植物生态学报 ›› 2021, Vol. 45 ›› Issue (7): 771-779.DOI: 10.17521/cjpe.2021.0010
所属专题: 生态化学计量
吴秋霞1, 吴福忠1,2,3, 胡仪1, 康自佳1, 张耀艺1, 杨静1, 岳楷1,2,3, 倪祥银1,2,3,*(), 杨玉盛1,2,3
收稿日期:
2021-01-08
接受日期:
2021-04-06
出版日期:
2021-07-20
发布日期:
2021-10-22
通讯作者:
倪祥银 ORCID:0000-0002-2507-3463
作者简介:
* 倪祥银: ORCID: 0000-0002-2507-3463, nixy@fjnu.edu.cn基金资助:
WU Qiu-Xia1, WU Fu-Zhong1,2,3, HU Yi1, KANG Zi-Jia1, ZHANG Yao-Yi1, YANG Jing1, YUE Kai1,2,3, NI Xiang-Yin1,2,3,*(), YANG Yu-Sheng1,2,3
Received:
2021-01-08
Accepted:
2021-04-06
Online:
2021-07-20
Published:
2021-10-22
Contact:
NI Xiang-Yin ORCID:0000-0002-2507-3463
Supported by:
摘要:
叶片中非结构性碳水化合物(NSC)不仅是植物维持代谢活动的重要物质基础, 也随凋落物归还土壤并为土壤微生物提供碳源, 对凋落物分解和土壤有机质形成具有重要意义。该研究比较了同质园中11个亚热带代表性树种新鲜叶与凋落叶NSC (可溶性糖、淀粉)含量。结果表明, 所有树种新鲜叶NSC含量均显著高于凋落叶, 新鲜叶中NSC含量为68.7-126.3 mg∙g-1, 而凋落叶中NSC含量为31.4-79.5 mg∙g-1。同时, 可溶性糖含量在新鲜叶和凋落叶中的变化幅度均远大于淀粉: 可溶性糖在新鲜叶中的平均含量是凋落叶的3.3倍; 而淀粉在新鲜叶中的平均含量仅为凋落叶的1.2倍。另外, 对不同功能类群的比较发现, 常绿阔叶树种与落叶阔叶树种NSC含量差异并不显著, 而针叶树种NSC含量明显低于阔叶树种。具体表现为: 在新鲜叶中, 常绿阔叶、落叶阔叶树种NSC含量平均为99.7和96.8 mg∙g-1, 而常绿针叶树种平均为75.4 mg∙g-1; 在凋落叶中, 常绿阔叶、落叶阔叶树种NSC含量平均为47.2和50.7 mg∙g-1, 而常绿针叶树种平均为33.3 mg∙g-1。这些结果表明, NSC作为林木碳代谢组分, 在叶片衰老前可能向新鲜叶转移, 反映了林木叶片碳存储策略。然而, 不管是新鲜叶还是凋落叶, 杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)等针叶树种叶片NSC含量显著低于阔叶树种, 这可能降低这些针叶树种凋落叶初始基质质量。
吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较. 植物生态学报, 2021, 45(7): 771-779. DOI: 10.17521/cjpe.2021.0010
WU Qiu-Xia, WU Fu-Zhong, HU Yi, KANG Zi-Jia, ZHANG Yao-Yi, YANG Jing, YUE Kai, NI Xiang-Yin, YANG Yu-Sheng. Difference in non-structural carbohydrates between fresh and senescent leaves of 11 tree species in a subtropical common-garden. Chinese Journal of Plant Ecology, 2021, 45(7): 771-779. DOI: 10.17521/cjpe.2021.0010
树种 Tree species | 土壤容重 Soil bulk density (g·cm-3) | 土壤含水量 Soil water content (%) | 土壤孔隙度 Soil porosity (%) | 土壤最大持水量 Soil maximum water holding capacity (g·kg-1) |
---|---|---|---|---|
鹅掌楸 Liriodendron chinense | 1.16 ± 0.07d | 10.35 ± 0.62b | 45.06 ± 1.31a | 405.18 ± 31.24a |
枫香 Liquidambar formosana | 1.36 ± 0.04ab | 11.01 ± 0.65ab | 45.05 ± 1.69a | 342.15 ± 22.39ab |
无患子 Sapindus mukorossi | 1.29 ± 0.04ab | 11.41 ± 0.53ab | 45.50 ± 1.21a | 363.62 ± 18.38ab |
杉木 Cunninghamia lanceolata | 1.35 ± 0.04ab | 11.67 ± 0.06ab | 44.55 ± 1.11a | 337.08 ± 18.01ab |
马尾松 Pinus massoniana | 1.42 ± 0.10a | 10.93 ± 0.54ab | 43.00 ± 1.31a | 313.06 ± 37.53b |
