植物生态学报 ›› 2025, Vol. 49 ›› Issue (7): 1053-1069.DOI: 10.17521/cjpe.2024.0376  cstr: 32100.14.cjpe.2024.0376

• 综述 • 上一篇    下一篇

大气CO2浓度升高和增温对土壤有机碳库积累、分子组成和结构稳定性的影响

范亚冉1, 夏少攀1,*(), 于冰冰1, 朱紫琪1, 杨威2, 范豫川3, 刘晓雨1, 张旭辉1, 郑聚锋1   

  1. 1南京农业大学资源与环境科学学院, 农业资源与生态环境研究所, 南京 210095
    2内蒙古农业大学草业学院, 呼和浩特 010018
    3佛罗里达大学土壤、水和生态系统科学系, 盖恩斯维尔, 美国佛罗里达州 32603
  • 收稿日期:2024-10-21 接受日期:2025-02-26 出版日期:2025-07-20 发布日期:2025-02-26
  • 通讯作者: *夏少攀, E-mail: shaopanxia@njau.edu.cn
  • 基金资助:
    江苏省自然科学基金(BK20221028);国家自然科学基金(42303078)

Effects of elevated atmospheric CO2 concentration and warming on stability of soil organic carbon pool accumulation, molecular composition and structure stability

FAN Ya-Ran1, XIA Shao-Pan1,*(), YU Bing-Bing1, ZHU Zi-Qi1, YANG Wei2, FAN Yu-Chuan3, LIU Xiao-Yu1, ZHANG Xu-Hui1, ZHENG Ju-Feng1   

  1. 1Institute of Resource, Ecosystem and Environment of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
    2College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010018, China
    3Department of Soil, Water, and Ecosystem Sciences, University of Florida-IFAS, Gainesville, FL 32603, USA
  • Received:2024-10-21 Accepted:2025-02-26 Online:2025-07-20 Published:2025-02-26
  • Supported by:
    Natural Science Foundation of Jiangsu Province(BK20221028);National Natural Science Foundation of China(42303078)

摘要:

在固碳减排和“双碳”目标的背景下, 以大气CO2浓度升高和增温协同作用为特征的气候变化对土壤有机碳(SOC)动态变化的影响成为当前的研究热点, 气候变化对SOC库的影响机制也一直是学术界研究的难点问题。以往关于气候变化对陆地生态系统碳循环过程的研究主要是基于CO2浓度升高或增温的单一因素, 主要集中于植物生长、凋落物基质质量、土壤理化性质、有机碳物理/化学组分和微生物群落结构等方面。结合国内外研究进展, 该文在论述CO2浓度升高和增温对SOC库累积的影响及机制基础上, 从SOC组分、分子组成、结构特征、表层与底层响应差异与有机碳稳定性的耦合效应方面, 概括CO2浓度升高和增温对SOC积累和转化的内在影响机制。在此基础上, 提出未来研究中应着重关注: (1)明晰SOC端元输入-分子组成-结构特征耦合关系; (2)揭示长期气候变化对多生态系统SOC稳定性和埋藏潜力的影响机制。理清土壤碳源/汇功能, 必须全面深入了解气候变化下陆地生态系统SOC来源、转化、埋藏和分解的生物地球化学循环过程, 旨在为未来土壤碳中和管理决策提供科学理论依据。

关键词: 气候变化, 土壤有机碳, 分子组成与结构, 稳定性, 深层土壤, 陆地生态系统, 生物地球化学循坏

Abstract:

In the context of carbon sequestration, emission reduction, and the “Dual Carbon” goals, the impact of climate change characterized by the combined effects of elevated atmospheric carbon dioxide (CO2) concentration and global warming on the dynamics of soil organic carbon (SOC) has emerged as a critical research focus. Understanding the mechanisms through of climate change influences SOC pools remains a significant challenge in academic research. Previous studies on the effect of climate change on terrestrial ecosystem carbon cycling have predominantly examined single factors, such as increased CO2 concentration or warming, with a focus on plant growth, litter substrate quality, soil physicochemical properties, physical/chemical fractions of organic carbon, and microbial community structure. Building on recent advancements in both domestic and international research, this review synthesizes the effects and underlying mechanisms of elevated CO2 concentration and warming on SOC accumulation. By integrating the coupling effects of SOC fractions, molecular composition, structural characteristics, and the differential responses of topsoil and subsoil, we elucidate the intrinsic mechanism governing SOC carbon accumulation and transformation under these climatic conditions. Furthermore, we highlight key areas for future research, including (1) clarifying the coupling relationships among SOC end-member inputs, molecular composition, and structural characteristics, and (2) uncovering the mechanisms by which long-term climate change influences the stability and burial potential of SOC across diverse ecosystems. To fully understand the carbon source/sink functions of soil, it is essential to comprehensively investigate the biogeochemical processes governing SOC sources, transformation, burial, and decomposition in terrestrial ecosystems under climate change. This review aims to provide a robust scientific foundation for future soil carbon management strategies and decision-making in support of carbon neutrality goals.

Key words: climate change, soil organic carbon, molecular composition and structure, stability, subsoil, terrestrial ecosystems, biogeochemical cycle