植物生态学报 ›› 2025, Vol. 49 ›› Issue (7): 1038-1052.DOI: 10.17521/cjpe.2024.0196 cstr: 32100.14.cjpe.2024.0196
梁天豪1,2,3, 熊德成1,2,3, 刘源豪1,2,3, 杜旭龙1,2,3, 杨智杰1,2,3, 黄锦学1,*()
收稿日期:
2024-06-12
接受日期:
2024-12-10
出版日期:
2025-07-20
发布日期:
2025-05-14
通讯作者:
*黄锦学, E-mail: jxuehuang@fjnu.edu.cn基金资助:
LIANG Tian-Hao1,2,3, XIONG De-Cheng1,2,3, LIU Yuan-Hao1,2,3, DU Xu-Long1,2,3, YANG Zhi-Jie1,2,3, HUANG Jin-Xue1,*()
Received:
2024-06-12
Accepted:
2024-12-10
Online:
2025-07-20
Published:
2025-05-14
Supported by:
摘要:
全球变化背景下, 地下生态过程的变化已成为生态学领域关注的热点问题。菌根是植物根系与菌根真菌形成的共生体。与树木相关的两种菌根真菌——丛枝菌根和外生菌根真菌广泛分布于陆地生态系统中, 且在形态和功能上存在显著差异。根系分泌物作为植物与土壤进行物质能量交换和信息传递的重要媒介, 在土壤碳动态变化中发挥着重要作用。不同菌根类型树种能够通过根系分泌物不断地调整有机质输入量和化学组成来积极响应环境变化, 影响森林生态系统养分动态及循环过程。而目前对不同菌根类型树种根系分泌物的组成和功能、变化规律及对植物与土壤的影响机制尚未明确。为此, 该文围绕目前该领域国内外的前沿动态, 针对不同菌根类型树种的根系分泌物特征、影响机制及其根际效应进行了综述, 以期为不同菌根类型树种的根系分泌物对全球变化的响应和适应机制研究提供参考。并提出了未来需要深入研究的方向: (1)加强对不同菌根类型树种根系分泌物的系统性研究; (2)加强菌根类型与其他环境因子耦合对根系分泌物影响机制的研究; (3)利用更加精准的技术手段, 全面深入地了解不同菌根类型树种根系分泌物特征的变化; (4)从植物生理和代谢角度深入揭示不同菌根类型树种根系分泌物的影响机理; (5)对不同菌根类型树种开展长期动态监测和模拟实验, 预测其根系分泌物对土壤生态过程的影响。
梁天豪, 熊德成, 刘源豪, 杜旭龙, 杨智杰, 黄锦学. 不同菌根类型树种的根系分泌物特征及其根际效应研究进展. 植物生态学报, 2025, 49(7): 1038-1052. DOI: 10.17521/cjpe.2024.0196
LIANG Tian-Hao, XIONG De-Cheng, LIU Yuan-Hao, DU Xu-Long, YANG Zhi-Jie, HUANG Jin-Xue. Research progress on root exudates and rhizosphere effects of tree species associated with different mycorrhizal types. Chinese Journal of Plant Ecology, 2025, 49(7): 1038-1052. DOI: 10.17521/cjpe.2024.0196
研究区域 Study area | 研究对象 Study object | 研究类型 Type | 测定方法 Method | 速率(R)特征 Rate (R) characteristic | 影响机理 Impact mechanism | 参考文献 Reference |
---|---|---|---|---|---|---|
亚热带 Subtropical zone | 10种丛枝菌根树种和10种外生菌根树种 10 AM species and 10 ECM species | 野外实验 Field experiment | ||||
温带 Temperate zone | 黄桦、糖槭 Betula allegheniensis, Acer saccharum | 盆栽实验 Pot experiment | 土培收集: 收集粘附在细根周围的根际土, 通过振荡离心或过滤得到根系分泌物。由于需要通过淋洗将根系与土壤进行分离, 难以完全排除土粒本身的影响, 一定程度上造成根系损伤, 收集到的根系分泌物可能含有根系本身的分泌物质 Soil cultivation collection: collecting the rhizosphere soil surrounding the adhering fine roots, and obtain the root exudates by shock centrifugation or filtration. Due to the need to separate the root from the soil through washing, it is difficult to completely exclude the influence of the soil particles themselves, causing root damage to some extent, and the collected root exudates may contain exudation material from the root itself | RECM = 2RAM | 外生菌根树种比丛枝菌根树种通常可以分配更多的碳水化合物到根系分泌物中 ECM tree species can usually allocate more carbohydrates to root exudates than AM tree species | Phillips & Fahey, |
北美白橡木、北美水青冈、糖槭和北美鹅掌楸 Quercus alba, Fagus grandifolia, Acer saccharum and Liriodendron tulipifera | 野外实验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | RECM = 2RAM | 外生菌根树种以有机养分循环过程为主, 通过分泌更多的碳(C)以促进土壤有机质(SOM)分解, 获取养分 ECM species are dominated by the organic nutrient cycling process and secrete more carbon (C) to obtain nutrients from SOM | Yin et al., | |
4种丛枝菌根树种和3种外生菌根树种 4 AM tree species and 3 ECM tree species | 野外实验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | RECM > RAM | 外生菌根的根外菌丝网络数量级远高于AM菌根, 显著促进了ECM树种根系的分泌 The extrarhizal hyphal network of ECM mycorrhizae is an order of magnitude higher than that of AM mycorrhizae, which significantly promotes the root exudation of ECM tree species | Jiang et al., | |
