植物生态学报 ›› 2025, Vol. 49 ›› Issue (3): 415-431.DOI: 10.17521/cjpe.2023.0265 cstr: 32100.14.cjpe.2023.0265
刘柯言1, 韩璐1, 宋午椰1, 张初蕊1, 胡旭1, 许行1, 陈立欣1,2,*()
收稿日期:
2023-09-14
接受日期:
2024-04-08
出版日期:
2025-03-20
发布日期:
2024-04-09
通讯作者:
* 陈立欣(myclover17@126.com)基金资助:
LIU Ke-Yan1, HAN Lu1, SONG Wu-Ye1, ZHANG Chu-Rui1, HU Xu1, XU Hang1, CHEN Li-Xin1,2,*()
Received:
2023-09-14
Accepted:
2024-04-08
Online:
2025-03-20
Published:
2024-04-09
Contact:
* CHEN Li-Xin(myclover17@126.com)Supported by:
摘要: 黄土高原是我国气象干旱最频发的地区之一, 近年来, 在气候变暖的背景下, 气象干旱有增加的趋势, 探索植被光合生理活动对干旱的抵抗力和复原力对了解植被生长对环境变化的响应以及预测未来该地区植被变化具有重要意义。该研究利用日光诱导叶绿素荧光基于OCO-2的SIF数据集(GOSIF)产品、气温及标准化降水蒸散发指数(SPEI)数据, 使用多元线性自回归模型, 分析干旱对黄土高原各气候分区植被和不同植被覆盖类型光合作用时空稳定性的影响。结果表明: 黄土高原植被的光合复原力与干旱程度之间呈线性关系, 造成植被光合复原力逐渐减弱的干旱序列依次为轻度干旱>中度干旱>重度干旱。植被光合对干旱的抵抗力与干旱程度的关系呈非线性关系, 抵抗力由强到弱的干旱序列依次为重度干旱>轻度干旱>中度干旱。黄土高原植被光合对温度变化不敏感。对比不同气候分区植被发现, 干旱气候区植被的光合复原力随着干旱程度增强而降低, 半干旱气候区植被光合复原力较为稳定, 半湿润区植被光合复原力随重度、轻度和中度干旱依次降低。在各植被类型中, 森林的光合作用的复原力和抵抗力最高。该研究结果有助于整体认识气候变化背景下黄土高原区植被稳定性的区域性特点, 从而为黄土高原生态修复与治理提供科学依据。
刘柯言, 韩璐, 宋午椰, 张初蕊, 胡旭, 许行, 陈立欣. 基于日光诱导叶绿素荧光探测干旱对黄土高原植被光合稳定性的影响. 植物生态学报, 2025, 49(3): 415-431. DOI: 10.17521/cjpe.2023.0265
LIU Ke-Yan, HAN Lu, SONG Wu-Ye, ZHANG Chu-Rui, HU Xu, XU Hang, CHEN Li-Xin. Detection of drought effects on photosynthetic stability of vegetation on the Loess Plateau based on solar-induced chlorophyll fluorescence. Chinese Journal of Plant Ecology, 2025, 49(3): 415-431. DOI: 10.17521/cjpe.2023.0265
干旱等级 Drought classification | SPEI值 SPEI value |
---|---|
轻度干旱 Mild drought | -1.0 < SPEI ≤ -0.5 |
中度干旱 Moderate drought | -1.5 < SPEI ≤ -1.0 |
重度干旱 Severe drought | SPEI ≤ -1.5 |
表1 标准化降水蒸散发指数(SPEI)干旱等级划分
Table 1 Drought classification based on standardized precipitation evapotranspiration index (SPEI)
干旱等级 Drought classification | SPEI值 SPEI value |
---|---|
轻度干旱 Mild drought | -1.0 < SPEI ≤ -0.5 |
中度干旱 Moderate drought | -1.5 < SPEI ≤ -1.0 |
重度干旱 Severe drought | SPEI ≤ -1.5 |
系数 Coefficient | 变化幅度的解释 Explanation of the magnitude of change | 正负符号的解释 Interpretation of positive and negative signs |
---|---|---|
α (Yt-1的系数) α (coefficients for Yt-1) | 绝对值在0到1之间代表植被恢复平衡, 绝对值越大表明复原力越低。绝对值大于1, 植被将以振荡的方式恢复平衡 Absolute values between 0 and 1 represent systems returning to equilibrium, with large absolute values indicating a low resilience. Absolute values are larger than 1, the system returns to equilibrium in an oscillating way | 正异常与之前的异常相似; 负异常与之前的异常相似, 但符号相反 Positive anomalies are similar to the previous anomaly. Negative anomalies are similar to the previous anomaly, but with the opposite sign |
β (SPEIt的系数)和σ (Tt的系数) β (coefficients for SPEIt) and σ (coefficients for Tt) | 绝对值越大表明植被对干旱/温度异常越敏感, 即植被对短期干旱/温度反常的抵抗力越小 Large absolute values indicate a low resistance to droughts/ temperature anomalies | 正值表示更湿润条件下或更高的温度下植被光合作用增加; 负值表示更润湿条件下或更高的温度下植被光合作用下降 Positive values indicate wetter conditions or higher temperatures induce the increase of solar-induced chlorophyll fluorescence (SIF). Negative values indicate wetter conditions or higher temperatures induce the decrease of SIF |
表2 用于评估植被光合稳定性的自回归模型系数的解释
