植物生态学报 ›› 2018, Vol. 42 ›› Issue (1): 105-115.DOI: 10.17521/cjpe.2017.0164
所属专题: 全球变化与生态系统; 青藏高原植物生态学:植物-土壤-微生物; 生态系统碳水能量通量
王冠钦1,2,李飞1,2,彭云峰1,陈永亮1,韩天丰1,杨贵彪1,2,刘莉1,2,周国英3,杨元合1,2,*()
出版日期:
2018-01-20
发布日期:
2018-01-18
通讯作者:
杨元合
基金资助:
WANG Guan-Qin1,2,LI Fei1,2,PENG Yun-Feng1,CHEN Yong-Liang1,HAN Tian-Feng1,YANG Gui-Biao1,2,LIU Li1,2,ZHOU Guo-Ying3,YANG Yuan-He1,2,*()
Online:
2018-01-20
Published:
2018-01-18
Contact:
Yuan-He YANG
Supported by:
摘要:
土壤氧化亚氮(N2O)排放是大气N2O不可忽视的来源。然而, 目前学术界在气候变暖对土壤N2O排放影响方面的认识仍存在较大争议, 且调控土壤N2O排放的微生物机制尚不明确。为此, 该研究以青藏高原高寒草原生态系统为研究对象, 使用透明开顶箱(OTCs)模拟气候变暖, 并基于静态箱法测定了2014和2015年生长季(5-10月)的土壤N2O通量, 同时利用定量PCR技术测定了表层(0-10 cm)土壤中氨氧化古菌(AOA)和氨氧化细菌(AOB)的基因丰度。结果显示: 增温处理导致2014和2015年生长季表层(0-10 cm)土壤温度分别升高了1.7 ℃和1.6 ℃, 土壤体积含水量下降了2.5%和3.3%, 其他的土壤理化性质没有发生显著变化。土壤N2O通量呈现年际差异, 2014和2015年生长季的平均值分别为3.23和1.47 μg·m -2·h -1, 然而, 增温处理并没有显著改变土壤N2O通量。2014年生长季主导硝化作用的AOA和AOB的基因丰度分别为5.0 × 10 7和4.7 × 10 5拷贝·g -1, 2015年为15.2 × 10 7和10.0 × 10 5拷贝·g -1。尽管基因丰度存在显著的年际差异, 但在两年中与对照相比并未发生显著变化。在生长季尺度上, 增温导致的土壤N2O变化量与其引起的土壤水分变化量之间显著正相关, 而与土壤温度的变化量之间没有显著相关关系。以上结果表明, 增温导致的土壤干旱会抑制土壤N2O通量对增温的响应, 意味着未来评估气候变暖情景下土壤N2O排放量时需考虑增温引发的土壤干旱等间接效应。
王冠钦, 李飞, 彭云峰, 陈永亮, 韩天丰, 杨贵彪, 刘莉, 周国英, 杨元合. 土壤含水量调控高寒草原生态系统N2O排放对增温的响应. 植物生态学报, 2018, 42(1): 105-115. DOI: 10.17521/cjpe.2017.0164
WANG Guan-Qin, LI Fei, PENG Yun-Feng, CHEN Yong-Liang, HAN Tian-Feng, YANG Gui-Biao, LIU Li, ZHOU Guo-Ying, YANG Yuan-He. Responses of soil N2O emissions to experimental warming regulated by soil moisture in an alpine steppe. Chinese Journal of Plant Ecology, 2018, 42(1): 105-115. DOI: 10.17521/cjpe.2017.0164
图1 高寒草原样地及增温控制实验平台照片。A, 样地照片。B, 开顶箱增温装置。
Fig. 1 Photos of the study site and warming experiment. A, Photo of the study site. B, Open-top chamber (OTC) warming facility.
图2 实验期间增温对0-10 cm土壤温度(A)和土壤含水率(B)的影响(平均值±标准误差)。*, p < 0.05; **, p < 0.01。
Fig. 2 Warming effects on soil temperature (A) and soil moisture (B) at 0-10 cm depth during 2014-2015 (mean ± SE). *, p < 0.05; **, p < 0.01.
