植物生态学报 ›› 2016, Vol. 40 ›› Issue (9): 883-892.DOI: 10.17521/cjpe.2016.0040
所属专题: 凋落物
徐波1,2, 朱忠福3, 李金洋1, 吴彦1, 邓贵平3, 吴宁1, 石福孙1,*()
收稿日期:
2016-01-19
接受日期:
2016-07-23
出版日期:
2016-09-10
发布日期:
2016-09-29
通讯作者:
石福孙
基金资助:
Bo XU1,2, Zhong-Fu ZHU3, Jin-Yang LI1, Yan WU1, Gui-Ping DENG3, Ning WU1, Fu-Sun SHI1,*()
Received:
2016-01-19
Accepted:
2016-07-23
Online:
2016-09-10
Published:
2016-09-29
Contact:
Fu-Sun SHI
摘要:
叶片凋落物分解对生态系统的养分循环和生产力有着重要意义。该文利用网袋分解法对九寨沟国家自然保护区内黄果冷杉(Abies ernestii)、油松(Pinus tabulaeformis)、红桦(Betula albo-sinensis)和高山柳(Salix cupularis) 4个典型树种叶片凋落物在林下及高山湖泊中的分解及养分释放特征进行了对比研究。结果表明: 1)叶片凋落物分解质量损失规律符合Olson的负指数衰减模型(r > 0.93, p < 0.01), 4个树种叶片在林下完全分解(99%)的时间依次为: 高山柳(6.80 a) <红桦(10.34 a) <黄果冷杉(18.88 a) <油松(27.21 a), 且分别是其在水体中分解的1.48倍、1.55倍、1.80倍和1.65倍。2)分解1年后凋落物质量剩余率(MR)和氮素剩余率(NR)均与叶片初始N含量极显著负相关, 而与叶片初始C:N值极显著正相关。3)不同树种间叶片N和P释放特征差异明显, 且在林下和水体间的释放模式也存在差异; 高山柳叶片凋落物在林下和水体分解过程中N元素从分解初期便开始释放, 而其他树种叶片凋落物N元素释放前存在明显的富集过程; 各树种叶片凋落物P元素释放模式为释放—富集—释放。研究表明: 叶片凋落物分解是一个受其自身性质和外界环境因素共同作用的复杂过程, 而凋落物在高山湖泊中的快速分解将对保护区现有的水体景观产生潜在影响。
徐波, 朱忠福, 李金洋, 吴彦, 邓贵平, 吴宁, 石福孙. 九寨沟国家自然保护区4个典型树种叶片凋落物在林下及高山湖泊中的分解及养分释放特征. 植物生态学报, 2016, 40(9): 883-892. DOI: 10.17521/cjpe.2016.0040
Bo XU, Zhong-Fu ZHU, Jin-Yang LI, Yan WU, Gui-Ping DENG, Ning WU, Fu-Sun SHI. Leaf decomposition and nutrient release of dominant species in the forest and lake in the Jiuzhaigou National Nature Reserve, China. Chinese Journal of Plant Ecology, 2016, 40(9): 883-892. DOI: 10.17521/cjpe.2016.0040
样地 Site | 位置 Location | 经纬度 Longitude and latitude | 海拔 Elevation (m) |
---|---|---|---|
黄果冷杉林 Abies ernestii forest | 卧龙海 Wolong Lake | 103.90° E, 33.20° N | 2 266 |
柳树灌丛 Salix cupularis shrub | 树正群海 Shuzheng lakes | 103.90° E, 33.20° N | 2 272 |
油松林 Pinus tabulaeformis forest | 公主海 Gongzhu Lake | 103.90° E, 33.20° N | 2 314 |
红桦林 Betula albo-sinensis forest | 诺日朗 Nuorilang | 103.91° E, 33.16° N | 2 398 |
表1 样地信息
Table 1 Site information
样地 Site | 位置 Location | 经纬度 Longitude and latitude | 海拔 Elevation (m) |
---|---|---|---|
黄果冷杉林 Abies ernestii forest | 卧龙海 Wolong Lake | 103.90° E, 33.20° N | 2 266 |
柳树灌丛 Salix cupularis shrub | 树正群海 Shuzheng lakes | 103.90° E, 33.20° N | 2 272 |
油松林 Pinus tabulaeformis forest | 公主海 Gongzhu Lake | 103.90° E, 33.20° N | 2 314 |
红桦林 Betula albo-sinensis forest | 诺日朗 Nuorilang | 103.91° E, 33.16° N | 2 398 |
树种 Species | 碳含量 C content (mg·g-1) | 氮含量 N content (mg·g-1) | 磷含量 P content (mg·g-1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|
红桦 Betula albo-sinensis | 529.91 ± 10.04a | 15.39 ± 0.32b | 0.88 ± 0.03b | 34.46 ± 1.37b | 604.14 ± 34.61b | 17.52 ± 0.31a |
高山柳 Salix cupularis | 505.12 ± 8.13b | 16.69 ± 0.40a | 1.39 ± 0.04a | 30.26 ± 1.25b | 363.17 ± 14.54c | 12.01 ± 0.02c |
黄果冷杉 Pinus tabulaeformis | 489.32 ± 10.32b | 15.45 ± 0.43b | 1.44 ± 0.05a | 31.70 ± 1.43b | 339.60 ± 17.25c | 10.71 ± 0.22d |
油松 Abies ernestii | 530.59 ± 11.60a | 9.42 ± 0.33c | 0.65 ± 0.03c | 56.37 ± 2.76a | 812.60 ± 58.05a | 14.41 ± 0.66b |
