植物生态学报 ›› 2018, Vol. 42 ›› Issue (3): 397-405.DOI: 10.17521/cjpe.2015.0395
所属专题: 全球变化与生态系统; 青藏高原植物生态学:生态系统生态学; 碳循环
• 研究论文 • 上一篇
出版日期:
2018-03-20
发布日期:
2017-06-16
通讯作者:
旭日
基金资助:
GENG Xiao-Dong1,2,Xu Ri1,3,*(),LIU Yong-Wen1,3
Online:
2018-03-20
Published:
2017-06-16
Contact:
Ri Xu
Supported by:
摘要:
高寒草甸是青藏高原的主要草地类型, 对青藏高原生态系统碳收支具有重要的调节作用。目前, 有关高寒草甸生态系统碳交换对气候变化的响应所知甚少, 尤其是降水变化会如何影响高寒草甸碳交换过程的相关研究非常匮乏。该文作者于2013和2014年的生长季(5-9月)在青藏高原纳木错地区高寒草甸进行多梯度人工增水实验, 设置对照和5个水分添加梯度, 分别增加0%、20%、40%、60%、80%和100%的降水, 以研究高寒草甸生态系统在不同降水量条件下的碳交换变化。增水处理后, 各处理梯度之间的土壤温度没有显著差异, 而土壤含水量在不同增水处理后出现显著变化, 相对于对照, 增水幅度越大, 对应的土壤含水量越高。综合2013和2014年的观测结果, 高寒草甸生态系统整体表现为碳吸收, 在20%增水处理中, 净生态系统碳交换(NEE)达到最大值, 随着模拟的降水梯度进一步增加, NEE逐渐下降; 增水处理对生态系统呼吸(ER)无显著影响; 总生态系统生产力(GEP)的变化趋势与NEE一致, 即随着增水梯度增大, GEP先增加, 并在增水20%处理达到最大值, 随后GEP开始降低。研究表明, 在高寒草甸生态系统, 水分是影响GEP和NEE的重要因素, 对ER影响较弱; 未来适度的增水(20%-40%)能促进高寒草甸生态系统对碳的吸收。
耿晓东, 旭日, 刘永稳. 青藏高原纳木错高寒草甸生态系统碳交换对多梯度增水的响应. 植物生态学报, 2018, 42(3): 397-405. DOI: 10.17521/cjpe.2015.0395
GENG Xiao-Dong, Xu Ri, LIU Yong-Wen. Responses of ecosystem carbon exchange to multi-level water addition in an alpine meadow in Namtso of Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 2018, 42(3): 397-405. DOI: 10.17521/cjpe.2015.0395
图1 增水样地设计分布与增水装置现场。0%-100%表示降水增加的百分比。
Fig. 1 Layout of water addition treatments and of the field experimental site. Values 0%-100% represent the percentage of increases in precipitation.
图2 2013年和2014年高寒草甸生长季不同增水处理地下5 cm处土壤体积含水量(A, B)以及降水量(C, D)的动态变化。0%-100%分别表示不同增水处理。
Fig. 2 Seasonal variations in soil volumetric water content (SVWC) at 5 cm depth under different water addition treatments (A, B) and precipitation for alpine meadow (C, D) in 2013 and 2014. Values 0%-100% represent different levels of water addition treatments.
图3 2013年和2014年生长季不同增水处理地下5 cm处土壤体积含水量(A, B)和土壤温度(C, D) (平均值±标准误差)。相同的字母代表增水处理之间最小显著差异(LSD)法多重比较结果差异不显著(p > 0.05), 不同字母表示处理间差异显著(p < 0.05), 其中2014年增水60%处理的温度值缺失。
Fig. 3 Soil volumetric water content (SVWC) (A, B) and temperature (C, D) at 5 cm depth under different water addition treatments in the growing seasons of 2013 and 2014 (mean ± SE). Same letters indicate a non-significant difference (p > 0.05) according to the least significant difference (LSD) test, and different letters indicate significant differences (p < 0.05) among treatments. Temperature data were not available for the water addition treatment of 60% in 2014.
图4 2014年净生态系统碳交换(NEE, ▼) (对照处理)、降水(柱状图)和温度(线图)的季节变化, NEE值采用每日多次测定平均值; 温度为地下5 cm温度。
Fig. 4 Seasonal dynamics of net ecosystem carbon exchange (NEE, ▼) (control), precipitation (column) and temperature (line) in 2014. The NEE value is the mean of multiple investigations in a day, and the temperature refers to the soil temperature at 5 cm depth.
