植物生态学报 ›› 2017, Vol. 41 ›› Issue (6): 683-692.DOI: 10.17521/cjpe.2016.0136
收稿日期:
2017-04-05
接受日期:
2016-04-14
出版日期:
2017-06-10
发布日期:
2017-07-19
通讯作者:
郭瑞
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Rui GUO1,2,*(), Ji ZHOU3, Fan YANG4, Feng LI1
Received:
2017-04-05
Accepted:
2016-04-14
Online:
2017-06-10
Published:
2017-07-19
Contact:
Rui GUO
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
为明确碱胁迫对小麦(Triticum aestivum)根系离子组及代谢组的影响, 探讨其响应变化规律及机制, 该研究以小麦为实验材料, 采用两种碱性盐(NaHCO3和Na2CO3)按摩尔比1:1混合模拟不同碱胁迫强度, 利用气相色谱-质谱联用(GC-MS)技术结合多元变量分析方法, 系统分析小麦根系在碱胁迫下的矿质元素、游离阴离子、代谢产物及代谢途径变化。结果显示: 低浓度碱胁迫下小麦根系仍能维持一定的生长, 但在高浓度碱胁迫下根系生长受到了明显抑制。当碱胁迫强度超过小麦根系调节能力时, 根系中Na含量急剧增加的同时K含量明显减少。碱胁迫刺激根中Ca积累, 而Mg、Cu和Fe含量呈现下降趋势。碱胁迫明显减少根中游离阴离子(主要是Cl-)含量。检测代谢物组包括有机酸、氨基酸、碳水化合物、嘧啶和嘌呤等70个代谢产物, 主成分分析结果表明代谢物均分布在95%的置信区间内。碱胁明显迫促进苹果酸、琥珀酸等代谢物积累, 但造成糖类(果糖、蔗糖)及多元醇(肌醇、山梨糖醇)和氨基酸(γ-氨基丁酸、丙氨酸)含量显著下降。结果表明: 根系中Na+含量剧增, 加上高pH值危害, 导致根系生长率降低; 与此同时, 游离阴离子明显减少, 造成根系内负电荷亏缺和pH不稳定, 导致离子平衡遭到破坏, 进而引起一系列代谢途径的协变反应。小麦根系在碱胁迫下糖酵解、细胞膜脂代谢和氨基酸合成受到明显的抑制, 但三羧酸循环显著增强。这些结果表明碱胁迫(高pH值)对碳素合成和储存有明显的负效应, 降低代谢合成碳骨架和能量, 使得清除活性氧能力明显下降。碱胁迫下根外部质子缺乏造成NO3-含量降低, 影响氮素吸收利用, 导致氨基酸合成受阻。三羧酸循环增强为生成有机酸类化合物和调控pH平衡提供能量, 这可能是植物适应碱胁迫的一种特殊对应策略。
郭瑞, 周际, 杨帆, 李峰. 小麦根系在碱胁迫下的生理代谢反应. 植物生态学报, 2017, 41(6): 683-692. DOI: 10.17521/cjpe.2016.0136
Rui GUO, Ji ZHOU, Fan YANG, Feng LI. Metabolic responses of wheat roots to alkaline stress. Chinese Journal of Plant Ecology, 2017, 41(6): 683-692. DOI: 10.17521/cjpe.2016.0136
处理 Treatment | 碱浓度 Alkaline concentration (mmol·L-1) | 电导率 EC (dS·m-1) | 渗透势 Osmotic potential (MPa) | pH值 pH value |
---|---|---|---|---|
对照 Control | 0 | 2.16 | -0.05 | 6.95 |
碱胁迫 Alkaline stress | 50 | 4.98 | -0.28 | 9.69 |
100 | 9.21 | -0.51 | 9.92 |
表1 不同盐浓度处理液电导率、pH值和水势值
Table 1 The electrical conductivity (EC), pH value and osmotic potential of salinity stress treatment solutions
处理 Treatment | 碱浓度 Alkaline concentration (mmol·L-1) | 电导率 EC (dS·m-1) | 渗透势 Osmotic potential (MPa) | pH值 pH value |
---|---|---|---|---|
对照 Control | 0 | 2.16 | -0.05 | 6.95 |
碱胁迫 Alkaline stress | 50 | 4.98 | -0.28 | 9.69 |
100 | 9.21 | -0.51 | 9.92 |
图1 碱浓度对小麦根系相对生长率(RGR)和绝对含水量(AWC)的影响(平均值±标准误差, n = 5)。不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 1 Effects of alkaline concentration on root relative growth rate (RGR) and absolute water content (AWC) (mean ± SE, n = 5). Different lowercase letters indicate significant differences among the various treatments (p < 0.05).
