植物生态学报 ›› 2015, Vol. 39 ›› Issue (9): 890-900.DOI: 10.17521/cjpe.2015.0085

• • 上一篇    下一篇

典型固沙植物梭梭生长季蒸腾变化及其对环境因子的响应

徐世琴1,2, 吉喜斌1,*(), 金博文1   

  1. 1中国科学院寒区旱区环境与工程研究所, 兰州 730000
    2中国科学院大学, 北京 100049
  • 收稿日期:2015-01-06 接受日期:2015-05-28 出版日期:2015-09-03 发布日期:2015-09-23
  • 通讯作者: 吉喜斌
  • 作者简介:

    * 共同第一作者 Co-first author

  • 基金资助:
    国家重点基础研究发展计划(973)课题(2013CB429902)和国家自然科学基金(41271036)

Dynamics and responses of sap flow of typical sand binding plants Haloxylon ammodendron to environmental variables

XU Shi-Qin1,2, JI Xi-Bin1,*(), JIN Bo-Wen1   

  1. 1Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
    2University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-01-06 Accepted:2015-05-28 Online:2015-09-03 Published:2015-09-23
  • Contact: Xi-Bin JI
  • About author:

    # Co-first authors

摘要:

蒸腾是植物重要的生理活动之一, 受到多个环境要素的综合影响。该文利用热平衡包裹式茎干液流仪Flow32监测系统, 对河西走廊中段绿洲—荒漠过渡带主要固沙植物梭梭(Haloxylon ammodendron)生长季的蒸腾过程进行连续监测, 并分析了其对环境要素的响应。结果表明: (1)梭梭茎干液流速率随枝直径的增加而增加, 液流密度随枝直径的增加而降低, 梭梭液流密度日变化呈多峰特征, 整个生长季液流密度变化比较稳定。(2)主成分分析表明第1、2、3主成分能够分别解释环境信息49%、15%、12%的变化, 第一主成分中水汽压亏缺、光合有效辐射及气温反映了大气的蒸腾需求。(3) S型模型对液流密度日变化模拟精度达到0.86, 考虑时滞效应后模拟精度提高至0.9, 降水天气条件下模拟精度降低至0.65。(4)液流密度对主要环境要素存在非对称响应, 同光合有效辐射呈逆时针环状, 同水汽压亏缺、蒸腾需求指数呈顺时针环状。

关键词: 热平衡方法, 非对称响应, 主成分分析, 模拟, 茎干液流

Abstract: <i>Aims</i>

Transpiration is one of important physiological activities for plants, which is regulated by many environmental variables. Our objectives were to understand the responses of sap flow density of Haloxylon ammodendron to environmental variables and simulate its diurnal change under different micrometeorological conditions.

<i>Methods</i>

Sap flow in stems of H. ammodendron was measured with stem heat balance method using commercial sap-flow gauges from May to October, 2014, in the oasis-desert ecotone, located in the middle range of Hexi Corridor, Northwestern China.

<i>Important findings</i>

Sap flow velocity of H. ammodendron exhibited a positive relationship with stem diameter, but sap flow density (Js) decreased with stem diameter. The first three axes of principal component analysis (PCA) explained 49%, 15%, 12% of variances in the environmental datasets, respectively, and vapour pressure deficit (VPD), photosynthetically active radiation (PAR), temperature in the first axes indicated the atmospheric evaporative demand. A sigmoid function could explain 86% of the variation in Js in typical sunny days, while only 65% on rainy days. It was worth noting the simulated Js using the established sigmoid function agreed well with the measurements (R2 = 0.90) if the time lags of Js to principle environmental variables were taken into consideration. Plots of 30-min Js against PAR, VPD, and evaporative demand index (EDI) revealed a counter-clockwise hysteresis for PAR, but a clockwise hysteresis for VPD and EDI, it was possibly affected by water stress and time lags of sap flow density to principle environmental variables.

Key words: heat balance method, hysteresis, principle component analysis, simulation, stem sap flow