植物生态学报 ›› 2024, Vol. 48 ›› Issue (4): 403-415.DOI: 10.17521/cjpe.2023.0152 cstr: 32100.14.cjpe.2023.0152
所属专题: 全球变化与生态系统; 生态系统碳水能量通量
• 综述 • 下一篇
秦文宽1, 张秋芳1,2, 敖古凯麟1, 朱彪1,*()(
)
收稿日期:
2023-05-30
接受日期:
2023-12-21
出版日期:
2024-04-20
发布日期:
2024-05-11
通讯作者:
*(biaozhu@pku.edu.cn)
基金资助:
QIN Wen-Kuan1, ZHANG Qiu-Fang1,2, AO Gu-Kai-Lin1, ZHU Biao1,*()(
)
Received:
2023-05-30
Accepted:
2023-12-21
Online:
2024-04-20
Published:
2024-05-11
Contact:
*(biaozhu@pku.edu.cn)
Supported by:
摘要:
陆地生态系统碳循环对气候变暖的响应受到土壤有机碳动态的调控。以往的研究开发了多样化的增温方法(如室内培养实验、野外增温实验和温度梯度采样等)来探究土壤有机碳动态对气候变暖的响应及其机制。然而, 由于不同增温方法都存在一定的局限性, 目前有关增温对土壤有机碳动态影响的研究无法形成一致结论。从过程上看, 土壤有机碳动态主要包括碳输入与碳分解两个过程, 并受到碳稳定性的调控, 这三者的变化共同决定了土壤有机碳动态对增温的响应。先前的研究表明, 碳输入和碳分解对增温存在积极响应, 这与植物和土壤微生物活性的增强有关。但也有研究指出, 由增温导致的土壤理化性质改变(如土壤水分含量降低)以及生物过程变化(如土壤微生物热适应), 可能会影响碳输入和碳分解对增温的响应。需要注意的是, 表层(0-30 cm)与深层(>30 cm)土壤有机碳动态对增温的响应机制可能存在差异, 这是因为深层土壤有机碳的输入和分解过程受环境因子的限制, 且稳定性与表层土壤存在较大差异。未来的研究应致力于开发新的增温方法, 增加对深层土壤有机碳动态和气候敏感的生态系统的研究, 引入新技术研究土壤有机质的来源、结构、保护机制等, 关注植物-土壤动物-土壤微生物体系对增温的响应及其对土壤有机碳动态的调控作用, 以改善碳循环模型中的不确定性, 更准确地预测全球碳循环对气候变暖的反馈。
秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展. 植物生态学报, 2024, 48(4): 403-415. DOI: 10.17521/cjpe.2023.0152
QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review. Chinese Journal of Plant Ecology, 2024, 48(4): 403-415. DOI: 10.17521/cjpe.2023.0152
图1 增温实验方法。A, 室内培养。B, 土壤移位。C, 开顶式同化箱增温。D, 红外辐射器增温。E, 加热电缆增温(张秋芳等, 2016)。F, 全剖面土壤增温(Qin et al., 2023)。G, 全生态系统增温(美国能源部Oak ridge国家实验室, https://mnspruce.ornl.gov; Hanson et al., 2017)。H, 温度梯度采样实验(以海拔梯度为例)。
Fig. 1 Experimental methods of warming. A, Laboratory incubation. B, Soil translocation. C, Open-top chamber warming. D, Infrared radiator warming. E, Heating cable warming (Zhang et al., 2016). F, Whole-soil profile warming (Qin et al., 2023). G, Whole-ecosystem warming (Courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy, https://mnspruce. ornl.gov; Hanson et al., 2017). H, Temperature gradient sampling experiments (e.g., latitudinal gradient).