木荷 Schima superba | 1.26 ± 0.07b | 11.97 ± 0.55a | 42.97 ± 2.55a | 361.34 ± 37.11ab |
香叶 Lindera communis | 1.22 ± 0.04c | 11.42 ± 0.24ab | 46.17 ± 1.81a | 389.44 ± 27.07ab |
杜英 Elaeocarpus decipiens | 1.26 ± 0.02ab | 11.10 ± 0.46ab | 44.45 ± 1.19a | 375.31 ± 11.05ab |
火力楠 Michelia macclurei | 1.36 ± 0.04ab | 10.34 ± 0.44b | 41.78 ± 1.07a | 320.18 ± 16.62b |
米槠 Castanopsis carlesii | 1.27 ± 0.06ab | 11.01 ± 0.58ab | 45.08 ± 1.54a | 368.95 ± 30.18ab |
香樟 Cinnamomum camphora | 1.39 ± 0.02ab | 9.68 ± 0.41b | 43.66 ± 0.32a | 322.19 ± 3.63b |
表1 同质园11个树种种植7年后0-10 cm土壤物理性质(平均值±标准误, n = 3)
Table 1 Soil physical properties in 0-10 cm soil layer after 7 years of plantations of the 11 tree species in the subtropical common garden (mean ± SE, n = 3)
树种 Tree species | 土壤容重 Soil bulk density (g·cm-3) | 土壤含水量 Soil water content (%) | 土壤孔隙度 Soil porosity (%) | 土壤最大持水量 Soil maximum water holding capacity (g·kg-1) |
---|---|---|---|---|
鹅掌楸 Liriodendron chinense | 1.16 ± 0.07d | 10.35 ± 0.62b | 45.06 ± 1.31a | 405.18 ± 31.24a |
枫香 Liquidambar formosana | 1.36 ± 0.04ab | 11.01 ± 0.65ab | 45.05 ± 1.69a | 342.15 ± 22.39ab |
无患子 Sapindus mukorossi | 1.29 ± 0.04ab | 11.41 ± 0.53ab | 45.50 ± 1.21a | 363.62 ± 18.38ab |
杉木 Cunninghamia lanceolata | 1.35 ± 0.04ab | 11.67 ± 0.06ab | 44.55 ± 1.11a | 337.08 ± 18.01ab |
马尾松 Pinus massoniana | 1.42 ± 0.10a | 10.93 ± 0.54ab | 43.00 ± 1.31a | 313.06 ± 37.53b |
木荷 Schima superba | 1.26 ± 0.07b | 11.97 ± 0.55a | 42.97 ± 2.55a | 361.34 ± 37.11ab |
香叶 Lindera communis | 1.22 ± 0.04c | 11.42 ± 0.24ab | 46.17 ± 1.81a | 389.44 ± 27.07ab |
杜英 Elaeocarpus decipiens | 1.26 ± 0.02ab | 11.10 ± 0.46ab | 44.45 ± 1.19a | 375.31 ± 11.05ab |
火力楠 Michelia macclurei | 1.36 ± 0.04ab | 10.34 ± 0.44b | 41.78 ± 1.07a | 320.18 ± 16.62b |
米槠 Castanopsis carlesii | 1.27 ± 0.06ab | 11.01 ± 0.58ab | 45.08 ± 1.54a | 368.95 ± 30.18ab |
香樟 Cinnamomum camphora | 1.39 ± 0.02ab | 9.68 ± 0.41b | 43.66 ± 0.32a | 322.19 ± 3.63b |
树种 Tree species | 功能类型 Functional type | 树高 Tree height (m) | 胸径 DBH (cm) | 叶片生物量 Leaf biomass (t·hm-2) |
---|---|---|---|---|
鹅掌楸 Liriodendron chinense | 落叶阔叶 Deciduous broadleaved | - | - | - |
枫香 Liquidambar formosana | 落叶阔叶 Deciduous broadleaved | - | - | - |
无患子 Sapindus mukorossi | 落叶阔叶 Deciduous broadleaved | - | - | - |
杉木 Cunninghamia lanceolata | 常绿针叶 Evergreen coniferous | 7.34 ± 0.21a | 10.24 ± 0.43a | 4.97 ± 0.32a |
