植物生态学报 ›› 2012, Vol. 36 ›› Issue (11): 1197-1204.DOI: 10.3724/SP.J.1258.2012.01197
收稿日期:
2012-07-27
修回日期:
2012-09-30
出版日期:
2012-07-27
发布日期:
2012-11-09
通讯作者:
孔德良
作者简介:
(E-mail: deliangkong@126.com)
MA Cheng-En1, KONG De-Liang2,*(), CHEN Zheng-Xia3, GUO Jun-Fei4
Received:
2012-07-27
Revised:
2012-09-30
Online:
2012-07-27
Published:
2012-11-09
Contact:
KONG De-Liang
摘要:
凋落物分解是生态系统养分循环的重要过程, 直接影响着生态系统功能。植物根系作为重要的生物因子调控着凋落物分解过程, 然而这一重要作用却在凋落物分解的研究中长期被忽视。凋落物中下层养分充足、保水能力强, 为根系生长提供了良好环境; 同时, 生长进入凋落物层的根系通过激发效应、共生真菌、N吸收等方式对分解过程产生了重要影响。该文针对根系生长及其影响因素、根系对凋落物分解的影响及其内在机制等关键方面进行了综述, 并提出了根系生长与凋落物分解之间关系的概念模型, 以期引起大家对这个领域的关注, 并为根系与凋落物分解之间关系的研究提供良好的借鉴。
马承恩, 孔德良, 陈正侠, 郭俊飞. 根系在凋落物层中的生长及其对凋落物分解的影响. 植物生态学报, 2012, 36(11): 1197-1204. DOI: 10.3724/SP.J.1258.2012.01197
MA Cheng-En, KONG De-Liang, CHEN Zheng-Xia, GUO Jun-Fei. Root growth into litter layer and its impact on litter decomposition: a review. Chinese Journal of Plant Ecology, 2012, 36(11): 1197-1204. DOI: 10.3724/SP.J.1258.2012.01197
1 | Achat DL, Bakker MR, Trichet P ( 2008). Rooting patterns and fine root biomass of Pinus pinaster assessed by trench wall and core methods. Journal of Forest Research, 13, 165-175. |
2 | Agerer R ( 2001). Exploration types of ectomycorrhizae. Mycorrhiza, 11, 107-114. |
3 | Allison SD, Gartner TB, Mack MC, McGuire K, Treseder K ( 2010). Nitrogen alters carbon dynamics during early succession in boreal forest. Soil Biology & Biochemistry, 42, 1157-1164. |
4 | Austin AT, Vivanco L ( 2006). Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature, 442, 555-558. |
5 | Baumann K, Marschner P, Smernik RJ, Baldock JA ( 2009). Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biology & Biochemistry, 41, 1966-1975. |
6 | Berg B, McClaugherty C ( 2008). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration 2nd edn. Springer- Verlag, Berlin. |
7 | Berglund SL, Ågren GI ( 2011). When will litter mixtures decompose faster or slower than individual litters? A model for two litters. Oikos, 121, 1112-1120. |
8 | Chen SS ( 陈莎莎), Liu HY ( 刘鸿雁), Guo DL ( 郭大立 ) ( 2010). Litter stocks and chemical quality of natural birch forests along temperature and precipitation gradients in eastern Inner Mongolia, China. Chinese Journal of Plant Ecology (植物生态学报), 34, 1007-1015. (in Chinese with English abstract) |
9 | Cheng L, Booker FL, Tu C, Burkey KO, Zhou LS, Shew HD, Rufty TW, Hu SJ ( 2012). Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 337, 1084-1087. |
10 | Cheng WX ( 2009). Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C-N budgets. Soil Biology & Biochemistry, 41, 1795-1801. |
11 | Chivenge P, Vanlauwe B, Gentile R, Six J ( 2011). Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biology & Biochemistry, 43, 657-666. |
12 | Craine JM, Morrow C, Fierer N ( 2007). Microbial nitrogen limitation increases decomposition. Ecology, 88, 2105-2113. |
13 | Croft SA, Hodge A, Pitchford JW ( 2012). Optimal root proliferation strategies: the roles of nutrient heterogeneity, competition and mycorrhizal networks. Plant and Soil, 351, 191-206. |
14 | Dijkstra FA, Cheng WX ( 2007). Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecology Letters, 10, 1046-1053. |
15 | Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H ( 2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 109, 2666-2671. |
16 | Fontaine S, Bardoux G, Abbadie L, Mariotti A ( 2004). Carbon input to soil may decrease soil carbon content. Ecology Letters, 7, 314-320. |
17 | Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C ( 2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450, 277-280. |
18 | Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA ( 2011). Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology and Biochemistry, 43, 86-96. |
19 | Freschet GT, Aerts R, Cornelissen JHC ( 2012). Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. Journal of Ecology, 100, 619-630. |
20 | Fu SL, Cheng WX, Susfalk R ( 2002). Rhizosphere respiration varies with plant species and phenology: a greenhouse pot experiment. Plant and Soil, 239, 133-140. |
21 | Fujimaki R, McGonigle TP, Takeda H ( 2004). Soil micro- habitat effects on fine roots of Chamaecyparis obtusa Endl.: a field experiment using root ingrowth cores. Plant and Soil, 266, 325-332. |