[1] | Alexander JM, Diez JM, Levine JM (2015). Novel competitors shape species’ responses to climate change. Nature, 525, 515-518. |
[2] | Aronson EL, McNulty SG (2009). Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology, 149, 1791-1799. |
[3] | Bai E, Li SL, Xu WH, Li W, Dai WW, Jiang P (2013). A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199, 441-451. |
[4] | Bai TS, Tao JJ, Li Z, Shu M, Yan XB, Wang P, Ye CL, Guo H, Wang Y, Hu SJ (2019). Different microbial responses in top- and sub-soils to elevated temperature and substrate addition in a semiarid grassland on the Loess Plateau. European Journal of Soil Science, 70, 1025-1036. |
[5] |
Bai Y, Cotrufo MF (2022). Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 377, 603-608.
DOI PMID |
[6] | Bai YX, Peng YF, Zhou W, Xie YH, Li QL, Yang GB, Chen LY, Zhu B, Yang YH (2023). SWAMP: a new experiment for simulating permafrost warming and active layer deepening on the Tibetan Plateau. Methods in Ecology and Evolution, 14, 1732-1746. |
[7] | Batjes NH (2016). Harmonized soil property values for broad- scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma, 269, 61-68. |
[8] | Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560, 80-83. |
[9] |
Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL, Seabloom EW, Smith MD (2014). Finding generality in ecology: a model for globally distributed experiments. Methods in Ecology and Evolution, 5, 65-73.
DOI |
[10] | Bradford MA (2013). Thermal adaptation of decomposer communities in warming soils. Frontiers in Microbiology, 4, 333. DOI: 10.3389/fmicb.2013.00333. |
[11] | Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW (2016). Managing uncertainty in soil carbon feedbacks to climate change. Nature Climate Change, 6, 751-758. |
[12] |
Butler SM, Melillo JM, Johnson JE, Mohan J, Steudler PA, Lux H, Burrows E, Smith RM, Vario CL, Scott L, Hill TD, Aponte N, Bowles F (2012). Soil warming alters nitrogen cycling in a New England forest: implications for ecosystem function and structure. Oecologia, 168, 819-828.
DOI PMID |
[13] |
Carey JC, Tang J, Templer PH, Kroeger KD, Crowther TW, Burton AJ, Dukes JS, Emmett B, Frey SD, Heskel MA, Jiang L, Machmuller MB, Mohan J, Panetta AM, Reich PB, et al. (2016). Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences of the United States of America, 113, 13797-13802.
DOI PMID |
[14] |
Carrillo Y, Dijkstra F, LeCain D, Blumenthal D, Pendall E (2018). Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecology Letters, 21, 1639-1648.
DOI PMID |
[15] | Chen J, Luo Y, Xia J, Jiang L, Zhou X, Lu M, Liang J, Shi Z, Shelton S, Cao J (2015). Stronger warming effects on microbial abundances in colder regions. Scientific Reports, 5, 18032. DOI: 10.1038/srep18032. |
[16] |
Chen J, Luo Y, García-Palacios P, Cao J, Dacal M, Zhou X, Li J, Xia J, Niu S, Yang H, Shelton S, Guo W, van Groenigen KJ (2018). Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration. Global Change Biology, 24, 4816-4826.