马尾松 Pinus massoniana | 常绿针叶 Evergreen coniferous | 4.61 ± 0.08d | 6.36 ± 0.14b | 0.68 ± 0.09d |
木荷 Schima superba | 常绿阔叶 Evergreen broadleaved | 5.26 ± 0.18bc | 6.37 ± 0.36b | 0.99 ± 0.06cd |
香叶 Lindera communis | 常绿阔叶 Evergreen broadleaved | - | - | - |
杜英 Elaeocarpus decipiens | 常绿阔叶 Evergreen broadleaved | 5.64 ± 0.26b | 10.21 ± 0.55a | 1.44 ± 0.10bc |
火力楠 Michelia macclurei | 常绿阔叶 Evergreen broadleaved | 4.90 ± 0.01cd | 7.00 ± 0.15b | 1.06 ± 0.11cd |
米槠 Castanopsis carlesii | 常绿阔叶 Evergreen broadleaved | 5.65 ± 0.26b | 7.26 ± 0.47b | 0.78 ± 0.15d |
香樟 Cinnamomum camphora | 常绿阔叶 Evergreen broadleaved | 4.61 ± 0.25d | 6.58 ± 0.31b | 1.67 ± 0.27b |
表2 同质园中11个代表性树种生长情况(平均值±标准误, n = 4)
Table 2 Plant growth status of the 11 tree species in the subtropical common-garden (mean ± SE, n = 4)
树种 Tree species | 功能类型 Functional type | 树高 Tree height (m) | 胸径 DBH (cm) | 叶片生物量 Leaf biomass (t·hm-2) |
---|---|---|---|---|
鹅掌楸 Liriodendron chinense | 落叶阔叶 Deciduous broadleaved | - | - | - |
枫香 Liquidambar formosana | 落叶阔叶 Deciduous broadleaved | - | - | - |
无患子 Sapindus mukorossi | 落叶阔叶 Deciduous broadleaved | - | - | - |
杉木 Cunninghamia lanceolata | 常绿针叶 Evergreen coniferous | 7.34 ± 0.21a | 10.24 ± 0.43a | 4.97 ± 0.32a |
马尾松 Pinus massoniana | 常绿针叶 Evergreen coniferous | 4.61 ± 0.08d | 6.36 ± 0.14b | 0.68 ± 0.09d |
木荷 Schima superba | 常绿阔叶 Evergreen broadleaved | 5.26 ± 0.18bc | 6.37 ± 0.36b | 0.99 ± 0.06cd |
香叶 Lindera communis | 常绿阔叶 Evergreen broadleaved | - | - | - |
杜英 Elaeocarpus decipiens | 常绿阔叶 Evergreen broadleaved | 5.64 ± 0.26b | 10.21 ± 0.55a | 1.44 ± 0.10bc |
火力楠 Michelia macclurei | 常绿阔叶 Evergreen broadleaved | 4.90 ± 0.01cd | 7.00 ± 0.15b | 1.06 ± 0.11cd |
米槠 Castanopsis carlesii | 常绿阔叶 Evergreen broadleaved | 5.65 ± 0.26b | 7.26 ± 0.47b | 0.78 ± 0.15d |
香樟 Cinnamomum camphora | 常绿阔叶 Evergreen broadleaved | 4.61 ± 0.25d | 6.58 ± 0.31b | 1.67 ± 0.27b |
非结构性碳水化合物 Non-structural carbohydrate | 变异来源 Source of variation | 自由度 df | F | p |
---|---|---|---|---|
非结构性碳水化合物 Non-structural carbohydrate | 树种 Tree speices | 10 | 9.0 | <0.001 |
叶类型 Leaf | 1 | 229.5 | <0.001 | |
树种×叶类型 Tree speices × Leaf | 10 | 3.4 | <0.01 | |
可溶性糖 Soluble sugars | 树种 Tree speices | 10 | 8.9 | <0.001 |
叶类型 Leaf | 1 | 242.9 | <0.001 | |
树种×叶类型 Tree species × Leaf | 10 | 2.9 | <0.01 | |
淀粉 Starch | 树种 Tree speices | 10 | 4.3 | <0.001 |
叶类型 Leaf | 1 | 21.0 | <0.001 | |
