植物生态学报 ›› 2010, Vol. 34 ›› Issue (3): 348-358.DOI: 10.3773/j.issn.1005-264x.2010.03.012
所属专题: 青藏高原植物生态学:种群生态学
• 研究论文 • 上一篇
朱志红1,*(), 席博1, 李英年2, 臧岳铭1, 王文娟1, 刘建秀1, 郭华1
收稿日期:
2009-02-17
接受日期:
2009-08-12
出版日期:
2010-02-17
发布日期:
2010-03-01
通讯作者:
朱志红
作者简介:
* E-mail: zhuzhihong@snnu.edu.cn
ZHU Zhi-Hong1,*(), XI Bo1, LI Ying-Nian2, ZANG Yue-Ming1, WANG Wen-Juan1, LIU Jian-Xiu1, GUO Hua1
Received:
2009-02-17
Accepted:
2009-08-12
Online:
2010-02-17
Published:
2010-03-01
Contact:
ZHU Zhi-Hong
摘要:
补偿生长反映了植物的耐牧性, 受采食和土壤养分资源获得性的共同影响。但何种条件易于引起植物发生超补偿是长期以来争论的问题。通过一项野外调查试验, 研究了高寒矮嵩草(Kobresia humilis)草甸3种生境(I. 畜圈, 富养, 放牧; II. 牧道, 低养, 放牧; III. 封育草地, 低养, 不放牧)中粗喙薹草(Carex scabrirostris)的补偿生长模式与机制, 以及采食率、土壤养分和水分因子对补偿生长的相对贡献。粗喙薹草补偿生长量和分株盖度、密度及高度在生境I显著高于生境II和生境III, 在生境I和生境II均发生超补偿生长, 在生境III为低补偿。分株生物量对生长器官的分配在生境I和生境II相同, 并都高于生境II; 生物量对储藏器官的分配在生境II最高, 生境III次之, 生境I最低。储藏分配与生长分配和克隆繁殖分配间, 生长分配与有性繁殖分配间均存在负偶联(trade-offs)关系。对补偿生长贡献最大的因子是相对生长率和6月份土壤有机质含量, 其次是8月份土壤氮素营养和采食率。研究结果表明, 粗喙薹草的补偿生长和生物量分配具有可塑性, 并决定着补偿生长模式随生境条件而变化。不论在富养环境或低养环境, 储藏分配高的粗喙薹草都容易发生超补偿, 富养生境条件能降低采食的负面效应, 增加植物的耐牧性。
朱志红, 席博, 李英年, 臧岳铭, 王文娟, 刘建秀, 郭华. 高寒草甸不同生境粗喙薹草补偿生长研究. 植物生态学报, 2010, 34(3): 348-358. DOI: 10.3773/j.issn.1005-264x.2010.03.012
ZHU Zhi-Hong, XI Bo, LI Ying-Nian, ZANG Yue-Ming, WANG Wen-Juan, LIU Jian-Xiu, GUO Hua. Compensatory growth of Carex scabrirostris in different habitats in alpine meadow. Chinese Journal of Plant Ecology, 2010, 34(3): 348-358. DOI: 10.3773/j.issn.1005-264x.2010.03.012
时间 Time | 生境特性 Habitat characteristics | F(2,6) | 生境 Habitat | ||
---|---|---|---|---|---|
I | II | III | |||
6月 Jun. | pH值 pH value 土壤含水量 Soil water content (SWC, %) 有机质 Organic matter (OM, g·kg-1) 全氮 Total nitrogen (TN, g·kg-1) 硝态氮 Nitrate nitrogen (NN, mg·kg-1) 氨态氮 Ammoniacal nitrogen (AN, mg·kg-1) 全磷 Total phosphorus (TP, g·kg-1) 速效磷 Available phosphorus (AP, mg·kg-1) 地上重 Aboveground mass (AM, g·ramet-1) 群落采食率 Defoliation ratio (DR, %) 粗喙薹草采食率 DR of Carex scabrirostris (%) | 1.22ns 22.87** 6.18* 11.06** 18.25** 2.42ns 4.17† 7.05* 4.12† 19.17** 11.76** | 7.75 ± 0.11a 26.66 ± 1.27b 148.23 ± 32.89b 8.09 ± 1.26ab 67.29 ± 31.45b 46.75 ± 7.69a 1.13 ± 0.08b 11.97 ± 3.91b 0.18 ± 0.03b 43.65 ± 11.81c 32.79 ± 9.62c | 7.93 ± 0.13a 21.89 ± 0.82a 82.66 ± 8.94a 5.48 ± 0.51a 11.03 ± 2.58a 48.95 ± 13.14a 0.89 ± 0.09a 3.36 ± 0.81a 0.13 ± 0.04ab 32.17 ± 5.23b 14.47 ± 3.91b | 7.78 ± 0.18a 22.82 ± 0.44a 102.15 ± 26.63ab 11.31 ± 2.66b 22.71 ± 7.21a 60.00 ± 16.02a 0.92 ± 0.11ab 4.32 ± 2.97a 0.10 ± 0.03a 10.35 ± 2.89a 9.26 ± 0.86a |