DOI PMID |
[17] | Chen ZW, Zhao DS, Zhu Y, Zhang RD, Guo CY (2022). Response of grassland soil respiration to experimental warming: the long-term effects may be greater than we thought. Soil Biology & Biochemistry, 168, 108616. DOI: 10.1016/j.soilbio.2022.108616. |
[18] | Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, et al. (2011). Temperature and soil organic matter decomposition rates—Synthesis of current knowledge and a way forward. Global Change Biology, 17, 3392-3404. |
[19] | Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y, Reich PB, et al. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540, 104-108. |
[20] | Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173. |
[21] | Day TA, Ruhland CT, Xiong FS (2008). Warming increases aboveground plant biomass and C stocks in vascular-plant- dominated Antarctic tundra. Global Change Biology, 14, 1827-1843. |
[22] | De Boeck HJ, Vicca S, Roy J, Nijs I, Milcu A, Kreyling J, Jentsch A, Chabbi A, Campioli M, Callaghan T, Beierkuhnlein C, Beier C (2015). Global change experiments: challenges and opportunities. BioScience, 65, 922-931. |
[23] | Dove NC, Torn MS, Hart SC, Taş N (2021). Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile. Nature Communications, 12, 2089. DOI: 10.1038/s41467-021-22408-5. |
[24] | Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450, 277-280. |
[25] | Frey SD, Lee J, Melillo JM, Six J (2013). The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change, 3, 395-398. |
[26] | Ganjurjav H, Gao Q, Gornish ES, Schwartz MW, Liang Y, Cao X, Zhang W, Zhang Y, Li W, Wan Y, Li Y, Danjiu L, Guo H, Lin E (2016). Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai- Tibetan Plateau. Agricultural and Forest Meteorology, 223, 233-240. |
[27] | Giardina CP, Litton CM, Crow SE, Asner GP (2014). Warming- related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nature Climate Change, 4, 822-827. |
[28] |
Gill AL, Finzi AC (2016). Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecology Letters, 19, 1419-1428.
DOI PMID |
[29] | Hamdi S, Moyano F, Sall S, Bernoux M, Chevallier T (2013). Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biology & Biochemistry, 58, 115-126. |
[30] | Hanson PJ, Childs KW, Wullschleger SD, Riggs JS, Thomas WK, Todd DE, Warren JM (2011). A method for experimental heating of intact soil profiles for application to climate change experiments. Global Change Biology, 17, 1083-1096. |
[31] | Hanson PJ, Riggs JS, Nettles WR, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, Warren JM, Barbier C (2017). Attaining whole- ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere. Biogeosciences, 14, 861-883. |
[32] | Harrison F (2011). Getting started with meta-analysis. Methods in Ecology and Evolution, 2, 1-10. |
[33] | He NP, Liu Y, Xu L, Wen XF, Yu GR, Sun XM (2018). Temperature sensitivity of soil organic matter decomposition: new insights into models of incubation and measurement. Acta Ecologica Sinica, 38, 4045-4051. |
[何念鹏, 刘远, 徐丽, 温学发, 于贵瑞, 孙晓敏 (2018). 土壤有机质分解的温度敏感性: 培养与测定模式. 生态学报, 38, 4045-4051.] | |
[34] |
Hicks Pries CE, Castanha C, Porras RC, Torn MS (2017). The whole-soil carbon flux in response to warming. Science, 355, 1420-1423.
DOI PMID |
[35] | IPCC (2021). Summary for policymakers// Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[36] | Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G (2017). The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48, 419-445. |
[37] | Jia J, Liu Z, Haghipour N, Wacker L, Zhang H, Sierra CA, Ma T, Wang Y, Chen L, Luo A, Wang Z, He J, Zhao M, Eglinton TI, Feng X (2023). Molecular 14C evidence for contrasting turnover and temperature sensitivity of soil organic matter components. Ecology Letters, 26, 778-788. |
[38] | Jian S, Li J, Wang G, Kluber LA, Schadt CW, Liang J, Mayes MA (2020). Multi-year incubation experiments boost confidence in model projections of long-term soil carbon dynamics. Nature Communications, 11, 5864. DOI: 10.1038/s41467-020-19428-y. |
[39] | Kan Z, Liu W, Liu W, He C, Bohoussou NY, Dang YP, Zhao X, Zhang H (2022). Sieving soil before incubation experiments overestimates carbon mineralization but underestimates temperature sensitivity. Science of the Total Environment, 806, 150962. DOI: 10.1016/j.scitotenv.2021.150962. |
[40] |
Keller AB, Brzostek ER, Craig ME, Fisher JB, Phillips RP (2021). Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type. Ecology Letters, 24, 626-635.