树种×叶类型 Tree species × Leaf | 10 | 2.0 | 0.061 |
表3 树种和叶片类型对非结构性碳水化合物含量的双因素方差分析
Table 3 Two-way ANOVA analysis for the effects of tree species and leaf type on the content of non-structural carbohydrates
非结构性碳水化合物 Non-structural carbohydrate | 变异来源 Source of variation | 自由度 df | F | p |
---|---|---|---|---|
非结构性碳水化合物 Non-structural carbohydrate | 树种 Tree speices | 10 | 9.0 | <0.001 |
叶类型 Leaf | 1 | 229.5 | <0.001 | |
树种×叶类型 Tree speices × Leaf | 10 | 3.4 | <0.01 | |
可溶性糖 Soluble sugars | 树种 Tree speices | 10 | 8.9 | <0.001 |
叶类型 Leaf | 1 | 242.9 | <0.001 | |
树种×叶类型 Tree species × Leaf | 10 | 2.9 | <0.01 | |
淀粉 Starch | 树种 Tree speices | 10 | 4.3 | <0.001 |
叶类型 Leaf | 1 | 21.0 | <0.001 | |
树种×叶类型 Tree species × Leaf | 10 | 2.0 | 0.061 |
图1 亚热带同质园11个代表性树种新鲜叶和凋落叶的非结构性碳水化合物、可溶性糖、淀粉含量(A, C, E)及其在不同功能类型叶片之间的差异(B, D, F)(平均值±标准误, n = 3)。星号表示新鲜叶与凋落叶之间差异显著(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。不同大写字母表示新鲜叶非结构性碳水化合物(可溶性糖、淀粉)含量在不同树种/不同功能类型叶片间差异显著(p < 0.05), 不同小写字母表示凋落叶非结构性碳水化合物(可溶性糖、淀粉)含量在不同树种/不同功能类型叶片间差异显著(p < 0.05)。CC, 米槠; CC1, 香樟; CL, 杉木; ED, 杜英; LC, 鹅掌楸; LC1, 香叶; LF, 枫香; MM, 火力楠; PM, 马尾松; SM, 无患子; SS, 木荷。Db, 落叶阔叶树种(n = 9); Eb, 常绿阔叶树种(n = 18); Ec, 常绿针叶树种(n = 6)。
Fig. 1 Contents of non-structural carbohydrates, soluble sugars and starch in fresh and senescent leaves of 11 trees in the subtropical common-garden (A, C, E), and difference in them among different plant functional types (B, D, F)(mean ± SE, n = 3). Asterisks denote significant differences between fresh and senescent leaves for the same tree species (*, p < 0.05; **, p < 0.01; ***, p < 0.001). Different uppercase letters denote significant differences in non-structural carbohydrates (soluble sugars, starch) content in fresh leaves among tree species/plant functional traits (p < 0.05), and different lowercase letters denote significant differences in non-structural carbohydrates (soluble sugars, starch) content in senescent leaves among tree species/plant functional traits (p < 0.05). CC, Castanopsis carlesii; CC1, Cinnamomum camphora; CL, Cunninghamia lanceolata; ED, Elaeocarpus decipiens; LC, Liriodendron chinense; LC1, Lindera communis; LF, Liquidambar formosana; MM, Michelia macclurei; PM, Pinus massoniana; SM, Sapindus mukorossi; SS, Schima superba. Db, deciduous broadleaved species (n = 9); Eb, evergreen broadleaved species (n = 18); Ec, evergreen coniferous species (n = 6).