8月 Aug. | pH值 pH value 土壤含水量 Soil water content (SWC, %) 有机质 Organic matter (OM, g·kg-1) 全氮 Total nitrogen (TN, g·kg-1) 硝态氮 Nitrate nitrogen (NN, mg·kg-1) 氨态氮 Ammoniacal nitrogen (AN, mg·kg-1) 全磷 Total phosphorus (TP, g·kg-1) 速效磷 Available phosphorus (AP, mg·kg-1) 群落盖度 Community coverage (TC, %) | 1.69ns 22.85** 11.21** 15.14** 4.48† 6.33* 30.57** 4.65† 14.35** | 7.74 ± 0.09a 29.61 ± 1.93b 173.60 ± 52.59b 13.71 ± 2.00b 27.36 ± 18.61b 43.08 ± 10.39b 1.32 ± 0.11b 14.32 ± 10.26b 99.56 ± 0.51b | 7.89 ± 0.26a 23.63 ± 1.41a 81.01 ± 5.47a 9.61 ± 2.26b 4.63 ± 3.37a 21.74 ± 2.11a 0.88 ± 0.02a 3.38 ± 1.22a 96.33 ± 2.73b | 8.05 ± 0.21a 25.63 ± 0.58a 91.27 ± 17.11a 5.64 ± 1.15a 2.76 ± 2.08a 31.48 ± 9.15ab 0.93 ± 0.07a 3.64 ± 2.26a 80.78 ± 8.04a |
表1 不同生境土壤养分和水分状况、采食率和群落盖度比较
Table 1 Comparison of nutrient and water content in the soil, defoliation ratio of herbs and coverage of communities among habitats
时间 Time | 生境特性 Habitat characteristics | F(2,6) | 生境 Habitat | ||
---|---|---|---|---|---|
I | II | III | |||
6月 Jun. | pH值 pH value 土壤含水量 Soil water content (SWC, %) 有机质 Organic matter (OM, g·kg-1) 全氮 Total nitrogen (TN, g·kg-1) 硝态氮 Nitrate nitrogen (NN, mg·kg-1) 氨态氮 Ammoniacal nitrogen (AN, mg·kg-1) 全磷 Total phosphorus (TP, g·kg-1) 速效磷 Available phosphorus (AP, mg·kg-1) 地上重 Aboveground mass (AM, g·ramet-1) 群落采食率 Defoliation ratio (DR, %) 粗喙薹草采食率 DR of Carex scabrirostris (%) | 1.22ns 22.87** 6.18* 11.06** 18.25** 2.42ns 4.17† 7.05* 4.12† 19.17** 11.76** | 7.75 ± 0.11a 26.66 ± 1.27b 148.23 ± 32.89b 8.09 ± 1.26ab 67.29 ± 31.45b 46.75 ± 7.69a 1.13 ± 0.08b 11.97 ± 3.91b 0.18 ± 0.03b 43.65 ± 11.81c 32.79 ± 9.62c | 7.93 ± 0.13a 21.89 ± 0.82a 82.66 ± 8.94a 5.48 ± 0.51a 11.03 ± 2.58a 48.95 ± 13.14a 0.89 ± 0.09a 3.36 ± 0.81a 0.13 ± 0.04ab 32.17 ± 5.23b 14.47 ± 3.91b | 7.78 ± 0.18a 22.82 ± 0.44a 102.15 ± 26.63ab 11.31 ± 2.66b 22.71 ± 7.21a 60.00 ± 16.02a 0.92 ± 0.11ab 4.32 ± 2.97a 0.10 ± 0.03a 10.35 ± 2.89a 9.26 ± 0.86a |
