植物羊草(Leymus chinensis)考察了以下内容:1)地上枝条和根茎中可溶性碳水化合物含量的时间动态及其对去叶干扰的响应;2)特定阶段植物体内一定部位的可溶性碳水化合物浓度差异;3)植物体各部分(地上部分、直立茎地下部分及根茎)间可溶性碳水化合物浓度变化之间的关联。基于上述研究结果,作者试图弄清碳水化合物对于羊草克隆分株和整个基株生长和存活的意义。实验共有4个处理:1个对照和3个不同频度(在整个实验进行期间分别去叶1次、3次和5次)的去叶处理。所有去叶处理都采取一个统一的强度,即留茬15 cm。地上枝条和根茎的取样频次为每10 d 1次。植物体各部分可溶性碳水化合物浓度以高效液相色谱法(HPLC)测定。对不同去叶频度处理间的碳水化合物含量差异显著性进行ANOVA分析。结果表明:不去叶对照处理在生长季盛期可溶性碳水化合物浓度的显著下降归因于植物体快速的生长而引起植物叶片旺盛的呼吸消耗,而去叶处理中植物的可溶性碳水化合物浓度并没有大的降低甚至在最频繁的去叶处理下还有所上升,主要是由于去叶处理减少叶片而造成地上部分总呼吸量下降所致。一次性去叶处理并没有影响植物地上部分最终的可溶性碳水化合物浓度,但是连续数次的去叶处理对地上部分可溶性碳水化合物浓度产生了一定的影响。在秋季气温下降时,碳水化合物自地上向地下的转移在去叶频度越大的处理下表现越为迅速。这表明当植物体接受到气温降低的信号后,去叶干扰加速碳水化合物自地上向地下的转移。可能由于地下枝条存在一定的贮藏功能,在实验过程中地下枝条中可溶性碳水化合物浓度比地上枝条中表现的更加稳定。根茎中的可溶性碳水化合物必要时会转移到地上以供应地上枝条的生长,而旺盛的生长会消耗可溶性碳水化合物,然而自未接受去叶处理的分株向接受去叶处理的分株的克隆整合(常常在较高频次的去叶处理中发生)可能会在一定程度上缓解这种消耗所造成的影响。
王正文. 根茎克隆植物羊草体内可溶性碳水化合物的时间变异及其对去叶干扰的响应. 植物生态学报, 2007, 31(4): 673-679. DOI: 10.17521/cjpe.2007.0087
WANG Zheng-Wen. TEMPORAL VARIATION OF WATER-SOLUBLE CARBOHYDRATE IN THE RHIZOME CLONAL GRASS LEYMUS CHINENSIS IN RESPONSE TO DEFOLIATION. Chinese Journal of Plant Ecology, 2007, 31(4): 673-679. DOI: 10.17521/cjpe.2007.0087
Dates | Treatments | Samplings | |||
---|---|---|---|---|---|
D0 | D1 | D3 | D5 | ||
Jun. 30 | $ | ||||
Jul. 10 | + | + | + | $ | |
Jul. 20 | + | # | |||
Jul. 30 | + | + | # | ||
Aug. 9 | + | # | |||
Aug. 19 | + | + | # | ||
Aug. 29 | # | ||||
Sep. 8 | # |
Table 1 The dates of defoliations and samplings
Dates | Treatments | Samplings | |||
---|---|---|---|---|---|
D0 | D1 | D3 | D5 | ||
Jun. 30 | $ | ||||
Jul. 10 | + | + | + | $ | |
Jul. 20 | + | # | |||
Jul. 30 | + | + | # | ||
Aug. 9 | + | # | |||
Aug. 19 | + | + | # | ||
Aug. 29 | # | ||||
Sep. 8 | # |
[WSC] | Treatments | Sampling dates | |||||
---|---|---|---|---|---|---|---|
Jul. 20 | Jul. 30 | Aug. 9 | Aug. 19 | Aug. 29 | Sep. 8 | ||
Aboveground shoots | D0 | 18.31±0.65a | 19.84±1.20a | 19.33±1.88a | 18.34±0.83a | 19.56±1.52a | 18.43±0.36a |
D1 | 17.77±1.10a | 13.67±0.88b | 18.04±1.00a | 21.00±0.55a | 19.04±1.08a | 19.85±0.66a | |
D3 | 18.82±0.62a | 17.58±1.06b | 18.26±2.93a | 18.86±1.09a | 18.99±1.05a | 16.87±0.32b | |
D5 | 17.98±1.38a | 21.49±0.13c | 15.43±0.96a | 18.69±0.69a | 18.84±0.80a | 13.51±0.46c | |
Belowground culms | D0 | 19.60±0.72a | 22.72±0.86a | 21.01±0.55a | 23.52±1.35a | 18.30±1.88a | 18.67±2.30a |
D1 | 17.71±1.46a | 19.84±1.25a | 19.44±2.53a | 22.17±1.05a | 16.07±0.29a | 19.21±0.19a | |