温带 Temperate zone | 枹栎、具柄冬青 Quercus serrata, Ilex pedunculosa | 野外实验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | RAM = 2RECM | 根系分泌速率与叶氮(N)含量正相关, 这是因为根系分泌速率与分配给根系的活性C含量有关, 植物将C分配到根系分泌物中以获取N可能是一种有效的促进生长的策略 Root exudation rate is positively correlated with leaf nitrogen (N) content because root exudation rate is related to the active C content assigned to roots, and plants assigning C to root exudates to obtain N may be an effective growth-promoting strategy | Sun et al., |
6种丛枝菌根树种和8种外生菌根树种 6 AM species and 8 ECM species | 野外实验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | RECM ≈ RAM | 不同物种土壤有效氮的空间异质性较大 Large spatial heterogeneity of soil available N under different species | Han et al., | |
4种丛枝菌根树种和4种外生菌根树种 4 AM species and 4 ECM species | 盆栽实验 Pot experiment | 土培收集 Soil incubation collection | RECM = 2RAM | 外生菌根树木比丛枝菌根树木具有更强的抗旱能力以及更高的导水效率和养分利用效率, 这就导致在干旱胁迫下AM树种可能比ECM树种根系分泌量更大 ECM trees have better drought resistance and higher water diversion efficiency than AM trees, which leads to greater root exudation in AM tree species than ECM tree species under drought stress | Liese et al., |
表1 不同菌根类型树种根系分泌物速率特征
Table 1 Root exudation rates of tree species with different mycorrhizal types
研究区域 Study area | 研究对象 Study object | 研究类型 Type | 测定方法 Method | 速率(R)特征 Rate (R) characteristic | 影响机理 Impact mechanism | 参考文献 Reference |
---|---|---|---|---|---|---|
亚热带 Subtropical zone | 10种丛枝菌根树种和10种外生菌根树种 10 AM species and 10 ECM species | 野外实验 Field experiment | ||||
温带 Temperate zone | 黄桦、糖槭 Betula allegheniensis, Acer saccharum | 盆栽实验 Pot experiment | 土培收集: 收集粘附在细根周围的根际土, 通过振荡离心或过滤得到根系分泌物。由于需要通过淋洗将根系与土壤进行分离, 难以完全排除土粒本身的影响, 一定程度上造成根系损伤, 收集到的根系分泌物可能含有根系本身的分泌物质 Soil cultivation collection: collecting the rhizosphere soil surrounding the adhering fine roots, and obtain the root exudates by shock centrifugation or filtration. Due to the need to separate the root from the soil through washing, it is difficult to completely exclude the influence of the soil particles themselves, causing root damage to some extent, and the collected root exudates may contain exudation material from the root itself | RECM = 2RAM | 外生菌根树种比丛枝菌根树种通常可以分配更多的碳水化合物到根系分泌物中 ECM tree species can usually allocate more carbohydrates to root exudates than AM tree species | Phillips & Fahey, |
北美白橡木、北美水青冈、糖槭和北美鹅掌楸 Quercus alba, Fagus grandifolia, Acer saccharum and Liriodendron tulipifera | 野外实验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | RECM = 2RAM | 外生菌根树种以有机养分循环过程为主, 通过分泌更多的碳(C)以促进土壤有机质(SOM)分解, 获取养分 ECM species are dominated by the organic nutrient cycling process and secrete more carbon (C) to obtain nutrients from SOM | Yin et al., | |
4种丛枝菌根树种和3种外生菌根树种 4 AM tree species and 3 ECM tree species | 野外实验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | RECM > RAM | 外生菌根的根外菌丝网络数量级远高于AM菌根, 显著促进了ECM树种根系的分泌 The extrarhizal hyphal network of ECM mycorrhizae is an order of magnitude higher than that of AM mycorrhizae, which significantly promotes the root exudation of ECM tree species | Jiang et al., | |
温带 Temperate zone | 枹栎、具柄冬青 Quercus serrata, Ilex pedunculosa | 野外实验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | RAM = 2RECM | 根系分泌速率与叶氮(N)含量正相关, 这是因为根系分泌速率与分配给根系的活性C含量有关, 植物将C分配到根系分泌物中以获取N可能是一种有效的促进生长的策略 Root exudation rate is positively correlated with leaf nitrogen (N) content because root exudation rate is related to the active C content assigned to roots, and plants assigning C to root exudates to obtain N may be an effective growth-promoting strategy | Sun et al., |