表2 叶片凋落物初始养分含量(平均值±标准误差)
Table 2 Initial nutrient contents of the leaf litter (mean ± SE)
树种 Species | 碳含量 C content (mg·g-1) | 氮含量 N content (mg·g-1) | 磷含量 P content (mg·g-1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|
红桦 Betula albo-sinensis | 529.91 ± 10.04a | 15.39 ± 0.32b | 0.88 ± 0.03b | 34.46 ± 1.37b | 604.14 ± 34.61b | 17.52 ± 0.31a |
高山柳 Salix cupularis | 505.12 ± 8.13b | 16.69 ± 0.40a | 1.39 ± 0.04a | 30.26 ± 1.25b | 363.17 ± 14.54c | 12.01 ± 0.02c |
黄果冷杉 Pinus tabulaeformis | 489.32 ± 10.32b | 15.45 ± 0.43b | 1.44 ± 0.05a | 31.70 ± 1.43b | 339.60 ± 17.25c | 10.71 ± 0.22d |
油松 Abies ernestii | 530.59 ± 11.60a | 9.42 ± 0.33c | 0.65 ± 0.03c | 56.37 ± 2.76a | 812.60 ± 58.05a | 14.41 ± 0.66b |
变异来源 Source of variation | 自由度 Degree of freedom | 质量剩余率 Mass remaining ratio | 氮素剩余率 Nitrogen remaining ratio | 磷素剩余率 Phosphorus remaining ratio | |||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||||
物种 Species | 3 | 7 394.01 | < 0.01 | 46.25 | < 0.01 | 10.28 | < 0.01 | ||
分解时间 Decomposition time | 3 | 6 486.93 | < 0.01 | 37.18 | < 0.01 | 8.17 | < 0.01 | ||
环境类型 Environmental types | 1 | 7 169.46 | < 0.01 | 0.91 | 0.34 | 51.04 | < 0.01 | ||
物种×分解时间 Species × decomposition time | 9 | 264.45 | < 0.01 | 8.84 | < 0.01 | 9.96 | < 0.01 | ||
物种×环境类型 Species × environmental types | 3 | 24.27 | < 0.01 | 8.46 | < 0.01 | 5.99 | 0.00 | ||
分解时间×环境类型 Decomposition time × environmental types | 3 | 121.53 | < 0.01 | 50.83 | < 0.01 | 37.60 | < 0.01 |
表3 叶片凋落物分解质量及养分剩余率在物种、分解时间和环境类型间差异的多因素方差分析
Table 3 Multivariate analysis of variance on the differences in mass and nutrient remaining ratios among species, decomposition time and site
变异来源 Source of variation | 自由度 Degree of freedom | 质量剩余率 Mass remaining ratio | 氮素剩余率 Nitrogen remaining ratio | 磷素剩余率 Phosphorus remaining ratio | |||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||||
物种 Species | 3 | 7 394.01 | < 0.01 | 46.25 | < 0.01 | 10.28 | < 0.01 | ||
分解时间 Decomposition time | 3 | 6 486.93 | < 0.01 | 37.18 | < 0.01 | 8.17 | < 0.01 | ||
环境类型 Environmental types | 1 | 7 169.46 | < 0.01 | 0.91 | 0.34 | 51.04 | < 0.01 | ||
物种×分解时间 Species × decomposition time | 9 | 264.45 | < 0.01 | 8.84 | < 0.01 | 9.96 | < 0.01 | ||
物种×环境类型 Species × environmental types | 3 | 24.27 | < 0.01 | 8.46 | < 0.01 | 5.99 | 0.00 | ||
分解时间×环境类型 Decomposition time × environmental types | 3 | 121.53 | < 0.01 | 50.83 | < 0.01 | 37.60 | < 0.01 |
图2 叶片凋落物在林下(A)及湖泊(B)中分解的质量剩余率(平均值 ± 标准误差)。不同小写字母表示同一分解时间不同树种间叶片凋落物质量剩余率差异极显著(p < 0.01), 且各分解时间的多重比较结果一致。
Fig. 2 Mass remaining ratio of leaf litter decomposition in the forest (A) and lake (B) (mean ± SE). The lowercase letters denote highly significant differences in mass remaining ratios among the species for the same decomposition time (p < 0.01), with each decomposition time holds the same multiple comparison results.