22 | Gavito ME, Olsson PA ( 2003). Allocation of plant carbon to foraging and storage in arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 45, 181-187. |
23 | Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ ( 2000). Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6, 751-765. |
24 | Guo DL, Mitchell RJ, Hendricks JJ ( 2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457. |
25 | Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ ( 2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683. |
26 | Hättenschwiler S, Coq S, Barantal S, Handa IT ( 2011). Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytologist, 189, 950-965. |
27 | Hättenschwiler S, Jørgensen HB ( 2010). Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology, 98, 754-763. |
28 | Hilli S, Stark S, Derome J ( 2010). Litter decomposition rates in relation to litter stocks in boreal coniferous forests along climatic and soil fertility gradients. Applied Soil Ecology, 46, 200-208. |
29 | Hobbie SE ( 2005). Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems, 8, 644-656. |
30 | Hobbie SE ( 2008). Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology, 89, 2633-2644. |
31 | Hodge A ( 2001). Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytologist, 151, 725-734. |
32 | Hodge A ( 2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24. |
33 | Hodge A ( 2009). Root decisions. Plant, Cell & Environment, 32, 628-640. |
34 | Hodge A, Helgason T, Fitter AH ( 2010). Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology, 3, 267-273. |
35 | Hoosbeek MR, Li YT, Scarascia-Mugnozza GE ( 2006). Free atmospheric CO2 enrichment (FACE) increased labile and total carbon in the mineral soil of a short rotation poplar plantation. Plant and Soil, 281, 247-254. |
36 | Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze E-D, Tang J, Law BE ( 2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322. |
37 | Jentschke G, Brandes B, Kuhn AJ, Schröder WH, Godbold DL ( 2001). Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus. New Phytologist, 149, 327-337. |
38 | Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H ( 2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333, 880-882. |
39 | Knorr M, Frey SD, Curtis PS ( 2005). Nitrogen additions and litter decomposition: a meta-analysis. Ecology, 86, 3252-3257. |
40 | Koide RT, Fernandez CW, Peoples MS ( 2011). Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition? New Phytologist, 191, 508-514. |
41 | Kuzyakov Y ( 2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371. |
42 | Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD ( 2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, 173, 611-620. |
43 | Liu LL, Greaver TL ( 2010). A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters, 13, 819-828. |
44 | Liu P, Huang JH, Sun OJ, Han XG ( 2010). Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia, 162, 771-780. |
45 | Manning P, Morrison SA, Bonkowski M, Bardgett RD ( 2008). Nitrogen enrichment modifies plant community structure via changes to plant-soil feedback. Oecologia, 157, 661-673. |
46 | Manzoni S, Jackson RB, Trofymow JA, Amilcare P ( 2008). The global stoichiometry of litter nitrogen mineralization. Science, 321, 684-686. |
47 | Manzoni S, Trofymow JA, Jackson RB, Porporato A ( 2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80, 89-106. |
48 | Mayor J, Henkel TW ( 2006). Do ectomycorrhizas alter leaf- litter decomposition in monodominant tropical forests of Guyana? New Phytologist, 169, 579-588. |
49 | Mommer L, van Ruijven J, Jansen C, van de Steeg HM, de Kroon H ( 2012). Interactive effects of nutrient heterogeneity and competition: implications for root foraging theory? Functional Ecology, 26, 66-73. |
50 | Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD ( 2006). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems, 9, 46-62. |
51 | Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ ( 2009). Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Applied Soil Ecology, 42, 183-190. |
52 | Orwin KH, Kirschbaum MUF, St John MG, Dickie IA ( 2011). Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecology Letters, 14, 493-502. |