6种丛枝菌根树种和8种外生菌根树种 6 AM species and 8 ECM species | 野外实验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | RECM ≈ RAM | 不同物种土壤有效氮的空间异质性较大 Large spatial heterogeneity of soil available N under different species | Han et al., | |
4种丛枝菌根树种和4种外生菌根树种 4 AM species and 4 ECM species | 盆栽实验 Pot experiment | 土培收集 Soil incubation collection | RECM = 2RAM | 外生菌根树木比丛枝菌根树木具有更强的抗旱能力以及更高的导水效率和养分利用效率, 这就导致在干旱胁迫下AM树种可能比ECM树种根系分泌量更大 ECM trees have better drought resistance and higher water diversion efficiency than AM trees, which leads to greater root exudation in AM tree species than ECM tree species under drought stress | Liese et al., |
研究区域 Study area | 研究对象 Study object | 研究类型 Study type | 测定方法 Method | 化学组成特征 Chemical composition characteristic | 影响机理 Impact mechanism | 参考文献 Reference |
---|---|---|---|---|---|---|
亚热带 Subtropical zone | 10种丛枝菌根树种和10种外生菌根树种 10 AM species and 10 ECM species | 野外实验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | 有机酸(ECM树种比AM树种分泌多) Organic acids (ECM species secrete more than AM species) | 磷(P)限制下, 外生菌根树种根系分泌大量的有机酸, 以便释放出土壤中顽固的有机磷和矿质磷 Under phosphorous (P) deficiency, roots of ECM tree species secrete large amounts of organic acids to facilitate the release of recalcitrant organophosphorus and mineral phosphorus from the soil | Jiang et al., |
10种丛枝菌根树种和10种外生菌根树种 10 AM species and 10 ECM species | 野外实验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | ACP (丛枝菌根树种比外生菌根树种分泌更多) ACP (AM species secrete more than ECM species) | 丛枝菌根树种根系的形态和分泌物比外生菌根树种更容易受到无机营养缺乏的影响 The root morphology and exudates of AM species are more susceptible to inorganic nutrient deficiency than those of ECM species | Jiang et al., | |
温带 Temperate zone | 5种丛枝菌根树种和6种外生菌根树种 5 AM species and 6 ECM species | 野外实验 Field experiment | 土培收集 Soil incubation collection | 碳水化合物(ECM树种分泌多, AM树种分泌少) Carbohydrates (high in ECM species, low in AM species) | 外生菌根真菌通常比丛枝菌根真菌具有更高的生物量 ECM fungi usually have a higher biomass than AM fungi | Yin et al., |
美国白梣、糖槭、北美水青冈和加拿大铁杉 Fraxinus americana, Acer saccharum, Fagus grandifolia and Tsuga canadensis | 野外实验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | 土壤胞外酶(外生菌根树种比丛枝菌根树种分泌多) Soil extracellular enzymes (ECM species secrete more than AM species) | 外生菌根树种比丛枝菌根树种分泌较多的活性C, 促进土壤微生物合成较多的胞外酶 ECM species secrete more active C than AM species, promoting the synthesis of more extracellular enzymes by soil microorganisms | Phillips et al., | |
木荷、冬青栎 Schima superba, Quercus ilex | 野外试验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | 干旱条件下, 外生菌根树种糖类、氨基酸分泌增加, 有机酸减少; 丛枝菌根树种糖类、氨基酸分泌减少, 有机酸增加 Under drought conditions, the exudation of sugars and amino acids in ECM species increased while organic acid decreased; the secretion of sugars and organic acids in AM species decreased | 干旱下, 根系分泌速率与树种生长速度正相关, 而外生菌根树种比丛枝菌根树种生长速度快 Under drought, the rate of root exudates was positively correlated with the growth rate of the tree species, while ECM species grew faster than AM species | Jiang et al., |
表2 不同菌根类型树种根系分泌物化学组成特征
Table 2 Chemical composition characteristics of root exudates in tree species with different mycorrhizal types
研究区域 Study area | 研究对象 Study object | 研究类型 Study type | 测定方法 Method | 化学组成特征 Chemical composition characteristic | 影响机理 Impact mechanism | 参考文献 Reference |
---|---|---|---|---|---|---|
亚热带 Subtropical zone | 10种丛枝菌根树种和10种外生菌根树种 10 AM species and 10 ECM species | 野外实验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | 有机酸(ECM树种比AM树种分泌多) Organic acids (ECM species secrete more than AM species) | 磷(P)限制下, 外生菌根树种根系分泌大量的有机酸, 以便释放出土壤中顽固的有机磷和矿质磷 Under phosphorous (P) deficiency, roots of ECM tree species secrete large amounts of organic acids to facilitate the release of recalcitrant organophosphorus and mineral phosphorus from the soil | Jiang et al., |