Table 2 Interpretation of autoregressive model coefficients for assessing vegetation photosynthetic stability
系数 Coefficient | 变化幅度的解释 Explanation of the magnitude of change | 正负符号的解释 Interpretation of positive and negative signs |
---|---|---|
α (Yt-1的系数) α (coefficients for Yt-1) | 绝对值在0到1之间代表植被恢复平衡, 绝对值越大表明复原力越低。绝对值大于1, 植被将以振荡的方式恢复平衡 Absolute values between 0 and 1 represent systems returning to equilibrium, with large absolute values indicating a low resilience. Absolute values are larger than 1, the system returns to equilibrium in an oscillating way | 正异常与之前的异常相似; 负异常与之前的异常相似, 但符号相反 Positive anomalies are similar to the previous anomaly. Negative anomalies are similar to the previous anomaly, but with the opposite sign |
β (SPEIt的系数)和σ (Tt的系数) β (coefficients for SPEIt) and σ (coefficients for Tt) | 绝对值越大表明植被对干旱/温度异常越敏感, 即植被对短期干旱/温度反常的抵抗力越小 Large absolute values indicate a low resistance to droughts/ temperature anomalies | 正值表示更湿润条件下或更高的温度下植被光合作用增加; 负值表示更润湿条件下或更高的温度下植被光合作用下降 Positive values indicate wetter conditions or higher temperatures induce the increase of solar-induced chlorophyll fluorescence (SIF). Negative values indicate wetter conditions or higher temperatures induce the decrease of SIF |
图2 2001-2020年黄土高原年均标准化降水蒸散发指数(SPEI)值。
Fig. 2 Annual average standardized precipitation evapo- transpiration index (SPEI) of Loess Plateau from 2001 to 2020.
图3 黄土高原干旱程度的空间分布。A, 2001年。B, 2005年。C, 2009年。D, 2015年。SPEI, 标准化降水蒸散发指数。
Fig. 3 Spatial distribution of drought severity on the Loess Plateau. A, 2001. B, 2005. C, 2009. D, 2015. SPEI, standardized precipitation evapotranspiration index.
图4 黄土高原日光诱导叶绿素荧光(SIF)异常的空间分布。A, 2001。B, 2005年。C, 2009年。D, 2015年。饼状图中黑色部分表示占比极小。
Fig. 4 Spatial distribution of solar-induced chlorophyll fluorescence (SIF) anomalies on the Loess Plateau. A, 2001. B, 2005. C, 2009. D, 2015. The black portion of the pie chart represents a very small percentage.
图5 2001、2005、2009和2015年黄土高原植被光合稳定性的空间分布。
Fig. 5 Spatial distribution of photosynthetic stability of vegetation on the Loess Plateau in 2001, 2005, 2009 and 2015.
图6 黄土高原植被光合稳定性在不同干旱程度下的变化。SPEI, 标准化降水蒸散发指数。
Fig. 6 Changes in photosynthetic stability of vegetation on the Loess Plateau under different degrees of drought. SPEI, standardized precipitation evapotranspiration index.
图7 不同干旱程度下不同气候区植被光合的稳定性。*, p < 0.05; **, p < 0.01。
Fig. 7 Stability of vegetation photosynthesis in different climatic zones under different degrees of aridity. *, p < 0.05; **, p < 0.01.
图8 不同干旱程度下不同植被类型的稳定性。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 8 Stability of different vegetation types under different degrees of aridity. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
[1] | An YY (2012). Staged strategy of plants in response to drought stress. Chinese Journal of Applied Ecology, 23, 2907-2915. |
[安玉艳 (2012). 杠柳适应黄土丘陵干旱环境的生理生态策略. 应用生态学报, 23, 2907-2915.] | |
[2] | Anderegg WRL, Kane JM, Anderegg LDL (2013). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3, 30-36. |
[3] |
Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015). FOREST ECOLOGY. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349, 528-532.