树种 Species | 环境类型 Environmental types | 拟合方程 Fitted equations | 分解系数k Decomposition coefficient k | 半分解时间 Time of half decomposition (a) | 99%分解时间 Time of 99% decomposition (a) | 相关系数r Correlation coefficient r | 显著性 Significance |
---|---|---|---|---|---|---|---|
红桦 Betula albo-sinensis | 陆地 Land | y = 97.03e-0.441t | 0.441 | 1.50 | 10.34 | 0.93 | p < 0.01 |
水体 Water | y = 95.01e-0.678t | 0.678 | 0.95 | 6.69 | 0.96 | p < 0.01 | |
高山柳 Salix cupularis | 陆地 Land | y = 95.16e-0.667t | 0.667 | 0.96 | 6.80 | 0.94 | p < 0.01 |
水体 Water | y = 91.76e-0.966t | 0.966 | 0.63 | 4.66 | 0.95 | p < 0.01 | |
油松 Pinus tabulaeformis | 陆地 Land | y = 99.33e-0.169t | 0.169 | 4.07 | 27.21 | 0.94 | p < 0.01 |
水体 Water | y = 94.12e-0.275t | 0.275 | 2.30 | 16.47 | 0.96 | p < 0.01 | |
黄果冷杉 Abies ernestii | 陆地 Land | y = 98.42e-0.238t | 0.238 | 2.84 | 18.88 | 0.97 | p < 0.01 |
水体 Water | y = 93.43e-0.432t | 0.432 | 1.45 | 10.47 | 0.99 | p < 0.01 |
表4 叶片凋落物分解的拟合模型分析
Table 4 Empirical model for leaf litter decomposition
树种 Species | 环境类型 Environmental types | 拟合方程 Fitted equations | 分解系数k Decomposition coefficient k | 半分解时间 Time of half decomposition (a) | 99%分解时间 Time of 99% decomposition (a) | 相关系数r Correlation coefficient r | 显著性 Significance |
---|---|---|---|---|---|---|---|
红桦 Betula albo-sinensis | 陆地 Land | y = 97.03e-0.441t | 0.441 | 1.50 | 10.34 | 0.93 | p < 0.01 |
水体 Water | y = 95.01e-0.678t | 0.678 | 0.95 | 6.69 | 0.96 | p < 0.01 | |
高山柳 Salix cupularis | 陆地 Land | y = 95.16e-0.667t | 0.667 | 0.96 | 6.80 | 0.94 | p < 0.01 |
水体 Water | y = 91.76e-0.966t | 0.966 | 0.63 | 4.66 | 0.95 | p < 0.01 | |
油松 Pinus tabulaeformis | 陆地 Land | y = 99.33e-0.169t | 0.169 | 4.07 | 27.21 | 0.94 | p < 0.01 |
水体 Water | y = 94.12e-0.275t | 0.275 | 2.30 | 16.47 | 0.96 | p < 0.01 | |
黄果冷杉 Abies ernestii | 陆地 Land | y = 98.42e-0.238t | 0.238 | 2.84 | 18.88 | 0.97 | p < 0.01 |
水体 Water | y = 93.43e-0.432t | 0.432 | 1.45 | 10.47 | 0.99 | p < 0.01 |
图3 叶片凋落物在林下(A和C)和湖泊(B和D)中分解的养分剩余率动态(平均值±标准误差)。
Fig. 3 Dynamics of nutrient remaining ratios of the leaf litter decomposition in the forest (A and C) and lake (B and D) (mean ± SE).