年份 Year | 处理 Treatment | 氨态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3- -N (mg·kg-1) | 土壤无机氮 SIN (mg·kg-1) | 微生物生物量碳 MBC (mg·kg-1) | 微生物生物量氮 MBN (mg·kg-1) |
---|---|---|---|---|---|---|
2014 | 对照 Control | 1.8 ± 0.38 | 25.0 ± 1.6 | 26.8 ± 1.7 | 890.4 ± 23.7 | 91.6 ± 4.0 |
增温 Warming | 3.0 ± 0.60* | 23.5 ± 1.3 | 26.5 ± 1.5 | 801.9 ± 40.8* | 68.2 ± 5.8** | |
2015 | 对照 Control | 2.2 ± 0.25 | 5.96 ± 0.4 | 8.20 ± 0.5 | 732.6 ± 11.3 | 42.2 ± 1.5 |
增温 Warming | 3.0 ± 0.19* | 4.04 ± 0.4** | 7.02 ± 0.3* | 720.1 ± 18.6 | 41.3 ± 2.4 |
Table 1 Warming effects on soil physicochemical properties and microbial biomass (mean ± SE)
年份 Year | 处理 Treatment | 氨态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3- -N (mg·kg-1) | 土壤无机氮 SIN (mg·kg-1) | 微生物生物量碳 MBC (mg·kg-1) | 微生物生物量氮 MBN (mg·kg-1) |
---|---|---|---|---|---|---|
2014 | 对照 Control | 1.8 ± 0.38 | 25.0 ± 1.6 | 26.8 ± 1.7 | 890.4 ± 23.7 | 91.6 ± 4.0 |
增温 Warming | 3.0 ± 0.60* | 23.5 ± 1.3 | 26.5 ± 1.5 | 801.9 ± 40.8* | 68.2 ± 5.8** | |
2015 | 对照 Control | 2.2 ± 0.25 | 5.96 ± 0.4 | 8.20 ± 0.5 | 732.6 ± 11.3 | 42.2 ± 1.5 |
增温 Warming | 3.0 ± 0.19* | 4.04 ± 0.4** | 7.02 ± 0.3* | 720.1 ± 18.6 | 41.3 ± 2.4 |
图3 2014(A)和2015(B)年生长季期间对照与增温处理下土壤的N2O通量(平均值±标准误差)。*, p < 0.05。C, 对照; W, 增温。
Fig. 3 N2O fluxes under control and warming treatments during the growing seasons of 2014(A) and 2015 (B), (mean ± SE). *, p < 0.05. C, control; W, warming.
来源 Source | 2014 | 2015 | ||||
---|---|---|---|---|---|---|
df | F | p | df | F | p | |
增温 Warming (W) | 1 | 0.41 | 0.53 | 1 | 0.05 | 0.83 |
日期 Date (T) | 22 | 2.16 | 0.00** | 18 | 2.05 | 0.00** |
T × W | 22 | 0.40 | 0.99 | 18 | 1.32 | 0.17 |
表2 基于重复测量方差分析得到的增温(W)、测定时间(T)及其交互作用(W × T)对土壤N2O通量影响
Table 2 Results of repeated measures ANOVA on the effects of warming (W), measuring date (T), and their interactions (T × W) on soil N2O flux
来源 Source | 2014 | 2015 | ||||
---|---|---|---|---|---|---|
df | F | p | df | F | p | |
增温 Warming (W) | 1 | 0.41 | 0.53 | 1 | 0.05 | 0.83 |
日期 Date (T) | 22 | 2.16 | 0.00** | 18 | 2.05 | 0.00** |
T × W | 22 | 0.40 | 0.99 | 18 | 1.32 | 0.17 |
图4 2014 (A)和2015 (B)年生长季期间增温对AOA与AOB的amoA基因丰度的影响(平均值±标准误差)。AOA, 氨氧化古菌; AOB, 氨氧化细菌。
Fig. 4 Warming effects on the abundance of AOA-amoA and AOB-amoA during the growing seasons of 2014 (A) and 2015 (B) (mean ± SE). AOA, ammonia-oxidizing archaea; AOB, ammonia-oxidizing bacteria.
图5 增温引起的土壤N2O通量的变化量(增温-对照)与土壤温度的变化量(增温-对照)、土壤水分的变化量(增温-对照)之间的关系。A, 土壤水分与土壤温度。B, N2O与土壤温度。C, N2O与土壤水分。
Fig. 5 Relationships among warming induced changes (warming-control) in soil N2O fluxes, soil temperature and soil moisture. A, soil moisture and temperature; B, N2O and soil temperature; C, N2O and soil moisture.
附件I 2014-2015年间生长季日平均气温(折线图)和日降水量(柱状图)
Appendix I Daily mean air temperature (lines) and daily precipitation (bars) during 2014-2015 at our experiment site
附件II 2014-2015年生长季对照与增温处理下土壤的温度和含水量 A, 2014年土壤温度。B, 2015年土壤温度。C, 2014年土壤含水量。D, 2015年土壤含水量。
Appendix II Soil temperature and moisture in control and warming treatments during the growing seasons A, Soil temperature in 2014. B, Soil temperature in 2015. C, Soil moisture in 2014. D, Soil moisture in 2015.