图2 新鲜叶的非结构性碳水化合物(NSC)含量与碳(C)、氮(N)、磷(P)含量的相关关系。SS, 可溶性糖; St, 淀粉。数值为相关系数, 星号表示显著相关(**, p < 0.01)。
Fig. 2 Correlation between non-structural carbohydrates (NSC) and carbon (C), nitrogen (N), phosphorus (P) contents in fresh leaves. SS, soluble sugars; St, starch. The value is correlation coefficient, asterisks denote significant correlations (**, p < 0.01).
[1] |
Berg B (2014). Decomposition patterns for foliar litter-A theory for influencing factors. Soil Biology & Biochemistry, 78, 222-232.
DOI URL |
[2] |
Bradford MA, Keiser AD, Davies CA, Mersmann CA, Strickland MS (2013). Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry, 113, 271-281.
DOI URL |
[3] | Chen FL, Zheng H, Yang BS, Ouyang ZY, Zhang K, Xiao Y, Tu NM (2011). The decomposition of coniferous and broadleaf mixed litters significantly changes the carbon metabolism diversity of soil microbial communities in subtropical area, southern China. Acta Ecologica Sinica, 31, 3027-3035. |
[ 陈法霖, 郑华, 阳柏苏, 欧阳志云, 张凯, 肖燚, 屠乃美 (2011). 中亚热带几种针、阔叶树种凋落物混合分解对土壤微生物群落碳代谢多样性的影响. 生态学报, 31, 3027-3035.] | |
[4] | Chen LC, Wang SL, Chen CY (2004). Degradation mechanism of Chinese fir plantation. Chinese Journal of Applied Ecology, 15, 1953-1957. |
[ 陈龙池, 汪思龙, 陈楚莹 (2004). 杉木人工林衰退机理探讨. 应用生态学报, 15, 1953-1957.] | |
[5] |
Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014). Nonstructural carbon in woody plants. Annual Review of Plant Biology, 65, 667-687.
DOI URL |
[6] | Du JH, Shao JY, Li SF, Qin J (2020). Non-structural carbohydrate content of trees and its influencing factors at multiple spatial-temporal scales: a review. Chinese Journal of Applied Ecology, 31, 1378-1388. |
[ 杜建会, 邵佳怡, 李升发, 秦晶 (2020). 树木非结构性碳水化合物含量多时空尺度变化特征及其影响因素研究进展. 应用生态学报, 31, 1378-1388.] | |
[7] | FAO (2015). World Reference Base for Soil Resources 2014. Food and Agriculture Organization of the United Nations, Roman. |
[8] |
Francesca Cotrufo M, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776-779.
DOI |
[9] |
Francesca Cotrufo M, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
DOI PMID |
[10] |
Kozlowski TT, Keller T (1966). Food relations of woody plants. The Botanical Review, 32, 293-382.