10种丛枝菌根树种和10种外生菌根树种 10 AM species and 10 ECM species | 野外实验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | ACP (丛枝菌根树种比外生菌根树种分泌更多) ACP (AM species secrete more than ECM species) | 丛枝菌根树种根系的形态和分泌物比外生菌根树种更容易受到无机营养缺乏的影响 The root morphology and exudates of AM species are more susceptible to inorganic nutrient deficiency than those of ECM species | Jiang et al., | |
温带 Temperate zone | 5种丛枝菌根树种和6种外生菌根树种 5 AM species and 6 ECM species | 野外实验 Field experiment | 土培收集 Soil incubation collection | 碳水化合物(ECM树种分泌多, AM树种分泌少) Carbohydrates (high in ECM species, low in AM species) | 外生菌根真菌通常比丛枝菌根真菌具有更高的生物量 ECM fungi usually have a higher biomass than AM fungi | Yin et al., |
美国白梣、糖槭、北美水青冈和加拿大铁杉 Fraxinus americana, Acer saccharum, Fagus grandifolia and Tsuga canadensis | 野外实验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | 土壤胞外酶(外生菌根树种比丛枝菌根树种分泌多) Soil extracellular enzymes (ECM species secrete more than AM species) | 外生菌根树种比丛枝菌根树种分泌较多的活性C, 促进土壤微生物合成较多的胞外酶 ECM species secrete more active C than AM species, promoting the synthesis of more extracellular enzymes by soil microorganisms | Phillips et al., | |
木荷、冬青栎 Schima superba, Quercus ilex | 野外试验 Field experiment | 参考Phillips等( Refer to the field in-situ collection method in Phillips et al. ( | 干旱条件下, 外生菌根树种糖类、氨基酸分泌增加, 有机酸减少; 丛枝菌根树种糖类、氨基酸分泌减少, 有机酸增加 Under drought conditions, the exudation of sugars and amino acids in ECM species increased while organic acid decreased; the secretion of sugars and organic acids in AM species decreased | 干旱下, 根系分泌速率与树种生长速度正相关, 而外生菌根树种比丛枝菌根树种生长速度快 Under drought, the rate of root exudates was positively correlated with the growth rate of the tree species, while ECM species grew faster than AM species | Jiang et al., |
图1 不同菌根类型树种根系分泌物的响应机制概念图。
Fig. 1 Conceptual diagram of different mycorrhizal types of tree species on root exudates. AM, arbuscular mycorrhiza; ECM, ectomycorrhiza.
环境因素 Environmental factor | 菌根类型 Mycorrhizal type | 对树种根系分泌物的影响 Effect on root exudates of tree species | 参考文献 Reference | |
---|---|---|---|---|
方向 Direction | 程度 Level | |||
CO2浓度升高 Elevation of the CO2 concentration | 丛枝菌根 AM | 正向 Positive | 显著 Significant | Yang et al., |
外生菌根 ECM | 正向 Positive | 不显著 Not significant | ||
氮沉降 Nitrogen deposition | 丛枝菌根 AM | 正向 Positive | 显著 Significant | Midgley & Phillips, |
外生菌根 ECM | 正向 Positive | 不显著 Not significant | ||
干旱 Drought | 丛枝菌根 AM | 正向 Positive | 不显著 Not significant | Mohan et al., |
外生菌根 ECM | 正向 Positive | 显著 Significant |
表3 不同菌根类型树种根系分泌物对环境因子的响应
Table 3 Response of root exudates of tree species with different mycorrhizal types to environmental factors
环境因素 Environmental factor | 菌根类型 Mycorrhizal type | 对树种根系分泌物的影响 Effect on root exudates of tree species | 参考文献 Reference | |
---|---|---|---|---|
方向 Direction | 程度 Level | |||
CO2浓度升高 Elevation of the CO2 concentration | 丛枝菌根 AM | 正向 Positive | 显著 Significant | Yang et al., |
外生菌根 ECM | 正向 Positive | 不显著 Not significant | ||
氮沉降 Nitrogen deposition | 丛枝菌根 AM | 正向 Positive | 显著 Significant | Midgley & Phillips, |
外生菌根 ECM | 正向 Positive | 不显著 Not significant | ||
干旱 Drought | 丛枝菌根 AM | 正向 Positive | 不显著 Not significant | Mohan et al., |
外生菌根 ECM | 正向 Positive | 显著 Significant |
[80] |
[尹华军, 张子良, 刘庆 (2018). 森林根系分泌物生态学研究: 问题与展望. 植物生态学报, 42, 1055-1070.]