8月 Aug. | pH值 pH value 土壤含水量 Soil water content (SWC, %) 有机质 Organic matter (OM, g·kg-1) 全氮 Total nitrogen (TN, g·kg-1) 硝态氮 Nitrate nitrogen (NN, mg·kg-1) 氨态氮 Ammoniacal nitrogen (AN, mg·kg-1) 全磷 Total phosphorus (TP, g·kg-1) 速效磷 Available phosphorus (AP, mg·kg-1) 群落盖度 Community coverage (TC, %) | 1.69ns 22.85** 11.21** 15.14** 4.48† 6.33* 30.57** 4.65† 14.35** | 7.74 ± 0.09a 29.61 ± 1.93b 173.60 ± 52.59b 13.71 ± 2.00b 27.36 ± 18.61b 43.08 ± 10.39b 1.32 ± 0.11b 14.32 ± 10.26b 99.56 ± 0.51b | 7.89 ± 0.26a 23.63 ± 1.41a 81.01 ± 5.47a 9.61 ± 2.26b 4.63 ± 3.37a 21.74 ± 2.11a 0.88 ± 0.02a 3.38 ± 1.22a 96.33 ± 2.73b | 8.05 ± 0.21a 25.63 ± 0.58a 91.27 ± 17.11a 5.64 ± 1.15a 2.76 ± 2.08a 31.48 ± 9.15ab 0.93 ± 0.07a 3.64 ± 2.26a 80.78 ± 8.04a |
图1 海北高寒草甸不同生境粗喙薹草分株补偿生长量(平均值±标准误)。 I、II、III分别表示畜圈、牧道和封育草地生境。标准误上方的不同字母表示生境间的显著差异(p < 0.05)。
Fig. 1 Compensatory growth weight of Carex scabrirostris ramet in different habitats in Haibei alpine meadow (mean ± SE). I, II and III in the figure indicate pen, pass and ungrazed pasture habitats, respectively. Different letters above error bars indicate significant differences (p < 0.05) among habitats.
生境内补偿指数G/C1 Compensatory index G/C1 within habitats | 生境间补偿指数G/C2 Compensatory index G/C2 among habitats | ||||
---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅰ | Ⅱ | Ⅲ |
1.119 ± 0.137 | 1.169 ± 0.073 | 0.982 ± 0.007 | 6.385 ± 1.223 | 2.316 ± 0.061 | 0.982 ± 0.007 |
表2 不同生境粗喙薹草分株补偿指数G/C(平均值±标准误)
Table 2 Compensatory index G/C of Carex scabrirostris ramet in different habitats (mean ± SE)
生境内补偿指数G/C1 Compensatory index G/C1 within habitats | 生境间补偿指数G/C2 Compensatory index G/C2 among habitats | ||||
---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅰ | Ⅱ | Ⅲ |
1.119 ± 0.137 | 1.169 ± 0.073 | 0.982 ± 0.007 | 6.385 ± 1.223 | 2.316 ± 0.061 | 0.982 ± 0.007 |
生物量分配 Biomass allocation (%) | F(2,6) | 生境 Habitat | ||
---|---|---|---|---|
I | II | III | ||
生长分配 Growth allocation, GA 有性繁殖分配 Sexual reproductive allocation, SRA 储藏分配 Storage allocation, SA 克隆繁殖分配 Clonal propagation allocation, CPA 地上生物量分配 Aboveground biomass allocation, AA 地下生物量分配 Belowground biomass allocation, BA | 4.81 † 1.19ns 19.35** 2.36ns 4.48 † 5.19 * | 37.91 ± 3.35b 0.16 ± 0.02a 17.80 ± 1.34a 44.13 ± 2.34a 37.91 ± 3.34b 62.09 ± 3.34a | 22.64 ± 2.16a 0.77 ± 0.71a 38.15 ± 2.34c 38.44 ± 1.70a 23.40 ± 1.86a 76.60 ± 1.86b | 35.62 ± 2.43b 0.34 ± 0.14a 29.07 ± 3.15b 34.97 ± 2.97a 35.94 ± 2.43ab 64.06 ± 2.43a |