DOI PMID |
[41] | Kimball BA, Conley MM, Wang S, Lin X, Luo C, Morgan J, Smith D (2008). Infrared heater arrays for warming ecosystem field plots. Global Change Biology, 14, 309-320. |
[42] |
Klein JA, Harte J, Zhao X (2007). Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecological Applications, 17, 541-557.
DOI PMID |
[43] | Kuzyakov Y (2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371. |
[44] |
Lavallee JM, Soong JL, Cotrufo MF (2020). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26, 261-273.
DOI PMID |
[45] | Lehmann J, Kleber M (2015). The contentious nature of soil organic matter. Nature, 528, 60-68. |
[46] | Lei J, Guo X, Zeng Y, Zhou J, Gao Q, Yang Y (2021). Temporal changes in global soil respiration since 1987. Nature Communications, 12, 403. DOI: 10.1038/s41467-020-20616-z. |
[47] | Li J, Chen YD, Gan TY, Lau NC (2018). Elevated increases in human-perceived temperature under climate warming. Nature Climate Change, 8, 43-47. |
[48] | Li J, Pei J, Pendall E, Reich PB, Noh NJ, Li B, Fang C, Nie M (2020). Rising temperature may trigger deep soil carbon loss across forest ecosystems. Advanced Science, 19, 2001242. DOI: 10.1002/advs.202001242. |
[49] | Li X, Jiang L, Meng F, Wang S, Niu H, Iler AM, Duan J, Zhang Z, Luo C, Cui S, Zhang L, Li Y, Wang Q, Zhou Y, Bao X, et al. (2016). Responses of sequential and hierarchical phenological events to warming and cooling in alpine meadows. Nature Communications, 7, 12489. DOI: 10.1038/ncomms12489. |
[50] | Liebmann P, Wordell-Dietrich P, Kalbitz K, Mikutta R, Kalks F, Don A, Woche SK, Dsilva LR, Guggenberger G (2020). Relevance of aboveground litter for soil organic matter formation—A soil profile perspective. Biogeosciences, 17, 3099-3113. |
[51] | Litton CM, Giardina CP (2008). Below-ground carbon flux and partitioning: global patterns and response to temperature. Functional Ecology, 22, 941-954. |
[52] | Liu F, Qin S, Fang K, Chen L, Peng Y, Smith P, Yang Y (2022). Divergent changes in particulate and mineral- associated organic carbon upon permafrost thaw. Nature Communications, 13, 5073. DOI: 10.1038/s41467-022-32681-7. |
[53] |
Liu H, Mi Z, Lin L, Wang Y, Zhang Z, Zhang F, Wang H, Liu L, Zhu B, Cao G, Zhao X, Sanders NJ, Classen AT, Reich PB, He J (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056.
DOI PMID |
[54] | Liu ZJ, Lin WS, Yang ZR, Lin TW, Liu XF, Chen YM, Yang YS (2017). Effects of soil warming and nitrogen deposition on available nitrogen in a young Cunninghamia lanceolata stand in mid-subtropical China. Acta Ecologica Sinica, 37, 44-53. |
[刘志江, 林伟盛, 杨舟然, 林廷武, 刘小飞, 陈岳民, 杨玉盛 (2017). 模拟增温和氮沉降对中亚热带杉木幼林土壤有效氮的影响. 生态学报, 37, 44-53.] | |
[55] |
Lu M, Zhou XH, Yang Q, Li H, Luo YQ, Fang CM, Chen JK, Yang X, Li B (2013). Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology, 94, 726-738.
