植物生态学报 ›› 2012, Vol. 36 ›› Issue (10): 1015-1023.DOI: 10.3724/SP.J.1258.2012.01015
• 研究论文 • 下一篇
罗维成1,2,3, 曾凡江1,2,*(), 刘波1,2,3, 张利刚1,2,3, 宋聪1,2,3, 彭守兰1,2,3, StefanK.ARNDT4
收稿日期:
2012-04-09
接受日期:
2012-06-06
出版日期:
2012-04-09
发布日期:
2012-09-26
通讯作者:
曾凡江
作者简介:
(E-mail: fjzeng369@sohu.com)
LUO Wei-Cheng1,2,3, ZENG Fan-Jiang1,2,*(), LIU Bo1,2,3, ZHANG Li-Gang1,2,3, SONG Cong1,2,3, PENG Shou-Lan1,2,3, Stefan K. ARNDT4
Received:
2012-04-09
Accepted:
2012-06-06
Online:
2012-04-09
Published:
2012-09-26
Contact:
ZENG Fan-Jiang
摘要:
近年来, 植物根系对土壤异质性的响应和植物根系之间的相互作用一直是研究的热点。过去的研究主要是针对一年生短命植物进行的, 而且多是在人工控制的温室条件下进行的。而对于多年生植物根系对养分异质性和竞争的综合作用研究很少。该文对塔里木盆地南缘多年生植物疏叶骆驼刺(Alhagi sparsifolia)根系生长对养分异质性和竞争条件的响应途径与适应策略进行了研究, 结果表明: (1)在无竞争的条件下, 疏叶骆驼刺根系优先向空间大的地方生长, 即使另一侧有养分斑块存在, 其根系也向着空间大的一侧生长; (2)在有竞争的条件下, 疏叶骆驼刺根系生长依然是优先占领空间大的一侧, 但是竞争者的存在抑制了疏叶骆驼刺的生长, 导致其枝叶生物量和根系生物量都明显减少(p < 0.01), 而养分斑块的存在促进了疏叶骆驼刺根系的生长; (3)疏叶骆驼刺根系的生长不仅需要养分, 也需要足够的空间, 空间比养分更重要; (4)有竞争者存在的时候, 两株植物的根系都先长向靠近竞争者一侧的空间, 即先占据“共有空间”。研究结果对理解植物根系觅食行为和植物对环境的适应策略有重要意义。
罗维成, 曾凡江, 刘波, 张利刚, 宋聪, 彭守兰, StefanK.ARNDT. 疏叶骆驼刺根系对土壤异质性和种间竞争的响应. 植物生态学报, 2012, 36(10): 1015-1023. DOI: 10.3724/SP.J.1258.2012.01015
LUO Wei-Cheng, ZENG Fan-Jiang, LIU Bo, ZHANG Li-Gang, SONG Cong, PENG Shou-Lan, Stefan K. ARNDT. Response of root systems to soil heterogeneity and interspecific competition in Alhagi sparsi- folia. Chinese Journal of Plant Ecology, 2012, 36(10): 1015-1023. DOI: 10.3724/SP.J.1258.2012.01015
图1 疏叶骆驼刺在玻璃池中的位置及其根系生物量的水平分布(平均值±标准误差)。 A, 无养分斑块, 无竞争者。B, 养分斑块位于边缘, 无竞争者。C, 养分斑块位于中央, 无竞争者。D, 无养分斑块, 有竞争者。E, 养分斑块位于边缘, 有竞争者。F, 养分斑块位于中央, 有竞争者。每个长方形框表示一个玻璃池(长、高比例未按真实比例显示), 底部数字代表玻璃池的长度(cm)。每幅图最上面的黑色植物图代表目标植物和竞争植物的位置。图中斜线框表示养分斑块。白色的水平框表示目标植物垂直根系左右两侧的根系生物量, 黑色水平框表示竞争植物垂直根系左右两侧的根系生物量。
Fig. 1 Location of Alhagi sparsifolia seedlings in the glass container and the horizontal distribution of root biomass (mean ± SE). A, No nutrient addition, no competitor. B, Nutrient patch at the edge, no competitor. C, nutrient patch at the center, no competitor. D, No nutrient patch, with competitor. E, Nutrient patch at the edge, with competitor. F, Nutrient patch at the center, with competitor. Each rectangle represents a glass container (length-height ratio of the rectangle does not presenting the real proportion of glass container), and the numbers at the bottom of box represent the length of glass container (cm). The location of the plant individuals is marked. Diagonal bars denote the nutrient patches. The horizontal unfilled bars indicate the root biomass of the root on the left and right side of root system of the focal plant, and the horizontal black bars represent the left- and right-side root biomass of the competitor.