表3 海北高寒草甸不同生境粗喙薹草分株生物量分配(平均值±标准误)
Table 3 Biomass allocation of Carex scabrirostris ramet in different habitats in Haibei alpine meadow (mean ± SE)
生物量分配 Biomass allocation (%) | F(2,6) | 生境 Habitat | ||
---|---|---|---|---|
I | II | III | ||
生长分配 Growth allocation, GA 有性繁殖分配 Sexual reproductive allocation, SRA 储藏分配 Storage allocation, SA 克隆繁殖分配 Clonal propagation allocation, CPA 地上生物量分配 Aboveground biomass allocation, AA 地下生物量分配 Belowground biomass allocation, BA | 4.81 † 1.19ns 19.35** 2.36ns 4.48 † 5.19 * | 37.91 ± 3.35b 0.16 ± 0.02a 17.80 ± 1.34a 44.13 ± 2.34a 37.91 ± 3.34b 62.09 ± 3.34a | 22.64 ± 2.16a 0.77 ± 0.71a 38.15 ± 2.34c 38.44 ± 1.70a 23.40 ± 1.86a 76.60 ± 1.86b | 35.62 ± 2.43b 0.34 ± 0.14a 29.07 ± 3.15b 34.97 ± 2.97a 35.94 ± 2.43ab 64.06 ± 2.43a |
生长分配 GA (%) | 有性繁殖分配 SRA (%) | 储藏分配 SA (%) | 克隆繁殖分配 CPA (%) | 地上生物量分配 AA (%) | 地下生物量分配 BA (%) | 生境间补偿指数 G/C2 | |
---|---|---|---|---|---|---|---|
生长分配 GA (%) 有性繁殖分配 SRA (%) 储藏分配 SA (%) 克隆繁殖分配 CPA (%) 地上生物量分配 AA (%) 地下生物量分配 BA (%) 生境间补偿指数 G/C2 补偿生长量 CDW (g) | -0.448* -0.736** -0.226 0.998** -0.998** 0.305 0.335 | 0.471* -0.163 -0.431** 0.431** -0.139 -0.053 | -0.435* -0.733** 0.733** -0.507** -0.470** | -0.234 0.234 0.259 0.177 | -1.000** 0.320 0.367 | -0.320 -0.367 | 0.732** |
表4 海北高寒草甸粗喙薹草分株生物量分配及其与补偿生长的Spearman秩相关
Table 4 Spearman correlation for biomass allocation and compensatory growth of Carex scabrirostris ramet in Haibei alpine meadow
生长分配 GA (%) | 有性繁殖分配 SRA (%) | 储藏分配 SA (%) | 克隆繁殖分配 CPA (%) | 地上生物量分配 AA (%) | 地下生物量分配 BA (%) | 生境间补偿指数 G/C2 | |
---|---|---|---|---|---|---|---|
生长分配 GA (%) 有性繁殖分配 SRA (%) 储藏分配 SA (%) 克隆繁殖分配 CPA (%) 地上生物量分配 AA (%) 地下生物量分配 BA (%) 生境间补偿指数 G/C2 补偿生长量 CDW (g) | -0.448* -0.736** -0.226 0.998** -0.998** 0.305 0.335 | 0.471* -0.163 -0.431** 0.431** -0.139 -0.053 | -0.435* -0.733** 0.733** -0.507** -0.470** | -0.234 0.234 0.259 0.177 | -1.000** 0.320 0.367 | -0.320 -0.367 | 0.732** |
图2 海北高寒草甸不同生境粗喙薹草株采食后的相对生长率(平均值±标准误)。 I、II、III分别表示畜圈、牧道和封育草地生境。标准误上方的不同字母表示生境间的显著差异(p < 0.05)。
Fig. 2 Relative growth rate of Carex scabrirostris ramet after defoliating in different habitats in Haibei alpine meadow (mean ± SE). I, II and III indicate pen, pass and ungrazed pasture habitats, respectively. Different letters above error bars indicate significant differences (p < 0.05) among habitats.