图5 2013-2014年生长季不同增水处理下的净生态系统碳交换(NEE) (A, B)、生态系统呼吸(ER) (C, D)以及总生态系统生产力(GEP) (E, F), (平均值±标准误差)。相同的字母代表不同处理之间最小显著差异(LSD)法多重比较结果差异不显著(p > 0.05), 不同字母表示处理间差异显著(p < 0.05)。
Fig. 5 Net ecosystem carbon exchange (NEE) (A, B), ecosystem respiration (ER) (C, D) and gross ecosystem production (GEP) (E, F) under different water addition treatments in the growing seasons of 2013 and 2014 (mean ± SE). Same letters indicate a non-significant difference (p > 0.05) according to the least significant difference (LSD) test, and different letters indicate significant differences (p < 0.05) among treatments.
[1] |
Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM ( 2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141, 221-235.
DOI URL PMID |
[2] |
Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH ( 2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling. Global Change Biology, 16, 1306-1316.
DOI URL |
[3] |
Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Korner C, de Boeck H, Christensen JH, Leuzinger S, Janssens IA, Hansen K ( 2012). Precipitation manipulation experiments—Challenges and recommendations for the future. Ecology Letters, 15, 899-911.
DOI URL PMID |
[4] |
Chen SP, Lin GH, Huang JH, Jenerette GD ( 2009). Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Global Change Biology, 15, 2450-2461.
DOI URL |
[5] |
Curry CL ( 2007). Modeling the soil consumption of atmospheric methane at the global scale. Global Biogeochemical Cycles, 21, GB4012. DOI: 10.1029/2006GB002818.
DOI URL |
[6] |
Flanagan LB, Sharp EJ, Letts MG ( 2013). Response of plant biomass and soil respiration to experimental warming and precipitation manipulation in a Northern Great Plains grassland. Agricultural and Forest Meteorology, 173, 40-52.
DOI URL |
[7] |
Flanagan LB, Wever LA, Carlson PJ ( 2002). Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 8, 599-615.
DOI URL |
[8] |
Fu Y, Zheng Z, Yu G, Hu Z, Sun X, Shi P, Wang Y, Zhao X ( 2009). Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences, 6, 2879-2893.
DOI URL |
[9] | Ganjurjav ( 2013). Ecosystem Carbon Exchange Under Warming and Precipitation Enhancement in Kobresia Pygmaea Meadow in North Tibet. Master degree dissertation, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing. 29-37. |
干珠扎布 ( 2013). 增温增雨对藏北小嵩草草甸生态系统碳交换的影响. 硕士学位论文, 中国农业科学院农业环境与可持续发展研究所, 北京. 29-37. | |
[10] | Gao QZ, Li Y, Wan YF, Qin XB, Jiangcun WZ, Liu YH ( 2009). Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet. Climatic Change, 97, 515-528. |
[11] |
Gu S, Tang YH, Cui XY, Du MY, Zhao L, Li YN, Xu SX, Zhou HK, Kato T, Qi PT, Zhao XQ ( 2008). Characterizing evapotranspiration over a meadow ecosystem on the Qinghai-Tibetan Plateau. Journal of Geophysical Research— Atmospheres, 113, D08118. DOI: 10.1029/2007JD009173.
DOI URL |
[12] |
Gu S, Tang YH, Du MY, Kato T, Li YN, Cui XY, Zhao XQ ( 2003). Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan Plateau. Journal of Geophysical Research—Atmospheres, 108, 4670. DOI: 10.1029/2003JD003584.
DOI |
[13] |
Hu J, Hopping KA, Bump JK, Kang SC, Klein JA ( 2013). Climate change and water use partitioning by different plant functional groups in a grassland on the Tibetan Plateau. PLOS ONE, 8, e75503. DOI: 10.1371/journal.pone.0075503.
DOI URL PMID |
[14] |
Hu QW, Wu Q, Cao GM, Li D, Long RJ, Wang YS ( 2008). Growing season ecosystem respirations and associated component fluxes in two alpine meadows on the Tibetan Plateau. Journal of Integrative Plant Biology, 50, 271-279.
DOI URL PMID |
[15] |
Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG ( 2004). Convergence across biomes to a common rain-use efficiency. Nature, 429, 651-654.
DOI URL PMID |
[16] |
Jackson MB, Colmer TD ( 2005). Response and adaptation by plants to flooding stress—Preface. Annals of Botany, 96, 501-505.
DOI URL PMID |
[17] |
Jasoni RL, Smith SD, Arnone JA ( 2005). Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biology, 11, 749-756.
DOI URL |
[18] |
Kato T, Tang YH, Gu S, Hirota M, Du MY, Li NY, Zhao XQ ( 2006). Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology, 12, 1285-1298.