附件III 增温导致的土壤N2O通量的变化(增温-对照)与土壤因素及功能基因的变化(增温-对照)、微生物属性的变化(增温-对照)之间的关系 A, NH4+ -N。B, NO3--N。C, 微生物量碳。D, 微生物量氮。E, 土壤无机氮含量。F, 氨氧化古菌。G, 氨氧化细菌。
Appendix III Relationships of changes in soil N2O flux with changes in edaphic variables, microbial properties, AOA and AOB A, NH4+-N. B, NO3--N. C, Microbial biomass carbon (MBC). D, Microbial biomass nitrogen (MBN). E, Soil inorganic carbon (SIN). F, Ammonia-oxidizing archaea (AOA). G, Ammonia-oxidizing bacteria (AOB).
[1] |
Bijoor NS, Czimczik CI, Pataki DE, Billings SA ( 2008). Effects of temperature and fertilization on nitrogen cycling and community composition of an urban lawn. Global Change Biology, 14, 2119-2131.
DOI URL |
[2] |
Brookes PC, Landman A, Pruden G, Jenkinson DS ( 1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837-842.
DOI URL |
[3] |
Brzostek ER, Blair JM, Dukes JS, Frey SD, Hobbie SE, Melillo JM, Mitchell RJ, Pendall E, Reich PB, Shaver GR ( 2012). The effect of experimental warming and precipitation change on proteolytic enzyme activity: Positive feedbacks to nitrogen availability are not universal. Global Change Biology, 18, 2617-2625.
DOI URL |
[4] |
Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S ( 2013). Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20130122. DOI: 10.1098/rstb.2013.0122.
DOI URL |
[5] |
Cantarel AAM, Bloor JMG, Pommier T, Guillaumaud N, Moirot C, Soussana JF, Poly F ( 2012). Four years of experimental climate change modifies the microbial drivers of N2O fluxes in an upland grassland ecosystem. Global Change Biology, 18, 2520-2531.
DOI URL |
[6] | Chapin III FS, Matson PA, Vitousek PM ( 2011). Principles of Terrestrial Ecosystem Ecology. Springer, New York. |
[7] |
Chapin III FS, Shaver GR ( 1985). Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology, 66, 564-576.
DOI URL |
[8] |
Chapuis-Lardy L, Wrage N, Metay A, Chotte JL, Bernoux M ( 2007). Soils, a sink for N2O? A review. Global Change Biology, 13, 1-17.
DOI URL |
[9] |
Chen H, Zhu Q, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR, Zhao XQ, Gong P, Yao TD, Wu JH ( 2013 a). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19, 2940-2955.
DOI URL PMID |
[10] |
Chen YL, Xu ZW, Hu HW, Hu YJ, Hao ZP, Jiang Y, Chen BD ( 2013 b). Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia. Applied Soil Ecology, 68, 36-45.
DOI URL |
[11] |
Daebeler A, Bodelier PLE, Hefting MM, Rütting T, Laanbroek HJ, Jia Z ( 2017). Soil warming and fertilization altered rates of nitrogen transformation processes and selected for adapted ammonia-oxidizing archaea in sub-arctic grassland soil. Soil Biology & Biochemistry, 107, 114-124.
DOI URL |
[12] |
Ding JZ, Li F, Yang GB, Chen LY, Zhang B, Liu L, Fang K, Qin SQ, Chen YL, Peng YF, Ji C, He H, Smith P, Yang YH ( 2016). The permafrost carbon inventory on the Tibetan Plateau: A new evaluation using deep sediment cores. Global Change Biology, 22, 2688-2701.
DOI URL PMID |
[13] |
Flechard CR, Ambus P, Skiba U, Rees RM, Hensen A, van Amstel A, Pol-Van Dasselaar AV, Soussana JF, Jones M, Clifton-Brown J, Raschi A, Horvath L, Neftel A, Jocher M, Ammann C, Leifeld J, Fuhrer J, Calanca P, Thalman E, Pilegaard K, Di Marco C, Campbell C, Nemitz E, Hargreaves KJ, Levy PE, Ball BC, Jones SK, Van De Bulk WCM, Groot T, Blom M, Domingues R, Kasper G, Allard V, Ceschia E, Cellier P, Laville P, Henault C, Bizouard F, Abdalla M, Williams M, Baronti S, Berretti F, Grosz B ( 2007). Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agriculture Ecosystems & Environment, 121, 135-152.