处理 Treatment | 碱胁迫浓度 Alkaline concentration (mmol) | 矿质元素 Metal elements (mmol·g-1 dry mass) | |||||||
---|---|---|---|---|---|---|---|---|---|
Na | K | Ca | Mg | Cu | Fe | Zn | Mn | ||
对照 Control | 0 | 4.25 ± 1.01b | 69.90 ± 3.03a | 17.11 ± 1.01b | 7.80 ± 0.29a | 1.25 ± 0.04a | 1.56 ± 0.08a | 0.07 ± 0.01a | 0.06 ± 0.00a |
碱胁迫 Alkaline stress | 50 | 15.89 ± 2.06 ab | 45.20 ± 1.54b | 20.53 ± 1.00b | 6.01 ± 0.16b | 1.02 ± 0.02a | 1.26 ± 0.03a | 0.05 ± 0.00b | 0.05 ± 0.00a |
100 | 19.09 ± 2.11a | 16.83 ± 1.02c | 32.85 ± 1.30a | 4.96 ± 0.47c | 0.55 ± 0.03b | 0.84 ± 0.05b | 0.03 ± 0.00c | 0.06 ± 0.00a |
表2 碱胁迫对小麦根系干物质中矿质元素含量的影响(平均值±标准误差, n = 5)
Table 2 Effects of alkaline stress on the contents of metal elements in the roots of wheat seedlings (mean ± SE, n = 5)
处理 Treatment | 碱胁迫浓度 Alkaline concentration (mmol) | 矿质元素 Metal elements (mmol·g-1 dry mass) | |||||||
---|---|---|---|---|---|---|---|---|---|
Na | K | Ca | Mg | Cu | Fe | Zn | Mn | ||
对照 Control | 0 | 4.25 ± 1.01b | 69.90 ± 3.03a | 17.11 ± 1.01b | 7.80 ± 0.29a | 1.25 ± 0.04a | 1.56 ± 0.08a | 0.07 ± 0.01a | 0.06 ± 0.00a |
碱胁迫 Alkaline stress | 50 | 15.89 ± 2.06 ab | 45.20 ± 1.54b | 20.53 ± 1.00b | 6.01 ± 0.16b | 1.02 ± 0.02a | 1.26 ± 0.03a | 0.05 ± 0.00b | 0.05 ± 0.00a |
100 | 19.09 ± 2.11a | 16.83 ± 1.02c | 32.85 ± 1.30a | 4.96 ± 0.47c | 0.55 ± 0.03b | 0.84 ± 0.05b | 0.03 ± 0.00c | 0.06 ± 0.00a |
处理 Treatment | 碱胁迫浓度 Alkaline concentration (mmol) | 阴离子 Anions (mmol·g-1 dry mass) | |||
---|---|---|---|---|---|
Cl- | NO3- | H2PO4- | SO42- | ||
对照 Control | 0 | 0.12 ± 0.01a | 0.41 ± 0.02a | 0.05 ± 0.00a | 0.03 ± 0.00a |
碱胁迫 Alkaline stress | 50 | 0.09 ± 0.00b | 0.34 ± 0.01b | 0.03 ± 0.01b | 0.02 ± 0.00a |
100 | 0.04 ± 0.01c | 0.07 ± 0.00c | 0.02 ± 0.00b | 0.03 ± 0.00a |
表3 碱胁迫对小麦根系干物质中阴离子含量的影响(平均值±标准误差, n = 5)
Table 3 Effects of alkaline stress on the contents of Cl-, NO3-, H2PO4-, SO42- in the roots of wheat seedlings (mean ± SE, n = 5).