D3 | 20.75±1.11a | 20.60±1.76a | 16.96±0.45a | 21.46±0.61a | 17.21±0.98a | 17.97±1.33a | |
D5 | 18.72±1.78a | 18.80±0.99a | 17.50±0.87a | 20.30±1.71a | 19.06±2.17a | 17.45±0.17a | |
Rhizomes | D0 | 33.37±3.63a | 34.10±3.45a | 26.18±1.21a | 28.44±2.05a | 33.74±1.14a | 34.36±2.94a |
D1 | 31.20±0.87a | 33.17±1.34a | 27.72±3.39a | 31.65±1.31a | 31.37±1.49a | 30.01±0.31a | |
D3 | 26.72±1.16a | 33.55±3.40a | 30.13±1.85a | 32.96±1.19a | 35.19±0.57a | 32.91±1.64a | |
D5 | 29.96±0.30a | 33.53±3.38a | 32.05±2.41a | 27.84±3.79a | 32.68±3.07a | 31.17±1.23a |
Table 2 Temporal dynamics of water-soluble carbohydrate (WSC) contents in aboveground shoots, rhizomes and belowground culms (means with the same letter are not significantly different)
[WSC] | Treatments | Sampling dates | |||||
---|---|---|---|---|---|---|---|
Jul. 20 | Jul. 30 | Aug. 9 | Aug. 19 | Aug. 29 | Sep. 8 | ||
Aboveground shoots | D0 | 18.31±0.65a | 19.84±1.20a | 19.33±1.88a | 18.34±0.83a | 19.56±1.52a | 18.43±0.36a |
D1 | 17.77±1.10a | 13.67±0.88b | 18.04±1.00a | 21.00±0.55a | 19.04±1.08a | 19.85±0.66a | |
D3 | 18.82±0.62a | 17.58±1.06b | 18.26±2.93a | 18.86±1.09a | 18.99±1.05a | 16.87±0.32b | |
D5 | 17.98±1.38a | 21.49±0.13c | 15.43±0.96a | 18.69±0.69a | 18.84±0.80a | 13.51±0.46c | |
Belowground culms | D0 | 19.60±0.72a | 22.72±0.86a | 21.01±0.55a | 23.52±1.35a | 18.30±1.88a | 18.67±2.30a |
D1 | 17.71±1.46a | 19.84±1.25a | 19.44±2.53a | 22.17±1.05a | 16.07±0.29a | 19.21±0.19a | |
D3 | 20.75±1.11a | 20.60±1.76a | 16.96±0.45a | 21.46±0.61a | 17.21±0.98a | 17.97±1.33a | |
D5 | 18.72±1.78a | 18.80±0.99a | 17.50±0.87a | 20.30±1.71a | 19.06±2.17a | 17.45±0.17a | |
Rhizomes | D0 | 33.37±3.63a | 34.10±3.45a | 26.18±1.21a | 28.44±2.05a | 33.74±1.14a | 34.36±2.94a |
D1 | 31.20±0.87a | 33.17±1.34a | 27.72±3.39a | 31.65±1.31a | 31.37±1.49a | 30.01±0.31a | |
D3 | 26.72±1.16a | 33.55±3.40a | 30.13±1.85a | 32.96±1.19a | 35.19±0.57a | 32.91±1.64a | |
D5 | 29.96±0.30a | 33.53±3.38a | 32.05±2.41a | 27.84±3.79a | 32.68±3.07a | 31.17±1.23a |
Fig.1 The percentages of standing litter over total aboveground biomass Values are shown as means±SE. The bars sharing the same letter are not significantly different
[1] |
Atkin OK, Botman B, Lambers H (1996). The causes of inherently slow growth in alpine plants: an analysis based on the underlying carbon economies of alpine and lowland Poa species. Functional Ecology, 10, 698-707.