C | N | P | C:N | C:P | N:P | |
---|---|---|---|---|---|---|
质量剩余率 Mass remaining ratio | 0.12ns | -0.63** | -0.41* | 0.57** | 0.46* | 0.47ns |
氮素剩余率 Nitrogen remaining ratio | 0.24ns | -0.60** | -0.45* | 0.58** | 0.50* | 0.11ns |
磷素剩余率 Phosphorus remaining ratio | -0.06ns | -0.14ns | -0.02ns | 0.14ns | 0.04ns | -0.14ns |
表5 叶片凋落物分解1年后质量、氮和磷剩余率与凋落物初始养分含量之间的Pearson相关关系
Table 5 Pearson correlations between mass, nitrogen and phosphorus remaining ratio after one-year decomposition and leaf initial nutrient contents
C | N | P | C:N | C:P | N:P | |
---|---|---|---|---|---|---|
质量剩余率 Mass remaining ratio | 0.12ns | -0.63** | -0.41* | 0.57** | 0.46* | 0.47ns |
氮素剩余率 Nitrogen remaining ratio | 0.24ns | -0.60** | -0.45* | 0.58** | 0.50* | 0.11ns |
磷素剩余率 Phosphorus remaining ratio | -0.06ns | -0.14ns | -0.02ns | 0.14ns | 0.04ns | -0.14ns |
1 | Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 79, 439-449. |
2 | Aponte C, Garcia LV, Maranon T (2012). Tree species effect on litter decomposition and nutrient release in Mediterranean oak forests changes over time.Ecosystems, 15, 1204-1218. |
3 | Ayres E, Dromph KM, Bardgett RD (2006). Do plant species encourage soil biota that specialise in the rapid decomposition of their litter?Soil Biology & Biochemistry, 38, 183-186. |
4 | Berg B (2000). Litter decomposition and organic matter turnover in northern forest soils.Forest Ecology and Management, 133, 13-22. |
5 | Chen SX, Jiang MX (2006). Leaf litter decomposition dynamics of different tree species in Xiangxi River watershed, the Three Gorges Region, China.Acta Ecologica Sinica, 26, 2905-2912. (in Chinese with English abstract)[陈书秀, 江明喜 (2006). 三峡地区香溪河流域不同树种叶片凋落物的分解. 生态学报, 26, 2905-2912.] |
6 | Chi GL, Tong XL (2010). Leaching process of leaf litter in running water and lentic water in subtropical China.Ecological Science, 29, 50-55. (in Chinese with English abstract)[迟国梁, 童晓立 (2010). 亚热带地区树叶凋落物在流水和静水环境中的淋溶规律. 生态科学, 29, 50-55.] |
7 | Couteaux MM, Bottner P, Berg B (1995). Litter decomposition, climate and litter quality.Trends in Ecology Evolution, 10, 63-66. |
8 | Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle D, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide.Ecology Letters, 11, 1065-1071. |
9 | Deng CC, Jiang XM, Liu Y, Zhang J, Chen YM, He RL (2015). Litter decomposition of Rhododendron lapponicum in alpine timberline ecotone.Acta Ecologica Sinica, 35, 1769-1778. (in Chinese with English abstract)[邓长春, 蒋先敏, 刘洋, 张健, 陈亚梅, 和润莲 (2015). 高山林线交错带高山杜鹃的凋落物分解. 生态学报, 35, 1769-1778.] |
10 | Graca MAS (2001). The role of invertebrates on leaf litter decomposition in streams—A review.International Review of Hydrobiology, 86, 383-393. |
11 | Guo ZL, Zheng JP, Ma YD, Li QK, Yu GR, Han SJ, Fan CN, Liu WD (2006). Researches on litterfall decomposition rates and model simulating of main species in various forest vegetations of Changbai Mountains, China.Acta Ecologica Sinica, 26, 1037-1046. (in Chinese with English abstract)[郭忠玲, 郑金萍, 马元丹, 李庆康, 于贵瑞, 韩士杰, 范春楠, 刘万德 (2006). 长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究. 生态学报, 26, 1037-1046.] |
12 | Handa T, Aerts R, Berendse F, Berg MP, Bruder A, But- enschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hättenschwiler S (2014). Consequences of biodiversity loss for litter decomposition across biomes.Nature, 59, 218-221. |
13 | Hättenschwiler S, Jørgensen HB (2010). Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest.Journal of Ecology, 98, 754-763. |
14 | Hieber M, Gessner MO (2002). Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates.Ecology, 83, 1026. |