处理 Treatment | 碱胁迫浓度 Alkaline concentration (mmol) | 阴离子 Anions (mmol·g-1 dry mass) | |||
---|---|---|---|---|---|
Cl- | NO3- | H2PO4- | SO42- | ||
对照 Control | 0 | 0.12 ± 0.01a | 0.41 ± 0.02a | 0.05 ± 0.00a | 0.03 ± 0.00a |
碱胁迫 Alkaline stress | 50 | 0.09 ± 0.00b | 0.34 ± 0.01b | 0.03 ± 0.01b | 0.02 ± 0.00a |
100 | 0.04 ± 0.01c | 0.07 ± 0.00c | 0.02 ± 0.00b | 0.03 ± 0.00a |
图2 小麦根系在不同碱胁迫强度下代谢变化过程的SIMCA得分图。PCA得分图 (A)。OPLS-DA得分图, 对照组vs 50 mmol·L-1碱胁迫(B), 对照组vs 100 mmol·L-1碱胁迫(C)。
Fig. 2 SIMCA analyzed score plots showing the metabolomic trajectory of roots of wheat seedlings under different salinity concentration treatments. Principal component analysis (PCA) score plots (A). Orthogonal partial least squares discriminant analysis (OPLS-DA) scores: CK vs. AS-50 mmol·L-1 (B) and CK vs. AS-100 mmol·L-1 (C).
代谢路径和代谢物名称 Metabolic pathways and metabolites | 相对含量 Relative concentration | 倍性变量Fold changes | ||||
---|---|---|---|---|---|---|
CK | AS-50 mmol | AS-100 mmol | log2(50/CK) | log2(100/CK) | ||
三羧酸循环 Tricarboxylic acid cycle | 柠檬酸 Citric acid | 75.73 | 150.14 | 231.23 | 0.99* | 1.61** |
乌头酸 Aconitic acid | 1.34 | 1.70 | 5.13 | 0.34 | 1.93** | |
α-酮戊二酸 α-ketoglutaric acid | 0.18 | 0.33 | 0.85 | 0.89 | 2.23** | |
琥珀酸 Succinic acid | 19.05 | 61.45 | 120.69 | 1.69** | 2.66** | |
延胡索酸 Fumaric acid | 1.34 | 1.56 | 9.63 | 0.23 | 2.85** | |
苹果酸 Malic acid | 10.47 | 23.10 | 30.35 | 1.14* | 1.54** | |
糖酵解过程 Glycolysis | 葡萄糖 Glucose | 26.37 | 13.67 | 7.91 | -0.95* | -1.74** |
葡萄糖-6-磷酸 Fructose-6-phosphate | 0.57 | 0.25 | 0.08 | -1.16* | -2.75** | |
果糖-6-磷酸 Glucose-6-phosphate | 0.22 | 0.13 | 0.04 | -0.80 | -2.58** | |
3-磷酸甘油酸 3-phosphoglyceric acid | 0.50 | 0.34 | 0.11 | -0.57 | -2.19** | |
丙酮酸 Pyruvate | 0.54 | 0.50 | 0.31 | -0.10 | -0.81 | |
磷酸烯醇式丙酮酸 Enolphosphopyruvate | 0.73 | 0.61 | 0.22 | -0.26 | -1.74** | |
莽草酸途径 Shikimic path way | 莽草酸 Shikimic acid | 1.84 | 1.22 | 3.84 | -0.60 | 1.06* |
奎尼酸 Quinic acid | 4.17 | 6.17 | 23.11 | 0.58 | 2.47** | |
苯丙氨酸 Phenylalanine | 0.65 | 0.17 | 0.11 | -1.91* | -2.60** | |
色氨酸 Tryptophan | 0.05 | 0.03 | 0.02 | -0.71 | -1.45* | |
酪氨酸 Tyrosine | 1.59 | 0.03 | 0.02 | -4.18** | -6.57** | |
肉桂酸 Cinnamic acid | 0.25 | 0.15 | 0.12 | -0.77 | -1.12* | |
细胞膜脂代谢 Metabolism of plasma membrane | 肌醇 Myo-inositol | 19.17 | 9.63 | 3.07 | -0.99* | -2.64** |
甘氨酸 Glycine | 0.74 | 0.34 | 0.12 | -1.56** | -2.69** | |
丝氨酸 Serine | 17.83 | 9.56 | 1.64 | -0.90* | -3.44** | |
乙醇胺 Ethanolamine | 20.23 | 11.31 | 3.26 | -0.84* | -2.63** | |
氨基酸 Amino acid | γ-氨基丁酸 γ-aminobutyric acid | 137.19 | 41.77 | 23.92 | -1.72** | -2.52** |
丙氨酸 Alanine | 106.58 | 56.88 | 10.64 | -0.91* | -3.32** | |
谷氨酸 Glutamate | 24.93 | 13.73 | 8.40 | -0.86* | -1.57** | |
天冬酰胺 Asparagine | 12.65 | 4.38 | 0.91 | -1.53** | -3.79** | |