DOI URL |
[11] |
Li DS, Shi ZM, Liu SR, Geng LJ (2012). Relationships between chemical compositions of Quercus species seeds and climatic factors in temperate zone of NSTEC. Acta Ecologica Sinica, 32, 7857-7865.
DOI URL |
[ 李东胜, 史作民, 刘世荣, 耿丽君 (2012). 南北样带温带区栎属树种种子化学组成与气候因子的关系. 生态学报, 32, 7857-7865.] | |
[12] | Li NN, He NP, Yu GR (2015). Non-structural carbohydrates in leaves of tree species from four typical forests in China. Acta Botanica Boreali-Occidentalia Sinica, 35, 1846-1854. |
[ 李娜妮, 何念鹏, 于贵瑞 (2015). 中国4种典型森林中常见乔木叶片的非结构性碳水化合物研究. 西北植物学报, 35, 1846-1854.] | |
[13] | Li NN, He NP, Yu GR (2016). Evaluation of leaf non-structural carbohydrate contents in typical forest ecosystems in northeast China. Acta Ecologica Sinica, 36, 430-438. |
[ 李娜妮, 何念鹏, 于贵瑞 (2016). 中国东北典型森林生态系统植物叶片的非结构性碳水化合物研究. 生态学报, 36, 430-438.] | |
[14] |
Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105.
DOI PMID |
[15] |
Martínez-Vilalta J, Sala A, Asensio D, Galiano L, Hoch G, Palacio S, Piper FI, Lloret F (2016). Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecological Monographs, 86, 495-516.
DOI URL |
[16] |
Millard P, Sommerkorn M, Grelet GA (2007). Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 175, 11-28.
DOI PMID |
[17] |
Molina-Montenegro MA, Gallardo-Cerda J, Flores TSM, Atala C (2012). The trade-off between cold resistance and growth determines the Nothofagus pumilio treeline. Plant Ecology, 213, 133-142.
DOI URL |
[18] | National Forestry and Grassland Administration (2019). China Forest Resources Report 2014-2018. China Forestry Publishing House, Beijing. |
[ 国家林业和草原局 (2019). 中国森林资源报告2014-2018. 中国林业出版社, 北京.] | |
[19] | Ouyang M, Yang QP, Qi HY, Liu J, Ma SQ, Song QN (2014). A comparison of seasonal dynamics of nonstructural carbohydrates for deciduous and evergreen landscape trees in subtropical region. Journal of Nanjing Forestry University (Natural Sciences Edition), 38, 105-110. |
[ 欧阳明, 杨清培, 祁红艳, 刘骏, 马思琪, 宋庆妮 (2014). 亚热带落叶与常绿园林树种非结构性碳水化合物的季节动态比较. 南京林业大学学报(自然科学版), 38, 105-110.] | |
[20] | Pan QM, Han XG, Bai YF, Yang JC (2002). Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chinese Bulletin of Botany, 19, 30-38. |
[ 潘庆民, 韩兴国, 白永飞, 杨景成 (2002). 植物非结构性贮藏碳水化合物的生理生态学研究进展. 植物学通报, 19, 30-38.] | |
[21] |
Soong JL, Parton WJ, Calderon F, Campbell EE, Cotrufo MF (2015). A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry, 124, 27-44.
DOI URL |
[22] |
Trumbore S, Czimczik CI, Sierra CA, Muhr J, Xu XM (2015). Non-structural carbon dynamics and allocation relate to growth rate and leaf habit in California oaks. Tree Physiology, 35, 1206-1222.
DOI PMID |
[23] |
Wang ZG, Wang CK (2019). Mechanisms of carbon source- sink limitations to tree growth. Chinese Journal of Plant Ecology, 43, 1036-1047.
DOI URL |
[ 王兆国, 王传宽 (2019). 碳供给与碳利用对树木生长的限制机制. 植物生态学报, 43, 1036-1047.]