DOI PMID |
[4] | Barkaoui K, Roumet C, Volaire F (2016). Mean root trait more than root trait diversity determines drought resilience in native and cultivated Mediterranean grass mixtures. Agriculture, Ecosystems & Environment, 231, 122-132. |
[5] | Barry KE, Mommer L, van Ruijven J, Wirth C, Wright AJ, Bai Y, Connolly J, de Deyn GB, de Kroon H, Isbell F, Milcu A, Roscher C, Scherer-Lorenzen M, Schmid B, Weigelt A (2019). The future of complementarity: disentangling causes from consequences. Trends in Ecology & Evolution, 34, 167-180. |
[6] | Beierkuhnlein C, Thiel D, Jentsch A, Willner E, Kreyling J (2011). Ecotypes of European grass species respond differently to warming and extreme drought. Journal of Ecology, 99, 703-713. |
[7] |
Brun P, Psomas A, Ginzler C, Thuiller W, Zappa M, Zimmermann NE (2020). Large-scale early-wilting response of Central European forests to the 2018 extreme drought. Global Change Biology, 26, 7021-7035.
DOI PMID |
[8] | Cao JJ, An Q, Zhang X, Xu S, Si T, Niyogi D (2021). Is satellite Sun-Induced Chlorophyll Fluorescence more indicative than vegetation indices under drought condition? Science of the Total Environment, 792, 148396. DOI: 10.1016/j.scitotenv.2021.148396. |
[9] | Cao YX, Huang Z, Xu XJ, Chen S, Wang Z, Feng H, Yu Q, He JQ (2022). Responses of solar-induced chlorophyll fluorescence to meteorological drought across the Loess Plateau, China. Chinese Journal of Applied Ecology, 33, 457-466. |
[曹银轩, 黄卓, 徐喜娟, 陈上, 王钊, 冯浩, 于强, 何建强 (2022). 黄土高原植被日光诱导叶绿素荧光对气象干旱的响应. 应用生态学报, 33, 457-466.]
DOI |
|
[10] | Chaves MM, Maroco JP, Pereira JS (2003). Understanding plant responses to drought—From genes to the whole plant. Functional Plant Biology, 30, 239-264. |
[11] | Chen Q, Timmermans J, Wen W, van Bodegom PM (2022). A multi-metric assessment of drought vulnerability across different vegetation types using high resolution remote sensing. Science of the Total Environment, 832, 154970. DOI: 10.1016/j.scitotenv.2022.154970. |
[12] | Chen XJ, Mo XG, Zhang YC, Sun ZG, Liu Y, Hu S, Liu SX (2019). Drought detection and assessment with solar-induced chlorophyll fluorescence in summer maize growth period over North China Plain. Ecological Indicators, 104, 347-356. |
[13] | Chen YP, Wang KB, Lin YS, Shi WY, Song Y, He XH (2015). Balancing green and grain trade. Nature Geoscience, 8, 739-741. |
[14] | Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018). Triggers of tree mortality under drought. Nature, 558, 531-539. |
[15] | Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, de Noblet N, Friend AD, Friedlingstein P, Grünwald T, et al.(2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529-533. |
[16] | Clauw P (2010). Study of Biomass Production During Drought in Arabidopsis thaliana. Master degree dissertation, Ghent University, Gent, Belgium. |
[17] |
Cong N, Wang T, Nan H, Ma Y, Wang X, Myneni RB, Piao S (2013). Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Global Change Biology, 19, 881-891.
DOI PMID |
[18] | Damm A, Guanter L, Paul-Limoges E, van der Tol C, Hueni A, Buchmann N, Eugster W, Ammann C, Schaepman ME (2015). Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: an assessment based on observational and modeling approaches. Remote Sensing of Environment, 166, 91-105. |
[19] | de Keersmaecker W, Lhermitte S, Tits L, Honnay O, Somers B, Coppin P (2015). A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Global Ecology and Biogeography, 24, 539-548. |
[20] | de Keersmaecker W, van Rooijen N, Lhermitte S, Tits L, Schaminée J, Coppin P, Honnay O, Somers B (2016). Species-rich semi-natural grasslands have a higher resistance but a lower resilience than intensively managed agricultural grasslands in response to climate anomalies. Journal of Applied Ecology, 53, 430-439. |
[21] | Ding YB, He XF, Zhou ZQ, Hu J, Cai HJ, Wang XY, Li LS, Xu JT, Shi HY (2022). Response of vegetation to drought and yield monitoring based on NDVI and SIF. Catena, 219, 106328. DOI: 10.1016/j.catena.2022.106328. |
[22] | Dobrowski SZ, Pushnik JC, Zarco-Tejada PJ, Ustin SL (2005). Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sensing of Environment, 97, 403-414. |
[23] | Drusch M, Moreno J, Del Bello U, Franco R, Goulas Y, Huth A, Kraft S, Middleton EM, Miglietta F, Mohammed G, Nedbal L, Rascher U, Schüttemeyer D, Verhoef W (2017). The FLuorescence EXplorer mission concept—ESA’s earth explorer 8. IEEE Transactions on Geoscience and Remote Sensing, 55, 1273-1284. |
[24] | Du QQ, Sun YF, Guan QY, Pan NH, Wang QZ, Ma YR, Li HC, Liang LS (2022). Vulnerability of grassland ecosystems to climate change in the Qilian Mountains, northwest China. Journal of Hydrology, 612, 128305. DOI: 10.1016/j.jhydrol.2022.128305. |
[25] |
Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, Smith P, van der Velde M, Vicca S, Babst F, Beer C, Buchmann N, Canadell JG, Ciais P, Cramer W, et al.(2015). Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 21, 2861-2880.