图3 海北高寒草甸不同生境粗喙薹草分株种群盖度、密度和高度变化(平均值±标准误)。 I、II、III分别表示畜圈、牧道和封育草地生境。标准误上方的不同字母表示生境间的显著差异(p < 0.05)。
Fig. 3 Varieties of coverage, density and plant height of Carex scabrirostris ramet population in different habitats in Haibei alpine meadow (mean ± SE). I, II and III indicate pen, pass and ungrazed pasture habitats, respectively. Different letters above error bars indicate significant differences (p < 0.05) among habitats.
排序轴 Axes | 特征值 Eigen- values | 累计方差 Cumulative percentage variance (%) | 6月 June | 8月 August | RGR | DR | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | SWC | OM | TN | NN | AN | TP | AP | pH | SWC | OM | TN | NN | AN | TP | AP | |||||
1 | 0.024 | 60.3 | 0.09 | -0.20 | 0.40* | 0.42* | -0.30 | 0.37* | -0.58** | -0.39* | -0.16 | -0.60** | -0.59** | |||||||
2 | 0.005 | 73.1 | -0.37* | 0.73** | 0.31 | 0.52** | 0.46* | -0.04 | 0.25 | 0.26 | 0.82** | 0.55** | 0.17 | |||||||
3 | 0.001 | 75.7 | -0.04 | -0.12 | -0.01 | 0.12 | -0.17 | 0.03 | -0.15 | 0.08 | -0.04 | -0.07 | -0.31 | |||||||
4 | 0.001 | 77.5 | -0.09 | 0.10 | -0.09 | 0.08 | 0.15 | -0.09 | -0.03 | -0.06 | -0.07 | -0.01 | 0.03 | |||||||
Monte Carlo检验p值 Monte Carlo test’ p value | 0.06† | ﹟ | 0.53 | 0.28 | ﹟ | 0.01** | 0.06† | ﹟ | 0.30 | ﹟ | ﹟ | 0.38 | 0.27 | 0.04* | ﹟ | ﹟ | 0.01** | 0.26 |
表5 对影响因子的前向选择和Monte Carlo检验以及各因子与CCA排序轴间的相关系数
Table 5 Forward selection and Monte Carlo test for the impact factors and the correlation coefficients between CCA ordination axes and impact factors
排序轴 Axes | 特征值 Eigen- values | 累计方差 Cumulative percentage variance (%) | 6月 June | 8月 August | RGR | DR | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | SWC | OM | TN | NN | AN | TP | AP | pH | SWC | OM | TN | NN | AN | TP | AP | |||||
1 | 0.024 | 60.3 | 0.09 | -0.20 | 0.40* | 0.42* | -0.30 | 0.37* | -0.58** | -0.39* | -0.16 | -0.60** | -0.59** | |||||||
2 | 0.005 | 73.1 | -0.37* | 0.73** | 0.31 | 0.52** | 0.46* | -0.04 | 0.25 | 0.26 | 0.82** | 0.55** | 0.17 | |||||||
3 | 0.001 | 75.7 | -0.04 | -0.12 | -0.01 | 0.12 | -0.17 | 0.03 | -0.15 | 0.08 | -0.04 | -0.07 | -0.31 | |||||||
4 | 0.001 | 77.5 | -0.09 | 0.10 | -0.09 | 0.08 | 0.15 | -0.09 | -0.03 | -0.06 | -0.07 | -0.01 | 0.03 | |||||||
Monte Carlo检验p值 Monte Carlo test’ p value | 0.06† | ﹟ | 0.53 | 0.28 | ﹟ | 0.01** | 0.06† | ﹟ | 0.30 | ﹟ | ﹟ | 0.38 | 0.27 | 0.04* | ﹟ | ﹟ | 0.01** | 0.26 |
图4 基于前向选择的环境因子与粗喙薹草分株补偿生物量的CCA排序图。 阿拉伯数字表示月份。OM, 有机质(g·kg-1); TN, 全氮(g·kg-1); NN, 硝态氮(mg·kg-1); AN, 氨态氮(mg·kg-1); TP, 全磷(g·kg-1); RGR, 相对生长率(g·g-1·d-1); DR, 采食率(%); CDW, 补偿生长量(g); TC, 群落盖度(%); C, 粗喙薹草盖度(%); D, 粗喙薹草密度(0.25 m2); H, 粗喙薹草株高(cm)。
Fig. 4 The ordination diagram of CCA with environmental variables selected by the forward selection procedure for the compensatory growth of Carex scabrirostris ramet. Arabic numbers in the ordination diagram indicate the sampling month. OM, organic matter (g·kg-1); TN, total nitrogen (g·kg-1); NN, nitrate nitrogen (mg·kg-1); AN, ammoniacal nitrogen (mg·kg-1); TP, total phosphorus (g·kg-1); RGR, relative growth ratio (g·g-1·d-1); DR, defoliation ratio (%); CDW, compensatory growth weight (g); TC, total coverage (%); C, coverage of Carex scabrirostris (%); D, density of C. scabrirostris (0.25 m2); H, height of Carex scabrirostris (cm).