DOI |
|
[24] |
Würth MKR, Peláez-Riedl S, Wright SJ, Körner C (2005). Non-structural carbohydrate pools in a tropical forest. Oecologia, 143, 11-24.
DOI URL |
[25] | Yang J, Zhang YY, Tan SY, Wang DY, Yue K, Ni XY, Liao S, Wu FZ, Yang YS (2020). Soil water conservation function of different plantations in subtropical forest. Acta Ecologica Sinica, 40, 4594-4604. |
[ 杨静, 张耀艺, 谭思懿, 王定一, 岳楷, 倪祥银, 廖姝, 吴福忠, 杨玉盛 (2020). 亚热带不同树种土壤水源涵养功能. 生态学报, 40, 4594-4604.] | |
[26] |
Yu DP, Wang QW, Liu JQ, Zhou WM, Qi L, Wang XY, Zhou L, Dai LM (2014). Formation mechanisms of the alpine Ermanʼs birch (Betula ermanii) treeline on Changbai Mountain in Northeast China. Trees, 28, 935-947.
DOI URL |
[27] |
Yu LM, Wang CK, Wang XC (2011). Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China. Chinese Journal of Plant Ecology, 35, 1245-1255.
DOI URL |
[ 于丽敏, 王传宽, 王兴昌 (2011). 三种温带树种非结构性碳水化合物的分配. 植物生态学报, 35, 1245-1255.]
DOI |
|
[28] |
Zhang HY, Wang CK, Wang XC (2013). Comparison of concentrations of non-structural carbohydrates between new twigs and old branches for 12 temperate species. Acta Ecologica Sinica, 33, 5675-5685.
DOI URL |
[ 张海燕, 王传宽, 王兴昌 (2013). 温带12个树种新老树枝非结构性碳水化合物浓度比较. 生态学报, 33, 5675-5685.] | |
[29] |
Zhang PP, Zhou XH, Fu YL, Shao JJ, Zhou LY, Li SS, Zhou GY, Hu ZH, Hu JQ, Bai SH, McDowell NG (2020). Differential effects of drought on nonstructural carbohydrate storage in seedlings and mature trees of four species in a subtropical forest. Forest Ecology and Management, 469, 118159. DOI: 10.1016/j.foreco.2020.118159.
DOI URL |
[30] | Zhang YP, Cao PH, Xu JL, Hai XY, Wu WX, Jiao BW, Shen MW, Wang R (2019). Seasonal dynamics of non-structural carbohydrate contents in leaves of Quercus variabilis growing in the east Qinling Mountain range. Acta Ecologica Sinica, 39, 7274-7282. |
[ 章异平, 曹鹏鹤, 徐军亮, 海旭莹, 吴文霞, 焦保武, 沈梦文, 王瑞 (2019). 秦岭东段栓皮栎叶片非结构性碳水化合物含量的季节动态. 生态学报, 39, 7274-7282.] | |
[31] | Zhang ZY, Xu JJ, Lin DC, Zou BZ, Wu PF (2020). Research progress on pruning effects and characteristics of dead branches with needles remaining in the canopy of Chinese fir plantation. Ecological Science, 39, 268-272. |
[ 张子扬, 许静静, 林德城, 邹秉章, 吴鹏飞 (2020). 杉木枝叶贮存特性及人工修枝效应研究进展. 生态科学, 39, 268-272.] |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[4] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[5] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[6] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[7] | 余海霞, 曲鲁平, 汤行昊, 刘南, 张子雷, 王浩, 王艺璇, 邵长亮, 董刚, 胡亚林. 闽楠和木荷非结构性碳水化合物对不同模式热浪的差异性响应[J]. 植物生态学报, 2023, 47(2): 249-261. |
[8] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[9] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[10] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[11] | 伍敏, 田雨, 樊大勇, 张祥雪. 干旱胁迫下毛白杨和元宝槭的水力学调控[J]. 植物生态学报, 2022, 46(9): 1086-1097. |
[12] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[13] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[14] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[15] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1780
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2399
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La