DOI PMID |
[26] | Guan K, Berry JA, Zhang Y, Joiner J, Guanter L, Badgley G, Lobell DB (2016). Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence. Global Change Biology, 22, 716-726. |
[27] | Guanter L, Frankenberg C, Dudhia A, Lewis PE, Gómez-Dans J, Kuze A, Suto H, Grainger RG (2012). Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sensing of Environment, 121, 236-251. |
[28] | Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee JE, Moran MS, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, et al.(2014). Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 111, E1327-E1333. |
[29] | Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer TM, Bonin C, Bruelheide H, de Luca E, Ebeling A, Griffin JN, Guo Q, Hautier Y, Hector A, et al.(2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526, 574-577. |
[30] | Ivits E, Horion S, Erhard M, Fensholt R (2016). Assessing European ecosystem stability to drought in the vegetation growing season: ecosystem stability to drought. Global Ecology and Biogeography, 25, 1131-1143. |
[31] | Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler SE, Nagy L, Otieno D, Pritsch K, Rascher U, Schädler M, et al.(2011). Climate extremes initiate ecosystem-regulating functions while maintaining productivity. Journal of Ecology, 99, 689-702. |
[32] | Jiao KW, Gao JB, Wu SH, Hou WJ (2018). Research progress on the response processes of vegetation activity to climate change. Acta Ecologica Sinica, 38, 2229-2238. |
[焦珂伟, 高江波, 吴绍洪, 侯文娟 (2018). 植被活动对气候变化的响应过程研究进展. 生态学报, 38, 2229-2238.] | |
[33] | Jiao WZ, Chang Q, Wang LX (2019). The sensitivity of satellite solar-induced chlorophyll fluorescence to meteorological drought. Earth’s Future, 7, 558-573. |
[34] | Lee JE, Frankenberg C, van der Tol C, Berry JA, Guanter L, Boyce CK, Fisher JB, Morrow E, Worden JR, Asefi S, Badgley G, Saatchi S (2013). Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence. Proceedings of the Royal Society B: Biological Sciences, 280, 20130171. DOI: 10.1098/rspb.2013.0171. |
[35] | Lesk C, Rowhani P, Ramankutty N (2016). Influence of extreme weather disasters on global crop production. Nature, 529, 84-87. |
[36] | Li DL, Wu SY, Liu LB, Zhang YT, Li SC (2018a). Vulnerability of the global terrestrial ecosystems to climate change. Global Change Biology, 24, 4095-4106. |
[37] | Li M, Deng YY, Ge CH, Wang GW, Chai XR (2020). Characteristics of meteorological drought across the Loess Plateau and their linkages with large-scale climatic factors during 1961-2017. Ecology and Environmental Sciences, 29, 2231-2239. |
[李明, 邓宇莹, 葛晨昊, 王贵文, 柴旭荣 (2020). 1961-2017年黄土高原气象干旱特征及其与大尺度气候因子的联系. 生态环境学报, 29, 2231-2239.]