[1] |
Alward RD, Joern A (1993). Plasticity and overcompensation in grass responses to herbivory. Oecologia, 95, 358-364.
URL PMID |
[2] | An Y (安渊), Li B (李博), Yang C (杨持), Xu Z (徐柱), Yan ZJ (阎志坚), Han GD (韩国栋) (2001). Plant compensatory growth and grassland sustainable use. Grassland of China (中国草地), 23(6), 1-5. (in Chinese with English abstract) |
[3] |
Belsky AJ (1986). Does herbivory benefit plants? A review of the evidence. The American Naturalist, 127, 870-892.
DOI URL |
[4] | Bråthen KA, Odasz-Albrigtsen AM (2000). Tolerance of the arctic graminoid Luzual arcuata ssp. confusa to simulated grazing in two nitrogen environments. Canadian Journal of Botany, 78, 1108-1113. |
[5] | Briske DD (1996). Strategies of plant survival in grazed systems: a functional interpretation. In: Hodgson J ed. The Ecology and Management of Grazing Systems. Oxford University Press, New York, 37-67. |
[6] | Crawley MJ (1997). Plant-herbivory dynamics. In: Crawley MJ ed. Plant Ecology Black Science, Oxford. 401-474. |
[7] |
Damhoureyeh SA, Hartnett DC (2002). Variation in grazing tolerance among three tallgrass prairie plant species. American Journal of Botany, 89, 1634-1643.
DOI URL PMID |
[8] |
Dyer MI, Turner CL, Seastedt TR (1993). Herbivory and its consequences. Ecological Applications, 3, 10-16.
URL PMID |
[9] |
Erneberg M (1999). Effects of herbivory and competition on an introduced plant in decline. Oecologia, 118, 203-209.
DOI URL PMID |
[10] |
Gao Y, Wang DL, Ba L, Bai YG, Liu B (2008). Interactions between herbivory and resource availability on grazing tolerance of Leymus chinensis. Environmental and Experimental Botany, 63, 113-122.
DOI URL |
[11] | Grime JP, Crick JC, Rincon JE (1986). The ecological significance of plasticity. In: Jennings DH, Trewavas AJ eds. Plasticity in Plants Biologists Limited, Cambridge. 5-29. |
[12] | Han GD (韩国栋), Li B (李博), Wei ZJ (卫智军), Yang J (杨静), Lü X (吕雄), Li H (李宏) (1999). Plant compensatory growth in the grazing system of Stipa breviflora desert steppe. I. Plant net productivity. Acta Agrestia Sinica (草地学报), 7(3), 1-7. (in Chinese with English abstract) |
[13] |
Hawkes CV, Sullivan JJ (2001). The impact of herbivory on plants in different resource conditions: a meta-analysis. Ecology, 82, 2045-2058.
DOI URL |
[14] |
Hilbert DW, Swift DM, Detling JK, Dyer MI (1981). Relative growth rates and the grazing optimization hypothesis. Oecologia, 51, 14-18.
DOI URL PMID |
[15] |
Hochwender CG, Marquis RJ, Stowe KA (2000). The potential for and constraints on the evolution of compensatory ability in Asclepias syriaca. Oecologia, 122, 361-370.
DOI URL PMID |
[16] |
Huhta AP, Hellström K, Rautio P, Tuomi J (2000). A test of the compensatory continuum: fertilization increases and below-ground competition decreases the grazing tolerance of tall wormseed mustard ( Erysimum strictum). Evolutionary Ecology, 14, 353-372.