DOI URL |
[2] |
Chapin FS Ⅲ, Schulze ED, Mooney HA (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21, 423-447.
DOI URL |
[3] |
Chatterton NJ, Harrison PA, Bennett JH, Asay KH (1989). Carbohydrate partitioning in 185 accessions of Gramineae grown under warm and cool temperatures. Journal of Plant Physiology, 134, 169-179.
DOI URL |
[4] | Davies A (1965). Carbohydrate levels and regrowth in perennial ryegrass. Journal of Agricultural Science, 65, 213-221. |
[5] |
Donaghy DJ, Fulkerson WJ (1998). Priority for allocation of water-soluble carbohydrate reserves during regrowth of Lolium perenne. Grass and Forage Science, 53, 211-218.
DOI URL |
[6] |
Fulkerson WJ, Donaghy DJ (2001). Plant-soluble carbohydrate reserves and senescence—key criteria for developing an effective grazing management system for ryegrass-based pastures: a review. Australian Journal of Experimental Agriculture, 41, 261-275.
DOI URL |
[7] |
Fulkerson WJ, Slack K (1994). Leaf number as a criterion for determining defoliation time for Lolium perenne. 1. Effect of water-soluble carbohydrates and senescence. Grass and Forage Science, 49, 373-377.
DOI URL |
[8] | Garnier E, Vancaeyzeele S (1994). Carbon and nitrogen content of congeneric annual and perennial grass species: relationships with growth. Plant, Cell and Environment, 17, 399-407. |
[9] |
Gibson SI (2000). Plant sugar-response pathway. Part of a complex regulatory web. Plant Physiology, 124, 1532-1539.
DOI URL PMID |
[10] |
Guy CL, Huber JLA, Huber SC (1992). Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiology, 100, 502-508.
DOI URL PMID |
[11] |
Handa IT, Körner C, Hättenschwiller S (2005). A test of the treeline carbon limitation hypothesis by in situ CO2 enrichment and defoliation. Ecology, 86, 1288-1300.
DOI URL |
[12] |
Iwasa Y, Kubo T (1997). Optimal size of storage for recovery after unpredictable disturbances. Evolutionary Ecology, 11, 41-65.
DOI URL |
[13] |
Jeong BR, Housley TL (1990). Fructan metabolism in wheat in alternating warm and cold temperatures. Plant Physiology, 93, 902-906.
DOI URL PMID |
[14] | Johansson G (1993). Carbon distribution in grass ( Festuca pratensis L.) during regrowth after cutting-utilization of stored and newly assimilated carbon. Plant and Soil, 15, 11-20. |
[15] |
Klimeš L, Klimešová J (2002). The effects of mowing and fertilization on carbohydrate reserves and regrowth of grasses: do they promote plant coexistence in species-rich meadows? Evolutionary Ecology, 15, 363-382.
DOI URL |
[16] |
Livingston DP (1996). The second phase of cold hardening: freezing tolerance and fructan isomer changes in winter cereal crowns. Crop Science, 36, 1568-1573.
DOI URL |
[17] |
Loewe A, Einig W, Shi L, Dizengremel P, Hampp R (2000). Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytologist, 145, 565-574.
DOI URL |
[18] |
Palacio S, Maestro M, Montserrat-Martí G (2007). Seasonal dynamics of non-structural carbohydrates in two species of mediterranean sub-shrubs with different leaf phenology. Environmental and Experimental Botany, 59, 34-42.
DOI URL |
[19] |
Sanada Y, Takai T, Yamada T (2006). Ecotypic variation of water-soluble carbohydrate concentration and winter hardiness in cocksfoot (Dactylis glomerata L.). Euphytica, doi. 10.1007/s10681-006-9262-9.