53 | Ostertag R, Hobbie SE ( 1999). Early stages of root and leaf decomposition in Hawaiian forests: effects of nutrient availability. Oecologia, 121, 564-573. |
54 | Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B ( 2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364. |
55 | Phillips RP, Finzi AC, Bernhardt ES ( 2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters, 14, 187-194. |
56 | Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC, Knops J ( 2012). Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecology Letters, 15, 1042-1049. |
57 | Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL ( 2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309. |
58 | Pritsch K, Garbaye J ( 2011). Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Annals of Forest Science, 68, 25-32. |
59 | Rosling A ( 2009). Trees, mycorrhiza and minerals-field relevance of in vitro experiments. Geomicrobiology Journal, 26, 389-401. |
60 | Rosling A, Lindahl BD, Taylor AFS, Finlay RD ( 2004). Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiology Ecology, 47, 31-37. |
61 | Sayer EJ, Tanner EVJ ( 2010). Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. Journal of Ecology, 98, 1052-1062. |
62 | Sayer EJ, Tanner EVJ, Cheesman AW ( 2006). Increased litterfall changes fine root distribution in a moist tropical forest. Plant and Soil, 281, 5-13. |
63 | Schlesinger WH, Lichter J ( 2001). Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature, 411, 466-469. |
64 | Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, van Janssens I, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE ( 2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56. |
65 | Stark S, Hilli S, Willför S, Smeds AI, Reunanen M, Penttinen M, Hautajärvi R ( 2012). Composition of lipophilic compounds and carbohydrates in the accumulated plant litter and soil organic matter in boreal forests. European Journal of Soil Science, 63, 65-74. |
66 | Subke J, Hahn V, Battipaglia G, Linder S, Buchmann N, Cotrufo MF ( 2004). Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia, 139, 551-559. |
67 | Tiunov AV, Scheu S ( 2005). Arbuscular mycorrhiza and Collembola interact in affecting community composition of saprotrophic microfungi. Oecologia, 142, 636-642. |
68 | Treseder KK ( 2008). Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecology Letters, 11, 1111-1120. |
69 | Vitousek PM, Turner DR, Parton WJ, Sanford RL ( 1994). Litter decomposition on the Mauna Loa environmental matrix, Hawai’i: patterns, mechanisms, and models. Ecology, 75, 418-429. |
70 | Wells JM, Donnelly DP, Boddy L ( 1997). Patch formation and developmental polarity in mycelial cord systems of Phanerochaete velutina on a nutrient-depleted soil. New Phytologist, 136, 653-665. |
71 | Wieder WR, Cleveland CC, Townsend AR ( 2009). Controls over leaf litter decomposition in wet tropical forests. Ecology, 90, 3333-3341. |
72 | Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD ( 2011). Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92, 1616-1625. |
73 | Xia MX, Guo DL, Pregitzer KS ( 2010). Ephemeral root modules in Fraxinus mandshurica. New Phytologist, 188, 1065-1074. |
74 | Zhu B, Cheng WX ( 2011). Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition. Global Change Biology, 17, 2172-2183. |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[4] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[5] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[6] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[7] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[8] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[9] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[10] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[11] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[12] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[13] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[14] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[15] | 李小玲, 朱道明, 余玉蓉, 吴浩, 牟利, 洪柳, 刘雪飞, 卜贵军, 薛丹, 吴林. 模拟氮沉降对鄂西南贫营养泥炭地两种藓类植物生长与分解的影响[J]. 植物生态学报, 2023, 47(5): 644-659. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19