DOI URL |
[17] |
Jaramillo VJ, Detling JK (1998). Grazing history, defoliation, and competition: effects on shortgrass production and nitrogen accumulation. Ecology, 69, 1599-1608.
DOI URL |
[18] |
Leriche K, Le Roux X, Desnoyers F, Benest D, Simioni G, Abbadie L (2003). Grass response to clipping in an African savanna: testing the grazing optimization hypothesis. Ecological Applications, 13, 1346-1354.
DOI URL |
[19] | Li YN (李英年), Zhao XQ (赵新全), Cao GM (曹广民), Zhao L (赵亮), Wang QX (王勤学)(2004). Analyses on climates and vegetation productivity backgroundat Haibei Alpine Meadow Ecosystem Research Station. Plateau `Meteorology (高原气象), 23, 558-567. (in Chinese with English abstract) |
[20] | Liu Y (刘艳), Wei ZJ (卫智军), Yang J (杨静), Yang SM (杨尚明) (2004). Plant compensatory growth under different grazing system in Stipa breviflore desert steppe. Grassland of China (中国草地), 26(3), 18-23. (in Chinese with English abstract) |
[21] | Liu Y (刘颖), Wang DL (王德利), Han SJ (韩士杰), Wang X (王旭) (2004). Effect of grazing intensity on the regrowth capability in Leymus chinensis grassland. Acta Prataculturae Sinica (草业学报), 13(6), 39-44. (in Chinese with English abstract) |
[22] |
Maschinski J, Whitham TG (1989). The continuum of plant responses to herbivory: the influence of plant association, nutrient availability and timing. The American Naturalist, 134, 1-19.
DOI URL |
[23] |
McIntire EJB, Hik DS (2005). Influences of chronic and current season grazing by collared pikas on above-ground biomass and species richness in subarctic alpine meadows. Oecologia, 145, 288-297.
DOI URL PMID |
[24] |
McNaughton SJ (1979). Grazing as an optimization process: grass-ungulate relationship in the Serengeti. The American Naturalist, 113, 691-703.
DOI URL |
[25] |
Paige KN (1999). Regrowth following ungulate herbivory in Ipomopsis aggregata: geographic evidence for overcompensation. Oecologia, 118, 316-323.
URL PMID |
[26] | Shan BQ (单保庆), Du GZ (杜国祯), Liu ZH (刘振恒) (2000). Clonal growth of Ligularia virgaurea: morphological responses to nutritional variation. Acta Phytoecologica Sinica (植物生态学报), 24, 46-51. (in Chinese with English abstract) |
[27] |
Smith SE (1998). Variation in response to defoliation between populations of Bouteloua curtipendula var. caespitosa (Poaceae) with different livestock grazing histories. American Journal of Botany, 85, 1266-1272.
URL PMID |
[28] |
Strauss SY, Agrawal AA (1999). The ecology and evolution of plant tolerance to herbivory. Trends in Ecology & Evolution, 14, 179-185.
DOI URL PMID |
[29] |
Tiffin P (2000). Mechanisms of tolerance to herbivore damage: What do we know? Evolutionary Ecology, 14, 523-536.
DOI URL |
[30] | Wang CT (王长庭), Long RJ (龙瑞军), Cao GM (曹广民), Wang QL (王启兰), Jing ZC (景增春), Shi JJ (施建军) (2008). The relationship between soil nutrients and diversity-productivity of different type grasslands in alpine meadow. Chinese Journal of Soil Science (土壤通报), 39, 1-8. (in Chinese with English abstract) |
[31] | Wang CT (王长庭), Wang QJ (王启基), Shen ZX (沈振西), Peng HC (彭红春), Li HY (李海英) (2003). A preliminary study of the effect of simulated precipitation on an alpine Kobresia humilis meadow. Acta Prataculturae Sinica (草业学报), 12(2), 25-29. (in Chinese with English abstract) |
[32] | Wang SP (汪诗平) (2004). Grazing resistance of rangeland plants. Chines Journal of Applied Ecology (应用生态学报), 15, 517-522. (in Chinese with English abstract) |
[33] | Wang SP (汪诗平), Wang YF (王艳芬) (2001). Study on over-compensation growth of Cleistogenes squarrosa population in Inner Mongolia Steppe. Acta Botanica Sinica (植物学报), 43, 413-418. (in Chinese with English abstract) |
[34] | Wang SP (汪诗平), Wang YF (王艳芬), Li YH (李永宏), Chen ZZ (陈佐忠) (1998). The influence of different stocking rates on herbage regrowth and aboveground net primary production. Acta Agrestia Sinica (草地学报), 6, 275-281. (in Chinese with English abstract) |
[35] |
Williamson SC, Detling JK, Dodd JJ, Dyer MI (1989). Experimental evaluation of the grazing optimization hypothesis. Journal of Range Management, 42, 149-152.