PMID |
[56] | Luo Y, Ahlström A, Allison SD, Batjes NH, Brovkin V, Carvalhais N, Chappell A, Ciais P, Davidson EA, Finzi A, Georgiou K, Guenet B, Hararuk O, Harden JW, He Y, et al. (2016). Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles, 30, 40-56. |
[57] | Luo ZK, Luo YQ, Wang GC, Xia JY, Peng CH (2020). Warming-induced global soil carbon loss attenuated by downward carbon movement. Global Change Biology, 26, 7242-7254. |
[58] | Ma ZL, Zhao WQ (2020). Research progress on input of plant community-derived soil organic carbon and its responses to climate warming. Chinese Journal of Ecology, 39, 270-281. |
[马志良, 赵文强 (2020). 植物群落向土壤有机碳输入及其对气候变暖的响应研究进展. 生态学杂志, 39, 270-281.] | |
[59] |
Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS (2017). Long- term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358, 101-105.
DOI PMID |
[60] | Meng C, Tian D, Zeng H, Li Z, Chen HYH, Niu S (2020). Global meta-analysis on the responses of soil extracellular enzyme activities to warming. Science of the Total Environment, 705, 135992. DOI: 10.1016/j.scitotenv.2019.135992. |
[61] | Niu SL, Han XG, Ma KP, Wan SQ (2007). Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology (Chinese Version), 31, 262-271. |
[牛书丽, 韩兴国, 马克平, 万师强 (2007). 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 31, 262-271.]
DOI |
|
[62] | Nottingham AT, Meir P, Velasquez E, Turner BL (2020). Soil carbon loss by experimental warming in a tropical forest. Nature, 584, 234-237. |
[63] |
Nottingham AT, Whitaker J, Ostle NJ, Bardgett RD, McNamara NP, Fierer N, Salinas N, Ccahuana AJQ, Turner BL, Meir P (2019). Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecology Letters, 22, 1889-1899.
DOI PMID |
[64] | Pold G, Melillo JM, DeAngelis KM (2015). Two decades of warming increases diversity of a potentially lignolytic bacterial community. Frontiers in Microbiology, 6, 480. DOI: 10.3389/fmicb.2015.00480. |
[65] | Qin WK, Chen Y, Wang XD, Zhao HY, Hou YH, Zhang QF, Guo XW, Zhang ZH, Zhu B (2023). Whole-soil warming shifts species composition without affecting diversity, biomass and productivity of the plant community in an alpine meadow. Fundamental Research, 3, 160-169. |
[66] | Ren S, Ding JZ, Yan ZJ, Cao YF, Li J, Wang YH, Liu D, Zeng H, Wang T (2020). Higher temperature sensitivity of soil C release to atmosphere from northern permafrost soils as indicated by a meta-analysis. Global Biogeochemical Cycles, 34, e2020GB006688. DOI: 10.1029/2020GB006688. |
[67] | Roth VN, Lange M, Simon C, Hertkorn N, Bucher S, Goodall T, Griffiths RI, Mellado-Vázquez PG, Mommer L, Oram NJ, Weigelt A, Dittmar T, Gleixner G (2019). Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nature Geoscience, 12, 755-761. |
[68] | Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56. |
[69] | Shao J, Zhou X, van Groenigen KJ, Zhou G, Zhou H, Zhou L, Lu M, Xia J, Jiang L, Hungate BA, Luo Y, He F, Thakur MP (2022). Warming effects on grassland productivity depend on plant diversity. Global Ecology and Biogeography, 31, 588-598. |
[70] | Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP (2013). Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature, 497, 615-618. |
[71] | Soong JL, Phillips CL, Ledna C, Koven CD, Torn MS (2020). CMIP5 models predict rapid and deep soil warming over the 21st century. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005266. DOI: 10.1029/2019JG005266. |
[72] | Walker TWN, Janssens IA, Weedon JT, Sigurdsson BD, Richter A, Peñuelas J, Leblans NIW, Bahn M, Bartrons M, de Jonge C, Fuchslueger L, Gargallo-Garriga A, Gunnarsdóttir GE, Marañón-Jiménez S, Oddsdóttir ES, et al. (2020). A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nature Ecology & Evolution, 4, 101-108. |
[73] | Wang C, Zhao X, Zi H, Hu L, Ade L, Wang G, Lerdau M (2017). The effect of simulated warming on root dynamics and soil microbial community in an alpine meadow of the Qinghai-Tibet Plateau. Applied Soil Ecology, 116, 30-41. |
[74] |
Wang J, Defrenne C, McCormack ML, Yang L, Tian D, Luo Y, Hou E, Yan T, Li Z, Bu W, Chen Y, Niu S (2021). Fine-root functional trait responses to experimental warming: a global meta-analysis. New Phytologist, 230, 1856-1867.