DOI URL |
[19] |
Li L, Yang S, Wang ZY, Zhu XD, Tang HY ( 2010). Evidence of warming and wetting climate over the Qinghai-Tibet Plateau. Arctic Antarctic and Alpine Research, 42, 449-457.
DOI URL |
[20] | Liu YW ( 2014). Nitrogen Wet Deposition on the Tibetan Plateau and Typical Grazing Steppe Responses to Nitrogen Fertilization. PhD dissertation, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing. |
刘永稳 ( 2014). 青藏高原氮湿沉降现状及典型放牧草原对氮施肥的响应. 博士学位论文, 中国科学院青藏高原研究所, 北京. | |
[21] |
Marcolla B, Cescatti A, Manca G, Zorer R, Cavagna M, Fiora A, Gianelle D, Rodeghiero M, Sottocornola M, Zampedri R ( 2011). Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow. Agricultural and Forest Meteorology, 151, 1233-1243.
DOI URL |
[22] |
Ni J ( 2002). Carbon storage in grasslands of China. Journal of Arid Environments, 50, 205-218.
DOI URL |
[23] |
Niu SL, Yang HY, Zhang Z, Wu MY, Lu Q, Li LH, Han XG, Wan SQ ( 2009). Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems, 12, 915-926.
DOI URL |
[24] |
Piao SL, Ciais P, Huang Y, Shen ZH, Peng SS, Li JS, Zhou LP, Liu HY, Ma YC, Ding YH, Friedlingstein P, Liu CZ, Tan K, Yu YQ, Zhang TY, Fang JY ( 2010). The impacts of climate change on water resources and agriculture in China. Nature, 467, 43-51.
DOI URL PMID |
[25] |
Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M ( 2013). Climate extremes and the carbon cycle. Nature, 500, 287-295.
DOI URL PMID |
[26] |
Shen ZX, Li YL, Fu G ( 2015). Response of soil respiration to short-term experimental warming and precipitation pulses over the growing season in an alpine meadow on the Northern Tibet. Applied Soil Ecology, 90, 35-40.
DOI URL |
[27] |
Skopp J, Jawson MD, Doran JW ( 1990). Steady-state aerobic microbial activity as a function of soil-water content. Soil Science Society of America Journal, 54, 1619-1625.
DOI URL |
[28] |
van der Molen MK, Dolman AJ, Ciais P, Eglin T, Gobron N, Law BE, Meir P, Peters W, Phillips OL, Reichstein M, Chen T, Dekker SC, Doubkova M, Friedl MA, Jung M, van den Hurk BJJM, de Jeu RAM, Kruijt B, Ohta T, Rebel KT, Plummer S, Seneviratne SI, Sitch S, Teuling AJ, van der Werf GR, Wang G ( 2011). Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology, 151, 765-773.
DOI URL |
[29] |
Wan SQ, Norby RJ, Ledford J, Weltzin JF ( 2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13, 2411-2424.
DOI URL |
[30] | Wei D, Xu-Ri, Tenzin T, Wang YS, Wang YH ( 2015). Considerable methane uptake by alpine grasslands despite the cold climate: In situ measurements on the central Tibetan Plateau, 2008-2013. Global Change Biology, 21, 777-788. |
[31] |
Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC ( 2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience, 53, 941-952.
DOI URL |
[32] |
Williamson R ( 2013). Researchers illustrate the impact of climate extremes on the carbon cycle. Carbon Management, 4, 481-481.
DOI URL |
[33] |
Wu ZT, Dijkstra P, Koch GW, Penuelas J, Hungate BA ( 2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Global Change Biology, 17, 927-942.
DOI URL |
[34] |
Xu LL, Zhang XZ, Shi PL, Yu GR, Sun XM ( 2005). Net ecosystem carbon dioxide exchange of alpine meadow in the Tibetan Plateau from August to October. Acta Ecologica Sinica, 25, 1948-1952.
DOI URL |
徐玲玲, 张宪洲, 石培礼, 于贵瑞, 孙晓敏 ( 2005). 青藏高原高寒草甸生态系统净二氧化碳交换量特征. 生态学报, 25, 1948-1952.
DOI URL |
|
[35] |
Xu ZZ, Zhou GS ( 2011). Responses of photosynthetic capacity to soil moisture gradient in perennial rhizome grass and perennial bunchgrass. BMC Plant Biology, 11, 21.
DOI URL PMID |
[36] |
Yan L, Zhou GS, Wang YH, Hu TY, Sui XH ( 2015). The spatial and temporal dynamics of carbon budget in the alpine grasslands on the Qinghai-Tibetan Plateau using the Terrestrial Ecosystem Model. Journal of Cleaner Production, 107, 195-201.