DOI |
Yin HJ, Zhang ZL, Liu Q (2018). Root exudates and their ecological consequences in forest ecosystems: problems and perspective. Chinese Journal of Plant Ecology, 42, 1055-1070. | |
[79] | Yin HJ, Wheeler E, Phillips RP (2014). Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biology & Biochemistry, 78, 213-221. |
[78] |
Yin HJ, Li YF, Xiao J, Xu ZF, Cheng XY, Liu Q (2013). Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biology, 19, 2158-2167.
DOI PMID |
[77] | Yang Y, Zhang X, Hartley IP, Dungait JAJ, Wen X, Li D, Guo Z, Quine TA (2022). Contrasting rhizosphere soil nutrient economy of plants associated with arbuscular mycorrhizal and ectomycorrhizal fungi in karst forests. Plant and Soil, 470, 81-93. |
[76] | Yang K, Zhang Q, Zhu JJ, Wang QQ, Gao T, Wang GG (2023). Mycorrhizal type regulates trade-offs between plant and soil carbon in forests. Nature Climate Change, 14, 91-97. |
[66] | Tan B, Li Y, Liu T, Tan X, He Y, You X, Leong KH, Liu C, Li L (2021). Response of plant rhizosphere microenvironment to water management in soil- and substrate-based controlled environment agriculture (CEA) systems: a review. Frontiers in Plant Science, 12, 691651. DOI: 10.3389/fpls.2021.691651. |
[65] |
Talhelm AF, Pregitzer KS, Kubiske ME, Zak DR, Campany CE, Burton AJ, Dickson RE, Hendrey GR, Isebrands JG, Lewin KF, Nagy J, Karnosky DF (2014). Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. Global Change Biology, 20, 2492-2504.
DOI PMID |
[64] | [孙韵 (2022). 亚热带不同树种根际土壤养分及酶活性比较研究. 硕士学位论文, 中南林业科技大学, 长沙.] |
Sun Y (2022). Comparative Study on Nutrient and Enzyme Activity in Rhizosphere Soil of Different Tree Species in Subtropical Zone. Master degree dissertation, Central South University of Forestry and Technology, Changsha. | |
[63] | Sun L, Kominami Y, Yoshimura K, Kitayama K (2017). Root-exudate flux variations among four co-existing canopy species in a temperate forest, Japan. Ecological Research, 32, 331-339. |
[62] | Sun L, Ataka M, Han M, Han Y, Gan D, Xu T, Guo Y, Zhu B (2021). Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytologist, 229, 259-271. |
[61] |
Sulman BN, Brzostek ER, Medici C, Shevliakova E, Menge D NL, Phillips RP (2017). Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association. Ecology Letters, 20, 1043-1053.
DOI PMID |
[60] | [苏颖佳, 杨凯, 张乾, 徐爽, 于立忠, 张金鑫 (2024). 不同菌根类型树种土壤氮、磷有效性特征及影响因素研究进展. 生态学杂志, 6, 1-17.] |
Su YJ, Yang K, Zhang Q, Xu S, Yu LZ, Zhang JX (2024). Research progress on soil nitrogen and phosphorus availability characteristics of different mycorrhizal tree species. Chinese Journal of Ecology, 6, 1-17. | |
[59] |
Soudzilovskaia NA, van der Heijden MGA, Cornelissen JHC, Makarov MI, Onipchenko VG, Maslov MN, Akhmetzhanova AA, van Bodegom PM (2015). Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytologist, 208, 280-293.
DOI PMID |
[58] | [宋福强, 杨国亭, 孟繁荣, 田兴军, 董爱荣 (2004). 丛枝菌根化大青杨苗木根际微域环境的研究. 生态环境, 13, 211-216.] |
Song FQ, Yang GT, Meng FR, Tian XJ, Dong AR (2004). The rhizospheric niche of seedlings of Populus ussruiensis colonized by arbuscular mycorrhizal (AM) fungi. Ecology and Environmental Sciences, 13, 211-216. | |
[57] | Sinsabaugh RL (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology & Biochemistry, 42, 391-404. |
[56] | Sawyer NA, Chambers SM, Cairney JWG (2003). Distribution of Amanita spp. genotypes under eastern Australian sclerophyll vegetation. Mycological Research, 107, 1157-1162. |
[55] |
Rosling A, Midgley MG, Cheeke T, Urbina H, Fransson P, Phillips RP (2016). Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytologist, 209, 1184-1195.