DOI PMID |
[75] | Wang M, Guo X, Zhang S, Xiao L, Mishra U, Yang Y, Zhu B, Wang G, Mao X, Qian T, Jiang T, Shi Z, Luo Z (2022). Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate. Nature Communications, 13, 5514. DOI: 10.1038/s41467-022-33278-w. |
[76] | Wang N, Quesada B, Xia L, Butterbach-Bahl K, Goodale CL, Kiese R (2019a). Effects of climate warming on carbon fluxes in grasslands—A global meta-analysis. Global Change Biology, 25, 1839-1851. |
[77] | Wang QK, Zhao XC, Chen LC, Yang QP, Chen S, Zhang WD (2019b). Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms. Functional Ecology, 33, 514-523. |
[78] |
Waring BG, Sulman BN, Reed S, Smith AP, Averill C, Creamer CA, Cusack DF, Hall SJ, Jastrow JD, Jilling A, Kemner KM, Kleber M, Liu XJA, Pett-Ridge J, Schulz M (2020). From pools to flow: the PROMISE framework for new insights on soil carbon cycling in a changing world. Global Change Biology, 26, 6631-6643.
DOI PMID |
[79] | Xu M, Li X, Kuyper TW, Xu M, Li X, Zhang J (2021). High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Global Change Biology, 27, 2061-2075. |
[80] | Xu MH, Xue X (2013). A research on summer vegetation characteristics & short-time responses to experimental warming of alpine meadow in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 33, 2071-2083. |
[徐满厚, 薛娴 (2013). 青藏高原高寒草甸夏季植被特征及对模拟增温的短期响应. 生态学报, 33, 2071-2083.] | |
[81] | Xu WF, Yuan WP (2017). Responses of microbial biomass carbon and nitrogen to experimental warming: a meta- analysis. Soil Biology & Biochemistry, 115, 265-274. |
[82] | Xu WF, Yuan WP, Cui LL, Ma MN, Zhang FG (2019). Responses of soil organic carbon decomposition to warming depend on the natural warming gradient. Geoderma, 343, 10-18. |
[83] | Yin R, Qin W, Wang X, Xie D, Wang H, Zhao H, Zhang Z, He J, Schädler M, Kardol P, Eisenhauer N, Zhu B (2023). Experimental warming causes mismatches in alpine plant-microbe-fauna phenology. Nature Communications, 14, 2159. DOI: 10.1038/s41467-023-37938-3. |
[84] | Yost JL, Hartemink AE (2020). How deep is the soil studied—An analysis of four soil science journals. Plant and Soil, 452, 5-18. |
[85] |
Yue K, Fornara DA, Yang W, Peng Y, Peng C, Liu Z, Wu F (2017). Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common. Ecology Letters, 20, 663-672.
DOI PMID |
[86] | Zhang J, Kuang L, Mou Z, Kondo T, Koarashi J, Atarashi- Andoh M, Li Y, Tang X, Wang Y, Peñuelas J, Sardans J, Hui D, Lambers H, Wu W, Kaal J, et al. (2022a). Ten years of warming increased plant-derived carbon accumulation in an East Asian monsoon forest. Plant and Soil, 481, 349-365. |
[87] | Zhang QF, Lü CP, Bei ZX, Xie JS, Lü MK, Lin WS, Chen YM, Yang YS (2016). Effects of simulated warming outdoor on lipid peroxidation and protective enzyme activities in the subtropical species Cunninghamia lanceolata. Chinese Journal of Plant Ecology, 40, 1230-1237. |
[张秋芳, 吕春平, 贝昭贤, 谢锦升, 吕茂奎, 林伟盛, 陈岳民, 杨玉盛 (2016). 野外模拟增温对亚热带杉木叶片膜脂过氧化及保护酶活性的影响. 植物生态学报, 40, 1230-1237.]