15 | Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006). Tree species effects on decomposition and forest floor dynamics in a common garden.Ecology, 87, 2288-2297. |
16 | Ibrahima A, Biyanzi P, Halima M (2008). Changes in organic compounds during leaf litter leaching: Laboratory experiment on eight plant species of the Sudano-guinea Savannas of Ngaoundere, Cameroon. Iforest-Biogeo- sciences and Forestry, 1, 27-33. |
17 | Kay AD, Mankowski J, Hobbie SE (2008). Long-term burning interacts with herbivory to slow decomposition.Ecology, 89, 1188-1194. |
18 | Leroy CJ, Marks JC (2006). Litter quality, stream character- istics and litter diversity influence decomposition rates and macroinvertebrates.Freshwater Biology, 51, 605-617. |
19 | Liu SY, Zhang XP, Zeng ZY (2007). Biodiversity of the Jiuzhaigou National Nature Reserve. Sichuan Science and Technology Press, Chengdu. (in Chinese)[刘少英, 章小平, 曾宗永 (2007). 九寨沟自然保护区的生物多样性. 四川科学科技出版社, 成都.] |
20 | Liu X, Jiang MX, Deng HB (2008). Dynamics of nitrogen and phosphorus content during leaf litter decomposition in Xiangxi River watershed, the Three Gorges region.Journal of Wuhan Botanical Research, 26, 613-619. (in Chinese with English abstract)[刘昕, 江明喜, 邓红兵 (2008). 三峡地区香溪河流域叶片凋落物分解过程中N、P含量动态研究. 武汉植物学研究, 26, 613-619.] |
21 | Lu RK (2000). Soil and Agro-chemical Analytical Methods. China Agricultural Science and Technology Press, Beijing. 302-315.[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京. 302-315.] |
22 | Makkonen M, Berg MP, Handa T, Hättenschwiler S, van Ruijven J, van Bodegom PM, Aerts R (2012). Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient.Ecology Letters, 15, 1033-1041. |
23 | Martínez A, Larrañaga A, Pérez J, Descals E, Pozo J (2014). Temperature affects leaf litter decomposition in low-order forest streams: Field and microcosm approaches.FEMS Microbiology Ecology, 87, 257-267. |
24 | Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD (2006). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests.Ecosystems, 9, 46-62. |
25 | Moore TR, Trofymow JA, Taylor B, Prescott C, Camire C, Duschene L, Fyles J, Kozak L, Kranabetter M, Morrison I, Siltanen M, Smith S, Titus B, Visser S, Wein R, Zoltai S (1999). Litter decomposition rates in Canadian forests.Global Change Biology, 5, 75-82. |
26 | Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems.Ecology, 44, 322-331. |
27 | Osono T, Azuma J, Hirose D (2014). Plant species effect on the decomposition and chemical changes of leaf litter in grassland and pine and oak forest soils.Plant and Soil, 376, 411-421. |
28 | Parnas H (1975). Model for decomposition of organic material by microorganisms.Soil Biology & Biochemistry, 7, 161-169. |
29 | Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition.Science, 315, 361-364. |
30 | Pascoal C, Cassio F, Gomes P (2001). Leaf breakdown rates: A measure of water quality?International Review of Hydrobiology, 86, 407-416. |
31 | Peng SL, Liu Q (2002). The dynamics of forest litter and its responses to global warming.Acta Ecologica Sinica, 22, 1534-1544. (in Chinese with English abstract)[彭少麟, 刘强 (2002). 森林凋落物动态及其对全球变暖的响应. 生态学报, 22, 1534-1544.] |
32 | Petersen RC, Cummins KW (1974). Leaf processing in a woodland stream.Freshwater Biology, 4, 343-368. |
33 | Purahong W, Kapturska D, Pecyna MJ, Schulz E, Schloter M, Buscot F, Hofrichter M, Kruger D (2014). Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: A case study from central European forests.PLOS ONE, 9, 1-11. |
34 | Santiago LS (2007). Extending the leaf economics spectrum to decomposition: Evidence from a tropical forest.Ecology, 88, 126-1131. |