图2 目标植物在土壤处理和竞争处理条件下的生物量(平均值±标准误差)。正、负数分别代表植物地上枝叶生物量和地下根系生物量, 白色和黑色分别表示在无竞争者和有竞争者存在时的目标植物生物量。图中不同小写字母表示目标植物在不同处理下生物量差异显著(p < 0.01)。
Fig. 2 Focal plant biomass under soil nutrient patch treatments and competition treatment (mean ± SE). Positive numbers represent the shoot biomass (above x-axis), and negative numbers indicate the root biomass (below x-axis). The white bars represent the biomass of the focal plant without comepetor, and the black bars indicate the plant biomass with competitors. Different lowercase letters indicate the significant differences in the biomass of the focal plant under different treatments (p < 0.01).
处理 Treatment | 自由度 df | 根系生物量 Root biomass | 枝叶生物量 Shoot biomass | 总生物量 Total biomass | |||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||||
竞争处理 Competition treatment | 1 | 61.348 | 0.001 | 38.472 | 0.003 | 34.386 | 0.004 | ||
土壤处理 Soil treatment | 2 | 1.085 | 0.396 | 1.400 | 0.317 | 0.678 | 0.543 | ||
竞争和土壤处理 Competition by soil treatment | 1 | 1.973 | 0.233 | 1.716 | 0.260 | 2.255 | 0.208 |
表1 不同处理下植物各部分生物量的双因素方差分析结果
Table 1 Two-way analysis of variance (ANOVA) results of biomass of different parts of plants under different treatments
处理 Treatment | 自由度 df | 根系生物量 Root biomass | 枝叶生物量 Shoot biomass | 总生物量 Total biomass | |||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||||
竞争处理 Competition treatment | 1 | 61.348 | 0.001 | 38.472 | 0.003 | 34.386 | 0.004 | ||
土壤处理 Soil treatment | 2 | 1.085 | 0.396 | 1.400 | 0.317 | 0.678 | 0.543 | ||
竞争和土壤处理 Competition by soil treatment | 1 | 1.973 | 0.233 | 1.716 | 0.260 | 2.255 | 0.208 |
处理 Treatment | 目标植物 Focal plant | 竞争植物 Competitor plant | ||||
---|---|---|---|---|---|---|
左侧根系 Left root | 右侧根系 Right root | 左侧根系 Left root | 右侧根系 Right root | |||
无养分斑块 No nutrient patch | 无竞争者 No competitor | -32.52 ± 0.81a | -83.78 ± 1.38b | - | - | |
有竞争者 With a competitor | -30.82 ± 0.11a | -47.06 ± 0.12c | -34.82 ± 0.02a | -56.56 ± 0.23b | ||
养分斑块边缘 Patch-edge | 无竞争者 No competitor | -40.95 ± 0.53a | -91.37 ± 0.62b | - | - | |
有竞争者 With a competitor | -35.87 ± 1.16a | -42.94 ± 0.17a | -43.45 ± 0.06a | -60.99 ± 0.43b | ||
养分斑块中央 Patch-center | 无竞争者 No competitor | -36.87 ± 0.47a | -102.28 ± 0.25b | - | - | |
有竞争者 With a competitor | -30.87 ± 1.09a | -49.27 ± 0.14c | -40.14 ± 1.02a | -41.87 ± 0.46a |
表2 根系呼吸速率(nmol·g-1·s-1, 平均值±标准误差)
Table 2 Respiration rate of root system (nmol·g-1·s-1, mean ± SE)
处理 Treatment | 目标植物 Focal plant | 竞争植物 Competitor plant | ||||
---|---|---|---|---|---|---|
左侧根系 Left root | 右侧根系 Right root | 左侧根系 Left root | 右侧根系 Right root | |||
无养分斑块 No nutrient patch | 无竞争者 No competitor | -32.52 ± 0.81a | -83.78 ± 1.38b | - | - | |
有竞争者 With a competitor | -30.82 ± 0.11a | -47.06 ± 0.12c | -34.82 ± 0.02a | -56.56 ± 0.23b | ||
养分斑块边缘 Patch-edge | 无竞争者 No competitor | -40.95 ± 0.53a | -91.37 ± 0.62b | - | - | |
有竞争者 With a competitor | -35.87 ± 1.16a | -42.94 ± 0.17a | -43.45 ± 0.06a | -60.99 ± 0.43b | ||
养分斑块中央 Patch-center | 无竞争者 No competitor | -36.87 ± 0.47a | -102.28 ± 0.25b | - | - | |
有竞争者 With a competitor | -30.87 ± 1.09a | -49.27 ± 0.14c | -40.14 ± 1.02a | -41.87 ± 0.46a |
图3 玻璃池中目标植物和竞争植物根系的分布。所有图中左侧的植物为目标植物; D、E、F图中右侧的植物为竞争植物。纵横长度分别代表玻璃池的高度与长度。