DOI |
|
[88] | Zhang QF, Qin WK, Feng JG, Zhu B (2022b). Responses of soil microbial carbon use efficiency to warming: review and prospects. Soil Ecology Letters, 4, 307-318. |
[89] | Zhou J, Wen Y, Rillig MC, Shi L, Dippold MA, Zeng Z, Kuzyakov Y, Zang H, Jones DL, Blagodatskaya E (2023). Restricted power: Can microorganisms maintain soil organic matter stability under warming exceeding 2 degrees? Global Ecology and Biogeography, 32, 919-930. |
[90] |
Zhu B, Chen Y (2020). Techniques and methods for field warming manipulation experiments in terrestrial ecosystems. Chinese Journal of Plant Ecology, 44, 330-339.
DOI |
[朱彪, 陈迎 (2020). 陆地生态系统野外增温控制实验的技术与方法. 植物生态学报, 44, 330-339.]
DOI |
|
[91] |
Zhu EX, Cao ZJ, Jia J, Liu CZ, Zhang ZH, Wang H, Dai GH, He JS, Feng XJ (2021). Inactive and inefficient: warming and drought effect on microbial carbon processing in alpine grassland at depth. Global Change Biology, 27, 2241-2253.
DOI PMID |
[1] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[2] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[3] | 李雪莹, 朱文泉, 李培先, 谢志英, 赵涔良. 气候变暖背景下青藏高原草本植物物候变化空间换时间预测[J]. 植物生态学报, 2020, 44(7): 742-751. |
[4] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[5] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
[6] | 朱彪, 陈迎. 陆地生态系统野外增温控制实验的技术与方法[J]. 植物生态学报, 2020, 44(4): 330-339. |
[7] | 王军, 王冠钦, 李飞, 彭云峰, 杨贵彪, 郁建春, 周国英, 杨元合. 短期增温对紫花针茅草原土壤微生物群落的影响[J]. 植物生态学报, 2018, 42(1): 116-125. |
[8] | 王冠钦, 李飞, 彭云峰, 陈永亮, 韩天丰, 杨贵彪, 刘莉, 周国英, 杨元合. 土壤含水量调控高寒草原生态系统N2O排放对增温的响应[J]. 植物生态学报, 2018, 42(1): 105-115. |
[9] | 常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3): 279-289. |
[10] | 李晓红, 徐健程, 肖宜安, 胡文海, 曹裕松. 武功山亚高山草甸群落优势植物野古草和芒异速生长对气候变暖的响应[J]. 植物生态学报, 2016, 40(9): 871-882. |
[11] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
[12] | 朱军涛, 陈宁, 张扬建, 刘瑶杰. 不同幅度的实验增温对藏北高寒草甸净生态系统碳交换的影响[J]. 植物生态学报, 2016, 40(12): 1219-1229. |
[13] | 张文涛, 江源, 王明昌, 张凌楠, 董满宇, 郭媛媛. 芦芽山阳坡不同海拔白杄径向生长对气候变暖的响应[J]. 植物生态学报, 2013, 37(12): 1142-1152. |
[14] | 侯彦会, 周广胜, 许振柱. 基于红外增温的草地生态系统响应全球变暖的研究进展[J]. 植物生态学报, 2013, 37(12): 1153-1167. |
[15] | 尹华军, 赖挺, 程新颖, 蒋先敏, 刘庆. 增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响[J]. 植物生态学报, 2008, 32(5): 1072-1083. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19