DOI URL |
[14] |
Gu JX, Yuan MX, Liu JX, Hao YX, Zhou YT, Qu D, Yang XY ( 2017). Trade-off between soil organic carbon sequestration and nitrous oxide emissions from winter wheat-?summer maize rotations: Implications of a 25-year fertilization experiment in Northwestern China. Science of the Total Environment, 595, 371-379.
DOI URL PMID |
[15] | Guo LY, Shi F, Yang LY ( 2011). Advances in functional genes and molecular ecology in denitrifiers. Microbiology China, 38, 583-590. |
[ 郭丽芸, 时飞, 杨柳燕 ( 2011). 反硝化菌功能基因及其分子生态学研究进展. 微生物学通报, 38, 583-590.] | |
[16] |
Hu HW, Trivedi P, He JZ, Singh BK ( 2017). Microbial nitrous oxide emissions in dryland ecosystems: Mechanisms, microbiome and mitigation. Environmental Microbiology, 19, 4808-4828.
DOI URL PMID |
[17] |
Hu YG, Chang XF, Lin XW, Wang YF, Wang SP, Duan JC, Zhang ZH, Yang XX, Luo CY, Xu GP, Zhao XQ ( 2010). Effects of warming and grazing on N2O fluxes in an alpine meadow ecosystem on the Tibetan Plateau. Soil Biology & Biochemistry, 42, 944-952.
DOI URL |
[18] |
Huang JX, Xiong DC, Liu XF, Yang ZJ, Xie JS, Yang YS ( 2017). Effects of warming on soil organic carbon mineralization: A review. Acta Ecologica Sinica, 37, 12-24.
DOI URL |
[ 黄锦学, 熊德成, 刘小飞, 杨智杰, 谢锦升, 杨玉盛 ( 2017). 增温对土壤有机碳矿化的影响研究综述. 生态学报, 37, 12-24.]
DOI URL |
|
[19] | IPCC (Intergovernmental Panel on Climate Change) ( 2013). Climate Change 2013: the Scientific Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[20] |
Kaufman M ( 1994). Soil-atmosphere exchange in nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Global Biogeochemical Cycles, 8, 399-410.
DOI URL PMID |
[21] |
Liu LT, Hu CS, Yang PP, Ju ZQ, Olesen JE, Tang JW ( 2016). Experimental warming-driven soil drying reduced N2O emissions from fertilized crop rotations of winter wheat-soybean/fallow, 2009-2014. Agriculture, Ecosystems & Environment, 219, 71-82.
DOI URL |
[22] |
Liu XH, Shao XM, Wang L, Liang E, Qin DH, Ren JW ( 2008). Response and dendroclimatic implications of δ 13C in tree rings to increasing drought on the northeastern Tibetan Plateau. Journal of Geophysical Research: Biogeosciences, 113, 112-118.
DOI URL |
[23] |
Liu ZH, Li DH ( 2015). Ammonia-oxidizing archaea and their contribution to global nitrogen cycling: A review. Microbiology China, 42, 774-782.
DOI URL |
[ 刘正辉, 李德豪 ( 2015). 氨氧化古菌及其对氮循环贡献的研究进展. 微生物学通报, 42, 774-782.]
DOI URL |
|
[24] |
Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, Quero JL, Garcia-Gomez M, Gallardo A, Ulrich W, Bowker MA, Arredondo T, Barraza-Zepeda C, Bran D, Florentino A, Gaitan J, Gutierrez JR, Huber- Sannwald E, Jankju M, Mau RL, Miriti M, Naseri K, Ospina A, Stavi I, Wang DL, Woods NN, Yuan X, Zaady E, Singh BK ( 2015). Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 112, 15684-15689.
DOI URL PMID |
[25] |
Maljanen M, Yli-Moijala H, Biasi C, Leblans NIW, de Boeck HJ, Bjarnadóttir B, Sigurdsson BD ( 2017). The emissions of nitrous oxide and methane from natural soil temperature gradients in a volcanic area in southwest Iceland. Soil Biology & Biochemistry, 109, 70-80.
DOI URL |
[26] | Mosier AR, Parton WJ, Martin RE, Valentine DW, Ojima DS, Schimel DS, Burke IC, Adair EC, Del Grosso SJ ( 2008). Soil-atmosphere exchange of trace gases in the Colorado shortgrass steppe. In: Lauenroth WK,? Burke IC eds. Ecology of the Shortgrass Steppe: A Long Term Perspective. Oxford University Press, Oxford. |
[27] |
Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, Yang YH ( 2017). Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe. Global Change Biology, 23, 5249-5259.
DOI URL PMID |
[28] |
Ravishankara A, Daniel JS, Portmann RW ( 2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st Century. Science, 326, 123-125.