DOI URL |
[37] | Yang K, Lin ED, Gao QZ, Wan YF, Jiangcun WZ, Wang BS, LI WF ( 2010). Simulation of climate change impacts on grassland productivity in Northern Tibet. Chinese Journal of Ecology, 29, 1469-1476. |
杨凯, 林而达, 高清竹, 万运帆, 江村旺扎, 王宝山, 李文福 ( 2010). 气候变化对藏北地区草地生产力的影响模拟. 生态学杂志, 29, 1469-1476. | |
[38] |
Yang ZP, Hua OY, Zhang XZ, Xu XL, Zhou CP, Yang WB ( 2011). Spatial variability of soil moisture at typical alpine meadow and steppe sites in the Qinghai-Tibetan Plateau permafrost region. Environmental Earth Sciences, 63, 477-488.
DOI URL |
[39] |
Yu GR, Zhu XJ, Fu YL, He HL, Wang QF, Wen XF, Li XR, Zhang LM, Zhang L, Su W, Li SG, Sun XM, Zhang YP, Zhang JH, Yan JH, Wang HM, Zhou GS, Jia BR, Xiang WH, Li YN, Zhao L, Wang YF, Shi PL, Chen SP, Xin XP, Zhao FH, Wang YY, Tong CL ( 2013). Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 19, 798-810.
DOI URL PMID |
[40] | Zhang FW, Li YN, Zhao XQ, Gu S, Wang QX, Du MY, Tang YH ( 2008). Effects of one precipitation process on CO2 flux and thermal transportation in alpine meadow of Qinghai-Tibetan Plateau. Chinese Journal of Ecology, 27, 1685-1691. |
张法伟, 李英年, 赵新全, 古松, 王勤学, 杜明远, 唐艳鸿 ( 2008). 一次降水过程对青藏高原高寒草甸CO2通量和热量输送的影响. 生态学杂志, 27, 1685-1691. | |
[41] |
Zhang RH, Su FG, Jiang ZH, Gao XJ, Guo DL, Ni J, You QL, Lan C, Zhou BT ( 2015). An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century. Chinese Science Bulletin, 60, 3036-3047.
DOI URL |
张人禾, 苏凤阁, 江志红, 高学杰, 郭东林, 倪健, 游庆龙, 兰措, 周波涛 ( 2015). 青藏高原21世纪气候和环境变化预估研究进展. 科学通报, 60, 3036-3047.
DOI URL |
|
[42] |
Zhang YL, Li BY, Zheng D ( 2002). A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 21, 1-8.
DOI URL |
张镱锂, 李炳元, 郑度 ( 2002). 论青藏高原范围与面积. 地理研究, 21, 1-8.
DOI URL |
|
[43] |
Zhao L, Li YN, Xu SX, Zhou HK, Gu S, Yu GR, Zhao XQ ( 2006). Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrub land on Qinghai-Tibetan Plateau. Global Change Biology, 12, 1940-1953.
DOI URL |
[44] | Zheng D, Zhu LP ( 2000). Formation and Evolution, Environmental Changes and Sustainable Development on the Tibetan Plateau. Academy Press, Beijing. 466. |
[45] |
Zhou WP, Hui DF, Shen WJ ( 2014). Effects of soil moisture on the temperature sensitivity of soil heterotrophic respiration: A laboratory incubation study. PLOS ONE, 9, e92531. DOI: 10.1371/journal.pone.0092531.
DOI URL PMID |
[46] |
Zhu XJ, Yu GR, Wang QF, Gao YN, He HL, Zheng H, Chen Z, Shi PL, Zhao L, Li YN, Wang YF, Zhang YP, Yan JH, Wang HM, Zhao FH, Zhang JH ( 2016). Approaches of climate factors affecting the spatial variation of annual gross primary productivity among terrestrial ecosystems in China. Ecological Indicators, 62, 174-181.
DOI URL |
[47] | Zhuang Q, He J, Lu Y, Ji L, Xiao J, Luo T ( 2010). Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: An analysis with a process-based biogeochemical model. Global Ecology and Biogeography, 19, 649-662. |
[48] |
Zhuang QL, Chen M, Xu K, Tang JY, Saikawa E, Lu YY, Melillo JM, Prinn RG, McGuire AD ( 2013). Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition. Global Biogeochemical Cycles, 27, 650-663.
DOI URL |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[3] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[4] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[5] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[6] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[7] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[8] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[9] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[10] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[11] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[12] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[13] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[14] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[15] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19