天冬氨酸 Aspartic acid | 7.60 | 4.06 | 3.34 | -0.90* | -1.19* | |
脯氨酸 Proline | 10.04 | 15.47 | 11.57 | 0.62 | 0.20 | |
赖氨酸 Lysine | 17.32 | 0.33 | 0.11 | -5.72** | -7.26** | |
糖类及多元醇 Sugars and polyols | 果糖 Fructose | 814.31 | 574.62 | 173.68 | -0.78* | -2.23** |
蔗糖 Sucrose | 136.11 | 92.04 | 65.17 | -0.56 | -1.06* | |
塔罗糖 Talose | 114.17 | 75.07 | 23.13 | -0.60 | -2.30** | |
蔗果三糖 Kestose | 57.63 | 42.47 | 19.69 | -0.44 | -1.55** | |
核糖 Ribose | 8.24 | 4.25 | 1.38 | -0.96* | -2.58** |
表4 不同碱胁迫下小麦根系提取物中主要代谢物相对含量和变化倍数
Table 4 Relative concentration and changes of major metabolites in roots of wheat seedlings after alkaline stress treatment
代谢路径和代谢物名称 Metabolic pathways and metabolites | 相对含量 Relative concentration | 倍性变量Fold changes | ||||
---|---|---|---|---|---|---|
CK | AS-50 mmol | AS-100 mmol | log2(50/CK) | log2(100/CK) | ||
三羧酸循环 Tricarboxylic acid cycle | 柠檬酸 Citric acid | 75.73 | 150.14 | 231.23 | 0.99* | 1.61** |
乌头酸 Aconitic acid | 1.34 | 1.70 | 5.13 | 0.34 | 1.93** | |
α-酮戊二酸 α-ketoglutaric acid | 0.18 | 0.33 | 0.85 | 0.89 | 2.23** | |
琥珀酸 Succinic acid | 19.05 | 61.45 | 120.69 | 1.69** | 2.66** | |
延胡索酸 Fumaric acid | 1.34 | 1.56 | 9.63 | 0.23 | 2.85** | |
苹果酸 Malic acid | 10.47 | 23.10 | 30.35 | 1.14* | 1.54** | |
糖酵解过程 Glycolysis | 葡萄糖 Glucose | 26.37 | 13.67 | 7.91 | -0.95* | -1.74** |
葡萄糖-6-磷酸 Fructose-6-phosphate | 0.57 | 0.25 | 0.08 | -1.16* | -2.75** | |
果糖-6-磷酸 Glucose-6-phosphate | 0.22 | 0.13 | 0.04 | -0.80 | -2.58** | |
3-磷酸甘油酸 3-phosphoglyceric acid | 0.50 | 0.34 | 0.11 | -0.57 | -2.19** | |
丙酮酸 Pyruvate | 0.54 | 0.50 | 0.31 | -0.10 | -0.81 | |
磷酸烯醇式丙酮酸 Enolphosphopyruvate | 0.73 | 0.61 | 0.22 | -0.26 | -1.74** | |
莽草酸途径 Shikimic path way | 莽草酸 Shikimic acid | 1.84 | 1.22 | 3.84 | -0.60 | 1.06* |
奎尼酸 Quinic acid | 4.17 | 6.17 | 23.11 | 0.58 | 2.47** | |
苯丙氨酸 Phenylalanine | 0.65 | 0.17 | 0.11 | -1.91* | -2.60** | |
色氨酸 Tryptophan | 0.05 | 0.03 | 0.02 | -0.71 | -1.45* | |
酪氨酸 Tyrosine | 1.59 | 0.03 | 0.02 | -4.18** | -6.57** | |
肉桂酸 Cinnamic acid | 0.25 | 0.15 | 0.12 | -0.77 | -1.12* | |
细胞膜脂代谢 Metabolism of plasma membrane | 肌醇 Myo-inositol | 19.17 | 9.63 | 3.07 | -0.99* | -2.64** |
甘氨酸 Glycine | 0.74 | 0.34 | 0.12 | -1.56** | -2.69** | |
丝氨酸 Serine | 17.83 | 9.56 | 1.64 | -0.90* | -3.44** | |
乙醇胺 Ethanolamine | 20.23 | 11.31 | 3.26 | -0.84* | -2.63** | |
氨基酸 Amino acid | γ-氨基丁酸 γ-aminobutyric acid | 137.19 | 41.77 | 23.92 | -1.72** | -2.52** |
丙氨酸 Alanine | 106.58 | 56.88 | 10.64 | -0.91* | -3.32** | |
谷氨酸 Glutamate | 24.93 | 13.73 | 8.40 | -0.86* | -1.57** | |
天冬酰胺 Asparagine | 12.65 | 4.38 | 0.91 | -1.53** | -3.79** | |
天冬氨酸 Aspartic acid | 7.60 | 4.06 | 3.34 | -0.90* | -1.19* | |
脯氨酸 Proline | 10.04 | 15.47 | 11.57 | 0.62 | 0.20 | |