DOI PMID |
[41] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, et al. (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
DOI PMID |
[40] |
Martinière A, Gibrat R, Sentenac H, Dumont X, Gaillard I, Paris N (2018). Uncovering pH at both sides of the root plasma membrane interface using noninvasive imaging. Proceedings of the National Academy of Sciences of the United States of America, 115, 6488-6493.
DOI PMID |
[39] | [鲁显楷, 莫江明, 张炜, 毛庆功, 刘荣臻, 王聪, 王森浩, 郑棉海, Taiki M, 毛晋花, 张勇群, 王玉芳, 黄娟 (2022). 模拟大气氮沉降对中国森林生态系统影响的研究进展. 热带亚热带植物学报, 27, 500-522.] |
Lu XK, Mo JM, Zhang W, Mao QG, Liu RZ, Wang C, Wang SH, Zheng MH, Taiki M, Mao JH, Zhang YQ, Wang YF, Hang J (2019). Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview. Journal of Tropical and Subtropical Botany, 27, 500-522. | |
[38] |
Lin G, McCormack ML, Ma C, Guo D (2017). Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytologist, 213, 1440-1451.
DOI PMID |
[37] | Lin G, Guo D, Li L, Ma CG, Zeng DH (2018). Contrasting effects of ectomycorrhizal and arbuscular mycorrhizal tropical tree species on soil nitrogen cycling: the potential mechanisms and corresponding adaptive strategies. Oikos, 127, 518-530. |
[36] | Lin G, Craig ME, Jo I, Wang X, Zeng DH, Phillips RP (2022). Mycorrhizal associations of tree species influence soil nitrogen dynamics via effects on soil acid-base chemistry. Global Ecology and Biogeography, 31, 168-182. |
[35] |
Liese R, Lübbe T, Albers NW, Meier IC (2018). The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Tree Physiology, 38, 83-95.
DOI PMID |
[34] |
Liese R, Alings K, Meier IC (2017). Root branching is a leading root trait of the plant economics spectrum in temperate trees. Frontiers in Plant Science, 8, 315. DOI: 10.3389/fpls.2017.00315.
PMID |
[33] | [李静, 夏尚光, 石晓芸, 孙庆业, 赵琼 (2024). 亚热带丛枝和外生菌根森林土壤酸缓冲性能及其主要影响因素. 生态学杂志, 21, 3333-3340.] |
Li J, Xia SG, Shi XY, Sun QY, Zhao Q (2023). Soil acid buffering capacity of subtropical arbuscular and ectomycorrhizal forests and its main influencing. Chinese Journal of Ecology, 21, 3333-3340. | |
[32] | [李芳, 郝志鹏, 陈保冬 (2019). 菌根植物适应低磷胁迫的分子机制. 植物营养与肥料学报, 25, 1989-1997.] |
Li F, Hao ZP, Chen BD (2019). Molecular mechanism for the adaption of arbuscular mycorrhizal symbiosis to phosphorus deficiency. Journal of Plant Nutrition and Fertilizers, 25, 1989-1997. | |
[31] | Latef AAHA, Hashem A, Rasool S, Abd_Allah EF, Alqarawi AA, Egamberdieva D, Jan S, Anjum NA, Ahmad P (2016). Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. Journal of Plant Biology, 59, 407-426. |
[75] |
Wurzburger N, Brookshrie ENJ (2017). Experimental evidence that mycorrhizal nitrogen strategies affect soil carbon. Ecology, 98, 1491-1497.
DOI PMID |
[74] |
[吴林坤, 林向民, 林文雄 (2014). 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 38, 298-310.]
DOI |
Wu LK, Lin XM, Lin WX (2014). Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 38, 298-310.
DOI |
|
[73] |
Williams A, de Vries FT (2020). Plant root exudation under drought: implications for ecosystem functioning. New Phytologist, 225, 1899-1905.
DOI PMID |
[72] |
[王薪琪, 王传宽 (2019). 东北5种温带人工林表层土壤碳氮含量的分异. 应用生态学报, 30, 1911-1918.]
DOI |
Wang XQ, Wang CK (2019). Variations in topsoil carbon and nitrogen contents of five temperate plantations in Northeast China. Chinese Journal of Applied Ecology, 30, 1911-1918. | |
[71] | [王巧红, 宫渊波, 张君 (2006). 森林生态系统对大气氮沉降的响应. 四川林业科技, 27(1), 19-25.] |
Wang QH, Gong YB, Zhang J (2006). Impact of forest ecosystems on atmospheric nitrogen deposition. Journal of Sichuan Forestry Science and Technology, 27(1), 19-25. | |
[70] | Wallander H, Ekblad A, Godbold DL, Johnson D, Bahr A, Baldrian P, Björk RG, Kieliszewska-Rokicka B, Kjøller R, Kraigher H, Plassard C, Rudawska M (2013). Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils—A review. Soil Biology & Biochemistry, 57, 1034-1047. |
[69] |
Walker TS, Bais HP, Grotewold E, Vivanco JM (2003). Root exudation and rhizosphere biology. Plant Physiology, 132, 44-51.