Fig. 3 Root distribution of the focal plant and competitor in the glass container. Focal plant is at the left side in each illustration, and the competitor is at the right side in D, E and F. The vertical length and horizontal length in each illustration represent the height and length of the glass container.
1 | Agzhigitova N, Allanazarova U, Kapustina LA ( 1995). Trans- formation of desert pasture vegetation under effect of anthropogenic pressure. Problems of Desert Development, 3, 62-65. |
2 | Bliss KM, Jones RH, Mitchell RJ, Mou PP ( 2002). Are competitive interactions influenced by spatial nutrient heterogeneity and root foraging behavior? New Phytologist, 154, 409-417. |
3 | Cahill JF, Casper BB ( 1999). Growth consequences of soil nutrient heterogeneity for two old-field herbs, Ambrosia artemisiifolia and Phytolacca americana, grown individually and in combination. Annals of Botany, 83, 471-478. |
4 | Cahill JF, McNickle GG, Haag JJ, Lamb EG, Nyanumba SM, Clair CC St ( 2010). Plants integrate information about nutrients and neighbors. Science, 328, 1657. |
5 | Callaway RM ( 2002). The detection of neighbors by plants. Trends in Ecology and Evolution, 17, 104-105. |
6 | Casper BB, Jackson RB ( 1997). Plant competition underground. Annual Review of Ecology and Systematics, 28, 545-570. |
7 | de Kroon H ( 2007). How do roots interact? Science, 318, 1562-1563. |
8 | de Kroon H, Mommer L, Nishiwaki A ( 2003). Root competi- tion: towards a mechanistic understanding. In: de Kroon H, Visser EJW eds. Root Ecology. Springer-Verlag, Berlin. 215-234. |
9 | Dudley SA, File AL ( 2007). Kin recognition in an annual plant. Biology Letter, 3, 435-438. |
10 | Falik O, de Kroon H, Novoplansky A ( 2006). Physiologically- mediated self/nonself root discrimination in Trifolium repens has mixed effects on plant performance. Plant Signaling and Behavior, 1, 116-121. |
11 | Falik O, Reides P, Gersani M, Novoplansky A ( 2003). Self/ non-self discrimination in roots. Journal of Ecology, 91, 525-531. |
12 | Fransen B, de Kroon H ( 2001). Long-term disadvantages of selective root placement: root proliferation and shoot biomass of two perennial grass species in a 2-year experiment. Journal of Ecology, 89, 711-722. |
13 | Gersani M, Abramsky Z, Falik O ( 1998). Density-dependent habitat selection in plants. Evolutionary Ecology, 12, 223-234. |
14 | Gersani M, Brown JS, O’Brien EE, Maina GM, Abramsky Z ( 2001). Tragedy of the commons as a result of root competition. Journal of Ecology, 89, 660-669. |
15 | Gutierrez JR, Whitford WG ( 1987). Chihuahuan desert annuals: importance of water and nitrogen. Ecology, 68, 409-418. |
16 | Hammer GL, Dong ZS, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M ( 2009). Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Science, 49, 299-312. |
17 | Hansen GK, Jensen CR ( 1977). Growth and maintenance respiration in whole plants, tops, and roots of Lolium multiflorum. Physiologia Plantarum, 39, 155-164. |
18 | Hess L, de Kroon H ( 2007). Effects of rooting volume and nutrient availability as an alternative explanation for root self/non-self discrimination. Journal of Ecology, 95, 241-251. |
19 | Hodge A ( 2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24. |
20 | Hodge A, Robinson D, Griffiths BS, Fitter AH ( 1999). Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant, Cell and Environment, 22, 811-820. |