赖氨酸 Lysine | 17.32 | 0.33 | 0.11 | -5.72** | -7.26** | |
糖类及多元醇 Sugars and polyols | 果糖 Fructose | 814.31 | 574.62 | 173.68 | -0.78* | -2.23** |
蔗糖 Sucrose | 136.11 | 92.04 | 65.17 | -0.56 | -1.06* | |
塔罗糖 Talose | 114.17 | 75.07 | 23.13 | -0.60 | -2.30** | |
蔗果三糖 Kestose | 57.63 | 42.47 | 19.69 | -0.44 | -1.55** | |
核糖 Ribose | 8.24 | 4.25 | 1.38 | -0.96* | -2.58** |
图3 OPLS-DA分析得出的碱胁迫下小麦根系代谢途径网络变化图。白色代表无明显变化, 红色代表显著性增加, 绿色代表显著性降低(p < 0.05)。
Fig. 3 Proposed metabolic network changes for wheat roots upon alkaline stress obtained from OPLS-DA analysis. The metabolite with white boxes denotes no significant change while red boxes denotes significant increases and green ones denotes significant decreases (p < 0.05).
[1] | Deng RL, Xu HR, Cao YF, Xiao K (2007). The molecular basis of ammonium transporters in plants.Plant Nutrition and Fertilizer Science, 13, 512-519. (in Chinese with English abstract)[邓若磊, 徐海荣, 曹云飞, 肖凯 (2007). 植物吸收铵态氮的分子生物学基础. 植物营养与肥料学报, 13, 512-519.] |
[2] | FAO ( |
[3] | Guo R, Li F, Zhou J, Li HR, Xia X, Liu Q (2016). Eco-physiological responses of linseed (Linum usitatissimum) to salt and alkali stresses. Chinese Journal of Plant Ecology, 40, 69-79. (in Chinese with English abstract)[郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪 (2016). 亚麻响应盐、碱胁迫的生理特征. 植物生态学报, 40, 69-79.] |
[4] | Guo W, Yu LH (2012). Effects of salinity-alkalinity stress on root activity and phenylalanine ammonia-lyase activity of wheat seedlings.Crops, (1), 31-34. (in Chinese with English abstract)[郭伟, 于立河 (2012). 盐碱胁迫对小麦幼苗根系活力和苯丙氨酸解氨酶活性的影响. 作物杂志, (1), 31-34.] |
[5] | Hu HY, He J, Zhao JJ, Ru ZG (2013). Dynamic change of cell defense enzyme activity in wheat seedling under different alkaline pH conditions.Journal of Henan Institute of Science and Technology (Natural Science Edition), 41(5), 1-5. (in Chinese with English abstract)[胡海燕, 贺杰, 赵俊杰, 茹振刚 (2013). 碱性pH条件下小麦幼苗保护酶活性的变化动态. 河南科技学院学报(自然科学版), 41(5), 1-5.] |
[6] | Jianaer AH, Yang CW, Shi DC, Wang DL (2007). Physiological response of an alkali resistant halophyte Kochia sieversiana to salt and alkali stresses. Acta Botanica Boreali-Occidentalia Sinica, 27, 79-84. (in Chinese with English abstract)[贾娜尔·阿汗, 杨春武, 石德成, 王德利 (2007). 盐生植物碱地肤对盐碱胁迫的生理响应特点. 西北植物学报, 27, 79-84. ] |
[7] | Jiang SX, Liu DX, Pang HX, Lü JY (2014). Effects of PEG stress and recovery on activities of key enzymes involved in proline metabolism in wheat cultivars with difference in drought tolerance.Acta Botanica Boreali-Occidentalia Sinica, 34, 1581-1587. (in Chinese with English abstract)[姜淑欣, 刘党校, 庞红喜, 吕金印 (2014). PEG胁迫及复水对不同抗旱性小麦幼苗脯氨酸代谢关键酶活性的影响. 西北植物学报, 34, 1581-1587.] |
[8] | Kerepesi I, Galiba G (2000). Osmotic and salt stress induced alteration in soluble carbohydrate content in wheat seedlings.Crop Science, 40, 482-487. |