35 | SAS Institute (2008). SAS 9.2 User's Guide. Carolina, USA. |
36 | Shi L, Fan SH, Jiang ZH, Qi LH, Liu GL (2015). Mixed leaf litter decomposition and N, P release with a focus on Phy- llostachys edulis (Carriere) J. Houz. forest in subtropical southeastern China.Acta Societatis Botanicorum Poloniae, 84, 207-214. |
37 | Tiegs SD, Entrekin SA, Reeves GH, Kuntzsch D, Merritt RW (2013). Litter decomposition, and associated invertebrate communities, in wetland ponds of the Copper River Delta, Alaska (USA).Wetlands, 33, 1151-1163. |
38 | Wang J, Huang JH (2001). Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China.Acta Phytoecologica Sinica, 25, 375-380. (in Chinese with English abstract)[王瑾, 黄建辉 (2001). 暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较. 植物生态学报, 25, 375-380.] |
39 | Wang XE, Xue L, Xie TF (2009). A review on litter dec- omposition.Chinese Journal of Soil Science, 40, 1473-1478. (in Chinese with English abstract)[王相娥, 薛立, 谢腾芳 (2009). 凋落物分解研究综述. 土壤通报, 40, 1473-1478.] |
40 | Wang XH, Huang JJ, Yan ER (2004). Leaf litter decomposition of common trees in Tiantong.Acta Phytoecologica Sinica, 28, 457-467. (in Chinese with English abstract)[王希华, 黄建军, 闫恩荣 (2004). 天童国家森林公园常见植物凋落叶分解的研究. 植物生态学报, 28, 457-467.] |
41 | Wardle DA, Nilsson MC, Zackrisson O, Gallet C (2003). Determinants of litter mixing effects in a Swedish boreal forest.Soil Biology & Biochemistry, 35, 827-835. |
42 | Wu QQ, Wu FZ, Yang WQ, Xu ZF, He W, He M, Zhao YY, Zhu JX (2013). Effect of seasonal snow cover on litter decomposition in alpine forest.Chinese Journal of Plant Ecology, 37, 296-305. (in Chinese with English abstract)[武启骞, 吴福忠, 杨万勤, 徐振锋, 何伟, 何敏, 赵野逸, 朱剑霄 (2013). 季节性雪被对高山森林凋落物分解的影响. 植物生态学报, 37, 296-305.] |
43 | Yang YS, Lin P, Guo JF, Lin RY, Chen GS, He ZM, Xie JS (2003). Litter production, nutrient return and leaf-litter decomposition in natural and monoculture plantation forests of Castanopsis kawakamii in subtropical China.Acta Ecologica Sinica, 23, 1278-1289. (in Chinese with English abstract)[杨玉盛, 林鹏, 郭剑芬, 林瑞余, 陈光水, 何宗明, 谢锦升 (2003). 格氏栲天然林与人工林凋落物数量、养分归还及凋落叶分解. 生态学报, 23, 1278-1289.] |
44 | Zhang C, Yang WQ, Yue K, Huang CP, Peng Y, Wu FZ (2015). Soluble nitrogen and soluble phosphorus dynamics during foliar litter decomposition in winter in alpine forest streams.Chinese Journal of Applied Ecology, 26, 1601-1608. (in Chinese with English abstract)[张川, 杨万勤, 岳楷, 黄春萍, 彭艳, 吴福忠 (2015). 高山森林溪流冬季不同时期凋落物分解中水溶性氮和磷的动态特征. 应用生态学报, 26, 1601-1608.] |
45 | Zhou GY, Guan LL, Wei XH, Tang XL, Liu SG, Liu JX, Zhang DQ, Yan JH (2008). Factors influencing leaf litter decomposition: An intersite decomposition experiment across China.Plant and Soil, 311, 61-72. |
[1] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[2] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[3] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[4] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[5] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[6] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[7] | 李小玲, 朱道明, 余玉蓉, 吴浩, 牟利, 洪柳, 刘雪飞, 卜贵军, 薛丹, 吴林. 模拟氮沉降对鄂西南贫营养泥炭地两种藓类植物生长与分解的影响[J]. 植物生态学报, 2023, 47(5): 644-659. |
[8] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[9] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[10] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[11] | 曹珍, 刘永英, 宋世凯, 张莉娜, 高德. 陆地生境岛屿藓类植物小岛屿效应驱动因素分析——以太行山脉中段山顶为例[J]. 植物生态学报, 2023, 47(1): 65-76. |
[12] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[13] | 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529-538. |
[14] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[15] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19