DOI URL PMID |
[20] |
Suzuki J-I, Stuefer JF (1999). On the ecological and evolutionary significance of storage in clonal plants. Plant Species Biology, 14, 11-17.
DOI URL |
[21] |
Vallius E, Salonen V (2000). Effects of defoliation on male and female reproductive traits of a perennial orchid, Dactylorhiza maculata. Functional Ecology, 14, 668-674.
DOI URL |
[22] |
Vanderklein DW, Reich PB (1999). The effect of defoliation intensity and history on photosynthesis, growth and carbon reserves of two conifers with contrasting leaf lifespans and growth habits. New Phytologist, 144, 121-132.
DOI URL |
[23] |
Veneklaasa EJ, den Oudena F (2005). Dynamics of non-structural carbohydrates in two Ficus species after transfer to deep shade. Environmental and Experimental Botany, 54, 148-154.
DOI URL |
[24] |
White LM (1973). Carbohydrate reserves of grasses: a review. Journal of Range Management, 26, 13-18.
DOI URL |
[25] |
Wulfes R, Nyman P, Kornher A (1999). Modelling non-structural carbohydrates in forage grasses with weather data. Agricultural Systems, 61, 1-16.
DOI URL |
[26] |
Yu SM (1999). Cellular and genetic response of plants to sugar starvation. Plant Physiology, 121, 687-693.
DOI URL PMID |
[27] | Zhu TC, Li JD, Yang DC (1981). A study of the ecology of yang-cao ( Leymus chinensis) grassland in northern China. ProceedingsⅩⅣ International Grassland Congress, 429-431. |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[3] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[4] | 代景忠, 白玉婷, 卫智军, 张楚, 闫瑞瑞. 切根对羊草营养生长期内植物功能性状的影响[J]. 植物生态学报, 2021, 45(12): 1292-1302. |
[5] | 李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁. 不同放牧强度下内蒙古温带典型草原优势种植物防御策略[J]. 植物生态学报, 2020, 44(6): 642-653. |
[6] | 张璐, 郝匕台, 齐丽雪, 李艳龙, 徐慧敏, 杨丽娜, 宝音陶格涛. 草原群落生物量和土壤有机质含量对改良措施的动态响应[J]. 植物生态学报, 2018, 42(3): 317-326. |
[7] | 朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952. |
[8] | 杨雪, 申俊芳, 赵念席, 高玉葆. 不同基因型羊草数量性状的可塑性及遗传分化[J]. 植物生态学报, 2017, 41(3): 359-368. |
[9] | 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响[J]. 植物生态学报, 2017, 41(2): 196-208. |
[10] | 岑宇, 刘美珍. 凝结水对干旱胁迫下羊草和冰草生理生态特征及叶片形态的影响[J]. 植物生态学报, 2017, 41(11): 1199-1207. |
[11] | 李丹, 康萨如拉, 赵梦颖, 张庆, 任海娟, 任婧, 周俊梅, 王珍, 吴仁吉, 牛建明. 内蒙古羊草草原不同退化阶段土壤养分与植物功能性状的关系[J]. 植物生态学报, 2016, 40(10): 991-1002. |
[12] | 詹书侠, 郑淑霞, 王扬, 白永飞. 羊草的地上-地下功能性状对氮磷施肥梯度的响应及关联[J]. 植物生态学报, 2016, 40(1): 36-47. |
[13] | 刘慧, 陈薇, 周勇, 李夏, 任安芝, 高玉葆. 内生真菌和丛枝菌根真菌对羊草生长的影响[J]. 植物生态学报, 2015, 39(5): 477-485. |
[14] | 李西良,侯向阳,吴新宏,萨茹拉,纪磊,陈海军,刘志英,丁勇. 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应[J]. 植物生态学报, 2014, 38(5): 440-451. |
[15] | 白雪, 程军回, 郑淑霞, 詹书侠, 白永飞. 典型草原建群种羊草对氮磷添加的生理生态响应[J]. 植物生态学报, 2014, 38(2): 103-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19