DOI PMID |
[68] |
Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC (2016). Mycorrhizal association as a primary control of the CO2 fertilization effect. Science, 353, 72-74.
DOI PMID |
[67] | Tekaya M, Dabbaghi O, Guesmi A, Attia F, Chehab H, Khezami L, Algathami FK, Hamadi NB, Hammami M, Prinsen E, Mechri B (2022). Arbuscular mycorrhizas modulate carbohydrate, phenolic compounds and hormonal metabolism to enhance water deficit tolerance of olive trees (Olea europaea). Agricultural Water Management, 274, 107947. DOI: 10.1016/j.agwat.2022.107947. |
[54] |
Rewald B, Rechenmacher A, Godbold DL (2014). It’s complicated: intraroot system variability of respiration and morphological traits in four deciduous tree species. Plant Physiology, 166, 736-745.
DOI PMID |
[53] |
Read DJ, Perez-Moreno J (2003). Mycorrhizas and nutrient cycling in ecosystems—A journey towards relevance? New Phytologist, 157, 475-492.
DOI PMID |
[52] | Querejeta JI, Egerton-Warburton LM, Allen MF (2007). Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California Oak savanna. Soil Biology & Biochemistry, 39, 409-417. |
[51] | Qiang W, Gunina A, Kuzyakov Y, He L, Zhang Y, Liu B, Pang X (2023). Contributions of mycorrhizal fungi to soil aggregate formation during subalpine forest succession. Catena, 221, 106800. DOI: 10.1016/j.catena.2022.106800. |
[50] | Qi XX, Chen L, Zhu JA, Li Z, Lei HM, Shen Q, Wu HL, Quyang S, Zeng YL, H YT, Xiang WH (2022). Increase of soil phosphorus bioavailability with ectomycorrhizal tree dominance in subtropical secondary forests. Forest Ecology and Management, 521, 120435. DOI: 10.1016/j.foreco.2022.120435. |
[49] |
Phillips RP, Finzi AC, Bernhardt ES (2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2fumigation. Ecology Letters, 14, 187-194.
DOI PMID |
[48] | Phillips RP, Fahey TJ, Burton AJ (2008). Monitoring fine root growth and physiology in a mixed hardwood forest: implications for nitrogen deposition responses. Tree Physiology, 28, 1075-1085. |
[47] |
Phillips RP, Fahey TJ (2006). Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology, 87, 1302-1313.
PMID |
[46] |
Phillips RP, Brzostek E, Midgley MG (2013). The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 199, 41-51.
DOI PMID |
[45] | Phillips R, Brzostek ER, Midgley M, Keller AB (2016). Mycorrhizal associations as trait integrators for biogeochemical syndromes in forests//101st ESA Annual Meeting (August 7-12, 2016). ESA, Washington D.C. |
[44] | Oburger E, Jones DL (2018). Sampling root exudates-mission impossible? Rhizosphere, 6, 116-133. |
[43] | Mohan JE, Cowden CC, Baas P, Dawadi A, Frankson PT, Helmick K, Hughes E, Khan S, Lang A, Machmuller M, Taylor M, Witt CA (2014). Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecology, 10, 3-19. |
[42] |
Midgley MG, Phillips RP (2016). Resource stoichiometry and the biogeochemical consequences of nitrogen deposition in a mixed deciduous forest. Ecology, 97, 3369-3378.
DOI PMID |
[30] |
Laliberté E (2017). Below-ground frontiers in trait-based plant ecology. New Phytologist, 213, 1597-1603.
DOI PMID |
[29] |
Kuyper TW (2012). Ectomycorrhiza and the open nitrogen cycle in an afrotropical rainforest. New Phytologist, 195, 728-729.
DOI PMID |
[28] |
Klein T, Siegwolf RTW, Körner C (2016). Belowground carbon trade among tall trees in a temperate forest. Science, 352, 342-344.
DOI PMID |
[27] |
Kivlin SN, Emery SM, Rudgers JA (2013). Fungal symbionts alter plant responses to global change. American Journal of Botany, 100, 1445-1457.
DOI PMID |
[26] |
Karst J, Gaster J, Wiley E, Landhäusser SM (2017). Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiology, 37, 154-164.