DOI |
|
[38] | Li X, Xiao JF, He BB, Altaf Arain M, Beringer J, Desai AR, Emmel C, Hollinger DY, Krasnova A, Mammarella I, Noe SM, Ortiz PS, Rey-Sanchez AC, Rocha AV, Varlagin A (2018b). Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: first global analysis based on OCO-2 and flux tower observations. Global Change Biology, 24, 3990-4008. |
[39] | Li XY, Li Y, Chen AP, Gao MD, Slette IJ, Piao SL (2019). The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agricultural and Forest Meteorology, 269, 239-248. |
[40] | Liu J, Wen ZM, Gang CC (2020). Normalized difference vegetation index of different vegetation cover types and its responses to climate change in the Loess Plateau. Acta Ecologica Sinica, 40, 678-691. |
[刘静, 温仲明, 刚成诚 (2020). 黄土高原不同植被覆被类型NDVI对气候变化的响应. 生态学报, 40, 678-691.] | |
[41] | Liu LY, Liu XJ, Wang ZH, Zhang B (2016). Measurement and analysis of bidirectional SIF emissions in wheat canopies. IEEE Transactions on Geoscience and Remote Sensing, 54, 2640-2651. |
[42] | Liu LZ, Yang X, Zhou HK, Liu SS, Zhou L, Li XH, Yang JH, Han XY, Wu JJ (2018). Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy. Science of the Total Environment, 625, 1208-1217. |
[43] | Liu X, Guanter L, Liu L, Damm A, Malenovský Z, Rascher U, Peng DL, Du SS, Gastellu-Etchegorry JP (2019a). Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model. Remote Sensing of Environment, 231, 110772. DOI: 10.1016/j.rse.2018.05.035. |
[44] | Liu XZ, Su Q, Sun HY (2010). Effects of different alternate cycling on the growth, yield and quality of apple trees under conditions of alternate partial root-zone irrigation. Acta Ecologica Sinica, 30, 4881-4888. |
[刘贤赵, 宿庆, 孙海燕 (2010). 根系分区交替灌溉不同交替周期对苹果树生长、产量及品质的影响. 生态学报, 30, 4881-4888.] | |
[45] | Liu Y, Kumar M, Katul GG, Porporato A (2019b). Reduced resilience as an early warning signal of forest mortality. Nature Climate Change, 9, 880-885. |
[46] |
Lloret F, Lobo A, Estevan H, Maisongrande P, Vayreda J, Terradas J (2007). Woody plant richness and NDVI response to drought events in Catalonian (northeastern Spain) forests. Ecology, 88, 2270-2279.
PMID |
[47] | Lu XL, Liu ZQ, Zhao F, Tang JW (2020). Comparison of total emitted solar-induced chlorophyll fluorescence (SIF) and top-of-canopy (TOC) SIF in estimating photosynthesis. Remote Sensing of Environment, 251, 112083. DOI: 10.1016/j.rse.2020.112083. |
[48] |
Luo W, Zuo X, Ma W, Xu C, Li A, Yu Q, Knapp AK, Tognetti R, Dijkstra FA, Li M, Han G, Wang Z, Han X (2018). Differential responses of canopy nutrients to experimental drought along a natural aridity gradient. Ecology, 99, 2230-2239.
DOI PMID |
[49] | Lüscher A, Barkaoui K, Finn JA, Suter D, Suter M, Volaire F (2022). Using plant diversity to reduce vulnerability and increase drought resilience of permanent and sown productive grasslands. Grass and Forage Science, 77, 235-246. |
[50] |
Magney TS, Bowling DR, Logan BA, Grossmann K, Stutz J, Blanken PD, Burns SP, Cheng R, Garcia MA, Kӧhler P, Lopez S, Parazoo NC, Raczka B, Schimel D, Frankenberg C (2019). Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 116, 11640-11645.
DOI PMID |
[51] | Mason NWH, de Bello F, Doležal J, Lepš J (2011). Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. Journal of Ecology, 99, 788-796. |
[52] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI PMID |
[53] |
Moser G, Schuldt B, Hertel D, Horna V, Coners H, Barus H, Leuschner C (2014). Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought. Global Change Biology, 20, 1481-1497.
DOI PMID |
[54] | Moya I, Camenen L, Evain S, Goulas Y, Cerovic ZG, Latouche G, Flexas J, Qunis A (2004). A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence. Remote Sensing of Environment, 91, 186-197. |
[55] | Naeem S, Zhang Y, Tian J, Qamer FM, Latif A, Paul PK (2020). Quantifying the impacts of anthropogenic activities and climate variations on vegetation productivity changes in China from 1985 to 2015. Remote Sensing, 12, 1113. DOI:10.3390/rs12071113. |
[56] | Nie T, Dong GT, Jiang XH, Lei YX (2021). Spatio-temporal changes and driving forces of vegetation coverage on the Loess Plateau of northern Shaanxi. Remote Sensing, 13, 613. DOI:10.3390/rs13040613. |
[57] | Nimmo DG, Mac Nally R, Cunningham SC, Haslem A, Bennett AF (2015). Vive la résistance: reviving resistance for 21st century conservation. Trends in Ecology & Evolution, 30, 516-523. |
[58] | Norton AJ, Rayner PJ, Koffi EN, Scholze M, Silver JD, Wang YP (2019). Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences, 16, 3069-3093. |
[59] |
Piao S, Nan H, Huntingford C, Ciais P, Friedlingstein P, Sitch S, Peng S, Ahlström A, Canadell JG, Cong N, Levis S, Levy PE, Liu L, Lomas MR, Mao J, et al.(2014). Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications, 5, 5018. DOI:10.1038/ncomms6018.
PMID |
[60] |
Roman DT, Novick KA, Brzostek ER, Dragoni D, Rahman F, Phillips RP (2015). The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia, 179, 641-654.