21 | Karban R ( 2008). Plant behaviour and communication. Ecology Letters, 11, 727-739. |
22 | Kembel SW, Cahill JF Jr ( 2005). Plant phenotypic plasticity belowground: a phylogenetic perspective on root foraging trade-offs. The American Naturalist, 166, 216-230. |
23 | Kembel SW, de Kroon H, Cahill JF, Mommer L ( 2008). Improving the scale and precision of hypotheses to explain root foraging ability. Annals of Botany, 101, 1295-1301. |
24 | Kutsch WL, Staack A, Wötzel J, Middelhoff U, Kappen L ( 2001). Field measurements of root respiration and total soil respiration in an alder forest. New Phytologist, 150, 157-168. |
25 | Li XY ( 李向义), Zhang XM ( 张希明), He XY ( 何兴元), Zeng FJ ( 曾凡江 ), Foetzki A, Thomas FM ( 2004). Water relation characteristics of four perennial plant species growing in the transition zone between oasis and open desert. Acta Ecologica Sinica (生态学报), 24, 1164-1171. (in Chinese with English abstract) |
26 | Liu B ( 刘波), Zeng FJ ( 曾凡江), Guo HF ( 郭海峰), Zeng J ( 曾杰 ) ( 2009). Effects of groundwater table on growth characteristics of Alhagi sparsifolia Shap. seedlings. Chinese Journal of Ecology (生态学杂志), 28, 237-242. (in Chinese with English abstract) |
27 | Liu HSH, Li FM ( 2005). Photosynthesis, root respiration, and grain yield of spring wheat in response to surface soil drying. Plant Growth Regulation, 45, 149-154. |
28 | Lovelock CE, Ruess RW, Feller IC ( 2006). Fine root respiration in the mangrove Rhizophora mangle over variation in forest stature and nutrient availability. Tree Physiology, 26, 1601-1606. |
29 | Lynch J ( 2007). Roots of the second green revolution. Australian Journal of Botany, 55, 493-512. |
30 | Mahall BE, Callaway RM ( 1991). Root communication among desert shrubs. Proceedings of the National Academy of Sciences of the United States of America, 88, 874-876. |
31 | Mahall BE, Callaway RM ( 1996). Effects of regional origin and genotype on intraspecific root communication in the desert shrub Ambrosia dumosa(Asteraceae). American Journal of Botany, 83, 93-98. |
32 | Maina GG, Brown JS, Gersani M ( 2002). Intra-plant versus inter-plant root competition in beans: avoidance, resource matching or tragedy of the commons. Plant Ecology, 160, 235-247. |
33 | Melissa DH, Rosas JC, Brown KM, Lynch JP ( 2005). Root architectural tradeoffs for water and phosphorus acquisition. Functional Plant Biology, 32, 737-748. |
34 | Mommer L, Visser EJW, van Ruijven J, de Caluwe H, Pierik R, de Kroon H ( 2011). Contrasting root behaviour in two grass species: a test of functionality in dynamic heterogeneous conditions. Plant and Soil, 344, 347-360. |
35 | Noy-Meir I ( 1973). Desert ecosystems, environment and producers. Annual Review of Ecology and Systematics, 4, 25-41. |
36 | Pierik R, Visser EJW, de Kroon H, Voesenek LACJ ( 2003). Ethylene is required in tobacco to successfully compete with proximate neighbours. Plant, Cell & Environment, 26, 1229-1234. |
37 | Rajaniemi TK ( 2007). Root foraging traits and competitive ability in heterogeneous soils. Oecologia, 153, 145-152. |
38 | Semchenko M, John EA, Hutchings MJ ( 2007). Effects of physical connection and genetic identity of neighbouring ramets on root-placement patterns in two clonal species. New Phytologist, 176, 644-654. |