[9] | Kingsbury RW, Epstein E, Peary RW (1984). Physiological responses to salinity in selected lines of wheat. Plant Physiology, 74, 417-423. |
[10] | Li B, Wang ZC, Sun ZG, Chen Y, Yang F (2005). Resources and sustainable resource exploitation of salinized land in China.Agricultural Research in the Arid Areas, 23(2), 152-158. (in Chinese with English abstract)[李彬, 王志春, 孙志高, 陈渊, 杨福 (2005). 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 23(2), 152-158.] |
[11] | Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants.Nature Protocol, 1, 387-396. |
[12] | Luo YY, Liu SK (2009). Research progress of ammonium transporter in plants.Genomics and Applied Biology, 28, 373-379. (in Chinese with English abstract)[骆媛嫒, 柳参奎 (2009). 植物中铵转运蛋白的研究进展. 基因组学与应用生物学, 28, 373-379.] |
[13] | Munns R, Tester M (2008). Mechanisms of salinity tolerance.Annual Review of Plant Biology, 59, 651-681. |
[14] | Parida AK, Das AB (2005). Salt tolerance and salinity effects on plants: A review.Ecotoxicology and Environmental Safety, 60, 324-349. |
[15] | Parvaneh R, Shahrokh T, Hosseini SM (2012). Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane (Portulace oloracea L.) leaves. Stress Physiology & Biochemistry, 8, 182-193. |
[16] | Peng ZH, Peng KQ, Hu JJ, Xiao LT (2002). Research progress on accumulation of proline under osmotic stress in plants.Chinese Agriculture Science Bulletin, 18(4), 80-83. (in Chinese with English abstract)[彭志红, 彭克勤, 胡家金, 萧浪涛 (2002). 渗透胁迫下植物脯氨酸积累的研究进展. 中国农学通报, 18(4), 80-83.] |
[17] | Sa RL, Liu JH, Liu L, Bai JH, Wang ZH (2014). Cation- responsive mechanisms of oats to alkali stress.Acta Agronomica Sinica, 40, 362-368. (in Chinese with English abstract)[萨如拉, 刘景辉, 刘伟, 白健慧, 王占海 (2014). 燕麦对碱胁迫的阳离子响应机制. 作物学报, 40, 362-368.] |
[18] | Shi DC, Wang DL (2005). Effects of various salt-alkaline mixed stresses onAneurolepidium chinense (Trin.) Kitag. Plant and Soil, 271, 15-26. |
[19] | Shi LX, Ma S, Fang Y, Xu J (2015). Crucial variations in growth and ion homeostasis of glycine gracilis seedlings under two types of salt stresses.Journal of Soil Science and Plant Nutrition, 15, 1-17. |
[20] | Wang H, Wu ZH, Han JY, Zheng W, Yang CW (2012). Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants.PLOS ONE, 7, e37817. doi: 10.1371/journal.pone.0037817. |
[21] | Wang JY, Zhu SG, Xu CF (2002). Biochemistry. 3rd edn. Higher Education Press, Beijing. (in Chinese)[王镜岩, 朱圣庚, 徐长法 (2002). 生物化学. 第三版. 高等教育出版社, 北京.] |
[22] | Wang XD, Wang C, Ma ZH, Hou RF, Gao Q, Chen Q (2011). Effect of short-term salt stress on the absorption of K+ and accumulation of Na+, K+ in seedlings of different wheat varieties.Acta Ecologica Sinica, 31, 2822-2830. (in Chinese with English abstract)[王晓冬, 王成, 马智宏, 侯瑞锋, 高权, 陈泉 (2011). 短期NaCl胁迫对不同小麦品种幼苗K+吸收和Na+、K+积累的影响. 生态学报, 31, 2822-2830.] |