DOI PMID |
[61] | Rossini M, Nedbal L, Guanter L, Ač A, Alonso L, Burkart A, Cogliati S, Colombo R, Damm A, Drusch M, Hanus J, Janoutova R, Julitta T, Kokkalis P, Moreno J, et al.(2015). Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis. Geophysical Research Letters, 42, 1632-1639. |
[62] | Seddon AWR, Macias-Fauria M, Long PR, Benz D, Willis KJ (2016). Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531, 229-232. |
[63] |
Selote DS, Khanna-Chopra R (2010). Antioxidant response of wheat roots to drought acclimation. Protoplasma, 245, 153-163.
DOI PMID |
[64] | Simoniello T, Lanfredi M, Liberti M, Coppola R, Macchiato M (2008). Estimation of vegetation cover resilience from satellite time series. Hydrology and Earth System Sciences, 12, 1053-1064. |
[65] | Skirycz A, de Bodt S, Obata T, de Clercq I, Claeys H, de Rycke R, Andriankaja M, van Aken O, van Breusegem F, Fernie AR, Inzeݩ D (2010). Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiology, 152, 226-244. |
[66] | Smith WK, Biederman JA, Scott RL, Moore DJP, He M, Kimball JS, Yan D, Hudson A, Barnes ML, MacBean N, Fox AM, Litvak ME (2018). Chlorophyll fluorescence better captures seasonal and interannual gross primary productivity dynamics across dryland ecosystems of southwestern North America. Geophysical Research Letters, 45, 748-757. |
[67] | Somkuti P, O’Dell CW, Crowell S, Köhler P, McGarragh GR, Cronk HQ, Burgh EB (2021). Solar-induced chlorophyll fluorescence from the Geostationary Carbon Cycle Observatory (GeoCarb): an extensive simulation study. Remote Sensing of Environment, 263, 112565. DOI: 10.1016/j.rse.2021.112565. |
[68] |
Song L, Guanter L, Guan KY, You LZ, Huete A, Ju WM, Zhang YG (2018). Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains. Global Change Biology, 24, 4023-4037.
DOI PMID |
[69] |
Stampfli A, Bloor JMG, Fischer M, Zeiter M (2018). High land-use intensity exacerbates shifts in grassland vegetation composition after severe experimental drought. Global Change Biology, 24, 2021-2034.
DOI PMID |
[70] | Sun XF, Wang M, Li GC, Wang JB, Fan ZM (2020). Divergent sensitivities of spaceborne solar-induced chlorophyll fluorescence to drought among different seasons and regions. ISPRS International Journal of Geo-Information, 9, 542. DOI:10.3390/ijgi9090542. |
[71] | Teuling AJ, Seneviratne SI, Stöckli R, Reichstein M, Moors E, Ciais P, Luyssaert S, van den Hurk B, Ammann C, Bernhofer C, Dellwik E, Gianelle D, Gielen B, Grünwald T, Klumpp K, et al.(2010). Contrasting response of European forest and grassland energy exchange to heatwaves. Nature Geoscience, 3, 722-727. |
[72] |
Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014). Climate variability and vulnerability to climate change: a review. Global Change Biology, 20, 3313-3328.
DOI PMID |
[73] | Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005). Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecology Letters, 8, 857-874. |
[74] |
Turner BL, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, Eckley N, Kasperson JX, Luers A, Martello ML, Polsky C, Pulsipher A, Schiller A (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 100, 8074-8079.
DOI PMID |
[75] | van der Molen MK, Dolman AJ, Ciais P, Eglin T, Gobron N, Law BE, Meir P, Peters W, Phillips OL, Reichstein M, Chen T, Dekker SC, Doubková M, Friedl MA, Jung M, et al.(2011). Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology, 151, 765-773. |
[76] | Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu JH, Zhu JK (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal, 45, 523-539. |
[77] |
Vicente-Serrano SM, Gouveia C, Camarero JJ, Beguería S, Trigo R, López-Moreno JI, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A (2013). Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America, 110, 52-57.
DOI PMID |
[78] | Wang D, Yue DX, Zhou YY, Huo FB, Bao Q, Li K (2022). Drought resistance of vegetation and its change characteristics before and after the implementation of the grain for green program on the Loess Plateau, China. Remote Sensing, 14, 5142. DOI:10.3390/rs14205142. |
[79] | Wang GL, Wei Z, He SX, Zhou XJ, Liang ZS (2011). Effects of drought stress in soil on flavonoids metabolism in leaf and some growth and physiological indexes of Ziziphus jujuba var. spinosa. Journal of Plant Resources and Environment, 20(3), 1-8. |
[王改利, 魏忠, 贺少轩, 周雪洁, 梁宗锁 (2011). 土壤干旱胁迫对酸枣叶片黄酮类代谢及某些生长和生理指标的影响. 植物资源与环境学报, 20(3), 1-8.] | |
[80] | Wang YX, Dong G, Qu LP, Wu ZT, Zhao FY, Shao CL (2023). Ecosystem functioning of the Loess Plateau in China from vegetation restoration relied largely on climate. Forests, 14, 27. DOI:10.3390/f14010027. |
[81] |
Wu X, Liu H, Li X, Ciais P, Babst F, Guo W, Zhang C, Magliulo V, Pavelka M, Liu S, Huang Y, Wang P, Shi C, Ma Y (2018). Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Global Change Biology, 24, 504-516.