39 | Spinelli R, Nati C, Magagnotti N ( 2005). Harvesting and transport of root biomass from fast-growing poplar plantations. Silva Fennica, 39, 539-548. |
40 | Stephens DW, Brown JS, Ydenberg RC (2007). Foraging: Behavior and Ecology. University of Chicago Press, Chicago. |
41 | Usman S, Rawat YS, Singh SP, Garkoti SC ( 1999). Fine root biomass production and turnover in evergreen forests of Central Himalaya, India. Oecologia Montana, 6, 4-8. |
42 | Veen BW ( 1981). Relation between root respiration and root activity. Plant and Soil, 63, 73-76. |
43 | Vonlanthen B, Zhang X, Bruelheide H ( 2010). On the run for water―Root growth of two phreatophytes in the Taklamakan Desert. Journal of Arid Environments, 7, 1604-1615. |
44 | Weiner J ( 1990). Asymmetric competition in plant populations. Trends in Ecology and Evolution, 5, 360-364. |
45 | Xue W ( 薛伟), Li XY ( 李向义), Zhu JT ( 朱军涛), Lin LS ( 林丽莎), Wang YJ ( 王迎菊 ) ( 2011). Effects of shading on leaf morphology and response characteristics of photosynthesis in Alhagi sparsifolia. Chinese Journal of Plant Ecology (植物生态学报), 35, 82-90. (in Chinese with English abstract) |
46 | Zeng FJ, Bleby TM, Landman PA, Arndt SK, Adams MA, Arndt SK ( 2006). Water and nutrient dynamics in surface roots and soils are not modified by short-term flooding of phreatophytic plants in hyperarid desert. Plant and Soil, 279, 129-139. |
47 | Zeng FJ ( 曾凡江), Guo HF ( 郭海峰), Liu B ( 刘波), Zeng J ( 曾杰), Xing WJ ( 邢文娟), Zhang XL ( 张晓雷 ) ( 2010). Characteristics of biomass allocation and root distribution of Tamarix ramosissima Ledeb. and Alhagispa rsifolia Shap. seedlings. Arid Land Geography (干旱区地理), 33, 59-64. (in Chinese with English abstract) |
48 | Zhang HM, Jennings A, Barlow PW, Forde BG ( 1999). Dual pathways for regulation of root branching by nitrate. Proceeding of the National Academy of Sciences of the United States of America, 96, 6529-6534. |
[1] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[2] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[3] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[4] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[5] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[6] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[7] | 张乔艳, 唐丽霞, 廖华刚, 潘露, 陈龙, 黄同丽. 多花木蓝根截面微观结构对其抗拉特性的影响[J]. 植物生态学报, 2019, 43(8): 709-717. |
[8] | 邹显花, 胡亚楠, 韦丹, 陈思同, 吴鹏飞, 马祥庆. 磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性[J]. 植物生态学报, 2019, 43(2): 139-151. |
[9] | 祝维, 余立璇, 赵德海, 贾黎明. 基于根系发育分级的砂壤土下成熟林木根系构型分析[J]. 植物生态学报, 2019, 43(2): 119-130. |
[10] | 高文童, 张春艳, 董廷发, 胥晓. 丛枝菌根真菌对不同性别组合模式下青杨雌雄植株根系生长的影响[J]. 植物生态学报, 2019, 43(1): 37-45. |
[11] | 席本野, 邸楠, 曹治国, 刘金强, 李豆豆, 王烨, 李广德, 段劼, 贾黎明, 张瑞娜. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示[J]. 植物生态学报, 2018, 42(9): 885-905. |
[12] | 单立山, 苏铭, 张正中, 王洋, 王珊, 李毅. 不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律[J]. 植物生态学报, 2018, 42(4): 475-486. |
[13] | 岑宇, 王成栋, 张震, 任侠, 刘美珍, 杨帆. 河北省天然草地生物量和碳密度空间分布格局[J]. 植物生态学报, 2018, 42(3): 265-276. |
[14] | 孙元丰, 万宏伟, 赵玉金, 陈世苹, 白永飞. 中国草地生态系统根系周转的空间格局和驱动因子[J]. 植物生态学报, 2018, 42(3): 337-348. |
[15] | 尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究: 问题与展望[J]. 植物生态学报, 2018, 42(11): 1055-1070. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19