[23] | Wang XP, Geng SJ, Ri YJ, Cao DH, Liu J, Shi DC, Yang CW (2011). Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses.Scientia Horticulturae, 130, 248-255. |
[24] | Wu DZ, Shen QF, Cai SG, Chen ZH, Dai F, Zhang GP (2013). Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley.Plant & Cell Physiology, 54, 1976-1988. |
[25] | Yang CW, Li CY, Zhang ML, Liu J, Ju M, Shi DC (2008). pH and ion balance in wheat-wheatgrass under salt-or alkali stress.Chinese Journal of Applied Ecology, 19, 1000-1005. (in Chinese with English abstract)[杨春武, 李长有, 张美丽, 刘杰, 鞠淼, 石德成 (2008). 盐、碱胁迫下小冰麦体内的pH及离子平衡. 应用生态学报, 19, 1000-1005.] |
[26] | Yang C, Shi D, Wang D (2008). Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyteSuaeda glauca(Bge.). Plant Growth Regulation, 56, 179-190. |
[27] | Yang T, Xie ZX, Yu Q, Liu XJ (2014). Effects of partial root salt stress on seedling growth and photosynthetic characteristics of winter wheat.Chinese Journal of Eco- Agrculture, 22, 1074-1078. (in Chinese with English abstract)[杨婷, 谢志霞, 喻琼, 刘小京 (2014). 局部根系盐胁迫对冬小麦生长和光合特征的影响. 中国生态农业学报, 22, 1074-1078.] |
[28] | Yu RP (1999). Saline soil resources in China and their exploitation.Chinese Journal of Soil Science, 30(4), l58-159. (in Chinese with English abstract)[俞仁培 (1999). 我国盐渍土资源及其开发利用. 土壤通报, 30(4), l58-159.] |
[29] | Zhu JK (2003). Regulation of ion homeostasis under salt stress.Current Opinion in Plant Biology, 6, 441-445. |
[1] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[2] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[3] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[4] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[5] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[6] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[7] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[8] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[9] | 张乔艳, 唐丽霞, 廖华刚, 潘露, 陈龙, 黄同丽. 多花木蓝根截面微观结构对其抗拉特性的影响[J]. 植物生态学报, 2019, 43(8): 709-717. |
[10] | 邹显花, 胡亚楠, 韦丹, 陈思同, 吴鹏飞, 马祥庆. 磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性[J]. 植物生态学报, 2019, 43(2): 139-151. |
[11] | 祝维, 余立璇, 赵德海, 贾黎明. 基于根系发育分级的砂壤土下成熟林木根系构型分析[J]. 植物生态学报, 2019, 43(2): 119-130. |
[12] | 高文童, 张春艳, 董廷发, 胥晓. 丛枝菌根真菌对不同性别组合模式下青杨雌雄植株根系生长的影响[J]. 植物生态学报, 2019, 43(1): 37-45. |
[13] | 席本野, 邸楠, 曹治国, 刘金强, 李豆豆, 王烨, 李广德, 段劼, 贾黎明, 张瑞娜. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示[J]. 植物生态学报, 2018, 42(9): 885-905. |
[14] | 单立山, 苏铭, 张正中, 王洋, 王珊, 李毅. 不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律[J]. 植物生态学报, 2018, 42(4): 475-486. |
[15] | 岑宇, 王成栋, 张震, 任侠, 刘美珍, 杨帆. 河北省天然草地生物量和碳密度空间分布格局[J]. 植物生态学报, 2018, 42(3): 265-276. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19