DOI URL |
[29] |
Robertson GP ( 1982). Nitrification in forested ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 296, 445-457.
DOI URL |
[30] | Rotthauwe JH, Witzel KP, Liesack W ( 1997). The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-?oxidizing populations. Applied & Environmental Microbiology, 63, 4704-4712. |
[31] |
Shi FS, Chen H, Chen HF, Wu Y, Wu N ( 2012). The combined effects of warming and drying suppress CO2 and N2O emission rates in an alpine meadow of the eastern Tibetan Plateau. Ecological Research, 27, 725-733.
DOI URL |
[32] |
Sistla SA, Rastetter EB, Schimel JP ( 2014). Responses of a tundra system to warming using SCAMPS: A stoichiometrically coupled, acclimating microbe-plant-soil model. Ecological Monographs, 84, 151-170.
DOI URL |
[33] |
Stewart KJ, Brummell ME, Farrell RE, Siciliano SD ( 2012). N2O flux from plant-soil systems in polar deserts switch between sources and sinks under different light conditions. Soil Biology & Biochemistry, 48, 69-77.
DOI URL |
[34] |
Szukics U, Abell GC, H?dl V, Mitter B, Sessitsch A, Hackl E, Zechmeister-Boltenstern S ( 2010). Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiology Ecology, 72, 395-406.
DOI URL PMID |
[35] |
Tang XL, Liu SG, Zhou GY, Zhang DQ, Zhou CY ( 2006). Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Global Change Biology, 12, 546-560.
DOI URL |
[36] |
Tischer A, Potthast K, Hamer U ( 2014). Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia, 175, 375-393.
DOI URL PMID |
[37] |
Vance ED, Brookes PC, Jenkinson DS ( 1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.
DOI URL |
[38] |
Voigt C, Lamprecht RE, Marushchak ME, Lind SE, Novakovskiy A, Aurela M, Martikainen PJ, Biasi C ( 2016). Warming of subarctic tundra increases emissions of all three important greenhouse gases—Carbon dioxide, methane, and nitrous oxide. Global Change Biology, 23, 3121-3138.
DOI URL PMID |
[39] |
Wang J, Zhang JB, Müller C, Cai ZC ( 2016). Temperature sensitivity of gross N transformation rates in an alpine meadow on the Qinghai-Tibetan Plateau. Journal of Soils and Sediments, 17, 423-431.
DOI URL |
[40] |
Wang WL, Kong WD, Zeng H ( 2015). A meta-analysis of responses of soil microbes to warming. Journal of Agro-Environment Science, 34, 2169-2175.
DOI URL |
[ 王文立, 孔维栋, 曾辉 ( 2015). 土壤微生物对增温响应的Meta分析. 农业环境科学学报, 34, 2169-2175.]
DOI URL |
|
[41] |
Ward SE, Ostle NJ, Oakley S, Quirk H, Henrys PA, Bardgett RD ( 2013). Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecology Letters, 16, 1285-1293.
DOI URL PMID |
[42] | Wu JS, Lin QM, Huang QY, Xiao HA ( 2006). Soil Microbial Biomass——Methods and Application. China Meteorological Press, Beijing. |
[ 吴金水, 林启美, 黄巧云, 肖和艾 ( 2006). 土壤微生物生物量测定方法及其应用. 气象出版社, 北京.] | |
[43] |
Xu BX, Hu YG, Zhang ZS, Chen YL, Peng Z, Li G ( 2014). Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region. Chinese Journal of Plant Ecology, 38, 809-820.
DOI URL |
[ 徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚 ( 2014). 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响. 植物生态学报, 38, 809-820.]
DOI URL |
|
[44] |
Xu XY, Liu XR, Li Y, Ran Y, Liu YP, Zhang QC, Li Z, He Y, Xu JM, Di HJ ( 2017). Legacy effects of simulated short-term climate change on ammonia oxidisers, denitrifiers, and nitrous oxide emissions in an acid soil. Environmental Science and Pollution Research, 24, 11639-11649.
DOI URL PMID |
[45] |
Yan JH, Zhang W, Wang KY, Qin F, Wang WT, Dai HT, Li PX ( 2014). Responses of CO2, N2O and CH4 fluxes between atmosphere and forest soil to changes in multiple environmental conditions. Global Change Biology, 20, 300-312.
DOI URL |
[46] |
Zhang XZ, Shen ZX, Fu G ( 2015). A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 87, 32-38.
DOI URL |
[1] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[2] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[3] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[4] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[5] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[6] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[7] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[8] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[9] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[10] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[11] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[12] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[13] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[14] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[15] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19