DOI URL |
[36] |
Wise MJ, Abrahamson WG (2005). Beyond the compensatory continuum: environmental resource levels and plant tolerance of herbivory. Oikos, 109, 417-428.
DOI URL |
[37] |
Wise MJ, Abrahamson WG (2007). Effects of resource availability on tolerance of herbivory: a review and assessment of three opposing models. The American Naturalist, 169, 443-454.
DOI URL PMID |
[38] | Yao DL (姚德良), Shen WM (沈卫明), Xie ZT (谢正桐), Zhou XM (周兴民), Wang QJ (王启基), Shen ZX (沈振西) (1996). Study on growth yield model of forage grass in high cold meadow. Acta Agrestia Sinica (草地学报), 4, 274-280. (in Chinese with English abstract) |
[39] | Zhang JX (张金霞), Cao GM (曹广民) (1999). The nitrogen cycle in an alpine meadow ecosystem. Acta Ecologica Sinica (生态学报), 19, 509-513. (in Chinese with English abstract) |
[40] | Zhao G (赵钢), Cui ZR (崔泽仁) (1999). Selective grazing of animals and the response of plants. Grassland of China (中国草地), 1, 62-67. (in Chinese with English abstract) |
[41] | Zhao XQ, Zhou XM (1999). Ecological basis of alpine meadow ecosystem management in Tibet: Haibei Alpine Meadow Ecosystem Research Station. Ambio, 28, 642-647. |
[42] | Zhou XM (周兴民), Wang QJ (王启基), Zhang YQ (张堰青), Zhao XQ (赵新全), Lin YP (林亚平) (1987). Quantitative analysis of succession law of the alpine meadow under the different grazing intensities. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 11, 276-285. (in Chinese with English abstract) |
[1] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[2] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[3] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[4] | 王姝文, 李文怀, 李艳龙, 严慧, 李永宏. 放牧家畜类型对内蒙古典型草原植物多样性和群落结构的影响[J]. 植物生态学报, 2022, 46(8): 941-950. |
[5] | 杨丽婷, 谢燕燕, 左珂怡, 徐森, 谷瑞, 陈双林, 郭子武. 分株比例对异质光环境下美丽箬竹克隆系统光合生理的影响[J]. 植物生态学报, 2022, 46(1): 88-101. |
[6] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[7] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[8] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[9] | 李捷, 陈莹莹, 乔福云, 郅堤港, 郭正刚. 高原鼠兔干扰对高寒草甸β多样性的影响[J]. 植物生态学报, 2021, 45(5): 476-486. |
[10] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[11] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[12] | 叶学华, 薛建国, 谢秀芳, 黄振英. 外部干扰对根茎型克隆植物甘草自然种群植株生长及主要药用成分含量的影响[J]. 植物生态学报, 2020, 44(9): 951-961. |
[13] | 陈锦, 宋明华, 李以康. 13C脉冲标记揭示放牧对高寒草甸同化碳分配的影响[J]. 植物生态学报, 2019, 43(7): 576-584. |
[14] | 李全弟, 刘旻霞, 夏素娟, 南笑宁, 蒋晓轩. 甘南高寒草甸群落的物种-多度关系沿坡向的变化[J]. 植物生态学报, 2019, 43(5): 418-426. |
[15] | 耿晓东, 旭日, 刘永稳. 青藏高原纳木错高寒草甸生态系统碳交换对多梯度增水的响应[J]. 植物生态学报, 2018, 42(3): 397-405. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19