DOI PMID |
[82] | Xu HJ, Wang XP, Zhao CY, Zhang XX (2019). Responses of ecosystem water use efficiency to meteorological drought under different biomes and drought magnitudes in northern China. Agricultural and Forest Meteorology, 278, 107660. DOI: 10.1016/j.agrformet.2019.107660. |
[83] | Xue JR, Lü XL (2022). Assessment of vegetation productivity under the implementation of ecological programs in the Loess Plateau based on solar-induced chlorophyll fluorescence. Chinese Journal of Plant Ecology, 46, 1289-1304. |
[薛金儒, 吕肖良 (2022). 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价. 植物生态学报, 46, 1289-1304.]
DOI |
|
[84] |
Yang J, Tian HQ, Pan SF, Chen GS, Zhang BW, Dangal S (2018). Amazon drought and forest response: largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Global Change Biology, 24, 1919-1934.
DOI PMID |
[85] | Yao Y, Liu YX, Wang YJ, Fu BJ (2021). Greater increases in China’s dryland ecosystem vulnerability in drier conditions than in wetter conditions. Journal of Environmental Management, 291, 112689. DOI: 10.1016/j.jenvman.2021.112689. |
[86] |
Yao Y, Liu YX, Zhou S, Song JX, Fu BJ (2023). Soil moisture determines the recovery time of ecosystems from drought. Global Change Biology, 29, 3562-3574.
DOI PMID |
[87] | Yoshida Y, Joiner J, Tucker C, Berry J, Lee JE, Walker G, Reichle R, Koster R, Lyapustin A, Wang Y (2015). The 2010 Russian drought impact on satellite measurements of solar-induced chlorophyll fluorescence: insights from modeling and comparisons with parameters derived from satellite reflectances. Remote Sensing of Environment, 166, 163-177. |
[88] | You GY, Zhang ZY, Zhang RD (2018). Temperature sensitivity of photosynthesis and respiration in terrestrial ecosystems globally. Acta Ecologica Sinica, 38, 8392-8399. |
[游桂莹, 张志渊, 张仁铎 (2018). 全球陆地生态系统光合作用与呼吸作用的温度敏感性. 生态学报, 38, 8392-8399.] | |
[89] | You NS, Meng JJ, Zhu LK (2018). Sensitivity and resilience of ecosystems to climate variability in the semi-arid to hyper-arid areas of Northern China: a case study in the Heihe River Basin. Ecological Research, 33, 161-174. |
[90] | Zhang JZ, Li CG, Wang T (2022). Dynamic changes of vegetation coverage on the Loess Plateau and its factors. Research of Soil and Water Conservation, 29, 224-230. |
[张家政, 李崇贵, 王涛 (2022). 黄土高原植被覆盖时空变化及原因. 水土保持研究, 29, 224-230.] | |
[91] |
Zhang K, Yin XN, Liu XY, Wang FL (2010). Effects of sand-covering on apple trees transpiration and fruit quality in dry land orchards of Longdong, Gansu. Chinese Journal of Applied Ecology, 21, 2755-2762.
PMID |
[张坤, 尹小宁, 刘小勇, 王发林 (2010). 陇东旱地果园覆沙对苹果树蒸腾耗水及果实品质的影响. 应用生态学报, 21, 2755-2762.] | |
[92] | Zhang T, Peng J, Liang W, Yang YT, Liu YX (2016). Spatial-temporal patterns of water use efficiency and climate controls in Chinaʼs Loess Plateau during 2000-2010. Science of the Total Environment, 565, 105-122. |
[93] | Zhang Z, Chen J, Guanter L, He L, Zhang Y (2019). From canopy-leaving to total canopy far-red fluorescence emission for remote sensing of photosynthesis: first results from TROPOMI. Geophysical Research Letters, 46, 12030-12040. |
[94] | Zhang Z, Zhang Y, Chen J, Ju W, Migliavacca M, El-Madany TS (2021). Sensitivity of estimated total canopy SIF emission to remotely sensed LAI and BRDF products. Journal of Remote Sensing, 2021, 9795837. DOI: 10.34133/2021/9795837. |
[95] |
Zhang Z, Zhang Y, Joiner J, Migliavacca M (2018). Angle matters: bidirectional effects impact the slope of relationship between gross primary productivity and sun-induced chlorophyll fluorescence from Orbiting Carbon Observatory-2 across biomes. Global Change Biology, 24, 5017-5020.
DOI PMID |
[96] | Zhang ZY, Zhang Y, Zhang YG (2023). Generating high-resolution total canopy SIF emission from TROPOMI data: algorithm and application. Remote Sensing of Environment, 295, 113699. DOI: 10.1016/j.rse.2023.113699. |
[97] | Zhao Q, Chen Q, Jiao M, Wu P, Gao X, Ma M, Hong Y (2018). The temporal-spatial characteristics of drought in the Loess Plateau using the remote-Sensed TRMM precipitation data from 1998 to 2014. Remote Sensing, 10, 838. DOI:10.3390/rs10060838. |
[98] | Zheng JY, Bian JJ, Ge QS, Hao ZX, Yin YH, Liao YM (2013). The climate regionalization in China for 1981-2010. Chinese Science Bulletin, 58, 3088-3099. |
[郑景云, 卞娟娟, 葛全胜, 郝志新, 尹云鹤, 廖要明 (2013). 1981-2010年中国气候区划. 科学通报, 58, 3088-3099.] | |
[99] | Zhou L, Wang S, Chi Y, Wang JB (2018). Drought impacts on vegetation indices and productivity of terrestrial ecosystems in southwestern China during 2001-2012. Chinese Geographical Science, 28, 784-796. |
[100] |
Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao C, Cheng L, Kato E, Koven C, Li Y, et al.(2016). Greening of the earth and its drivers. Nature Climate Change, 6, 791-795.
DOI |
[1] | 冯梅 欧阳胜男 Matthias Saurer 李迈和 周晓倩 铁烈华 申卫军 段洪浪 Arthur Gessler. 前期氮添加对无梗花栎幼苗干旱响应中地上-地下碳氮分配动态的影响[J]. 植物生态学报, 2025, 49(地上地下生态过程关联): 1-0. |
[2] | 刘影 李疆枫 吴佳琪 王艺帆 尹清琳 王静. 干旱下草地植物糙隐子草根系和菌根真菌对土壤碳氮的影响[J]. 植物生态学报, 2025, 49(地上地下生态过程关联): 0-0. |
[3] | 马富龙 王雨晴 郝 瑜 段继超 刘霏霏 席琳乔 韩路. 海拔梯度对昆仑山中部草原植物与土壤微生物群落结构与多样性的影响[J]. 植物生态学报, 2025, 49(5): 1-0. |
[4] | 王贝贝, 吴苏, 王苗苗, 胡锦涛. 日光诱导叶绿素荧光不同组分在作物总初级生产力估算中的贡献比例: 多时间尺度分析[J]. 植物生态学报, 2025, 49(4): 562-572. |
[5] | 赵洪贤, 刘鹏, 史曼英, 徐铭泽, 贾昕, 田赟, 查天山. 毛乌素沙地典型固沙植物黑沙蒿和赖草叶片氮分配对最大净光合速率的影响[J]. 植物生态学报, 2025, 49(3): 460-474. |
[6] | 邵畅畅, 段洪浪, 赵熙州, 丁贵杰. 树木干旱死亡点预测及致死生理机制研究进展[J]. 植物生态学报, 2025, 49(2): 221-231. |
[7] | 王堃莹, 邱贵福, 刘子赫, 孟君, 刘宇轩, 贾国栋. 气候变化对不同退化程度小叶杨林分生长和内在水分利用效率的调节[J]. 植物生态学报, 2025, 49(2): 343-355. |
[8] | 王音, 同小娟, 张劲松, 李俊, 孟平, 刘沛荣, 张静茹. 干旱对栓皮栎人工林碳水通量及其耦合的影响[J]. 植物生态学报, 2024, 48(9): 1157-1171. |
[9] | 吴风燕, 吴永胜, 陈晓涵, 冯骥, 卢丽媛, 查斯娜, 王超宇, 孟元发, 尹强. 鄂尔多斯高原3种固沙灌木水分利用效率的时空变化特征[J]. 植物生态学报, 2024, 48(9): 1180-1191. |
[10] | 张鹏, 焦亮, 薛儒鸿, 魏梦圆, 杜达石, 吴璇, 王旭鸽, 李倩. 干旱强度影响祁连山西段不同海拔青海云杉的生长恢复[J]. 植物生态学报, 2024, 48(8): 977-987. |
[11] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
[12] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[13] | 白皓然, 侯盟, 刘艳杰. 少花蒺藜草入侵与干旱对羊草群落生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[14] | 黄砺成, 莫兴国. 海河流域生态系统净初级生产力对气象干旱的响应与弹性[J]. 植物生态学报, 2024, 48(10): 1256-1273. |
[15] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19