DOI PMID |
[25] | [蒋治岩, 邹青勤, 杨柳, 李汶倬, 张鹤东, 陈祥伟, 王秀伟 (2021). 典型黑土区不同菌根类型树种根系分泌速率及根际效应差异. 生态学杂志, 40, 2709-2718.] |
Jiang ZY, Zou QQ, Yang L, Li WZ, Zhang HD, Chen XW, Wang XW (2021). Root exudation rate and rhizosphere effect of different mycorrhizal associations of tree species in typical black soil area. Chinese Journal of Ecology, 40, 2709-2718.
DOI |
|
[24] | Jiang Z, Thakur MP, Liu R, Zhou G, Zhou L, Fu Y, Zhang P, He Y, Shao J, Gao J, Li N, Wang X, Jia X, Chen Y, Zhang C, Zhou X (2022). Soil P availability and mycorrhizal type determine root exudation in subtropical forests. Soil Biology & Biochemistry, 171, 108722. DOI: 10.1016/j.soilbio.2022.108722. |
[23] | Jiang Z, Fu YL, Zhou LY, He YH, Zhou GY, Dietrich P, Long JL, Wang XX, Jia SX, Ji YH, Jia Z, Song BQ, Liu RQ, Zhou XH (2023). Plant growth strategy determines the magnitude and direction of drought-induced changes in root exudates in subtropical forests. Global Change Biology, 31. 3476-3488. |
[22] | Iversen CM, Keller JK, Garten Jr CT, Norby RJ (2012). Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2-enrichment. Global Change Biology, 18, 1684-1697. |
[21] |
Holz M, Zarebanadkouki M, Kuzyakov Y, Pausch J, Carminati A (2018). Root hairs increase rhizosphere extension and carbon input to soil. Annals of Botany, 121, 61-69.
DOI PMID |
[20] | Hodge A, Helgason T, Fitter AH (2010). Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology, 3, 267-273. |
[19] | Han MG, Sun LJ, Gan DY, Fu LC, Zhu B (2020). Root functional traits are key determinants of the rhizosphere effect on soil organic matter decomposition across 14 temperate hardwood species. Soil Biology & Biochemistry, 151, 108019. DOI: 10.1016/j.soilbio.2020.108019. |
[18] | Gargallo-Garriga A, Preece C, Sardans J, Oravec M, Urban O, Peñuelas J (2018). Root exudate metabolomes change under drought and show limited capacity for recovery. Scientific Reports, 8, 12696. DOI: 10.1038/s41598-018-30150-0. |
[17] |
Fahey C, Winter K, Slot M, Kitajima K (2016). Influence of arbuscular mycorrhizal colonization on whole-plant respiration and thermal acclimation of tropical tree seedlings. Ecology and Evolution, 6, 859-870.
DOI PMID |
[16] |
de Vries FT, Williams A, Stringer F, Willcocks R, McEwing R, Langridge H, Straathof AL (2019). Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytologist, 224, 132-145.
DOI PMID |
[15] | Crim PM, Cumming JR (2020). Extracellular soil enzyme activities in high-elevation mixed red spruce forests in central Appalachia, USA. Forests, 11, 468. DOI: 10.3390/f11040468. |
[14] |
Craig ME, Turner BL, Liang C, Clay K, Johnson DJ, Phillips RP (2018). Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Global Change Biology, 24, 3317-3330.
DOI PMID |
[13] |
Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014). Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201, 31-44.
DOI PMID |
[12] | Chen X, Ding ZJ, Tang M, Zhu B (2018). Greater variations of rhizosphere effects within mycorrhizal group than between mycorrhizal group in a temperate forest. Soil Biology & Biochemistry, 126, 237-246. |
[11] | [陈亮, 蔡咏欣, 雷惠敏, 齐晓旭, 林俊均, 廖伟, 黄子玄 (2022). 亚热带丛枝菌根与外生菌根森林对土壤氮循环的影响. 生态学杂志, 41, 218-226.] |
Chen L, Cai YX, Lei HM, Qi XX, Lin JJ, Liao W, Huang ZX (2022). Comparison of soil nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests in a sub-tropical region. Chinese Journal of Ecology, 41, 218-226. | |
[10] |
Cheeke TE, Phillips RP, Brzostek ER, Rosling A, Bever JD, Fransson P (2017). Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytologist, 214, 432-442.
DOI PMID |
[9] | [曹雨婷, 于水强, 邵慧妹, 谭蕊, 徐新颖, 王维枫 (2023). 不同优势树种菌根类型差异对土壤胞外酶活性的影响. 生态学报, 43, 1971-1980.] |
Cao YT, Yu SQ, Shao HM, Tan R, Xu XY, Wang WF (2023). Effects of different mycorrhizal types in dominant activity. Acta Ecologica Sinica, 43, 1971-1980. | |
[8] | Brzostek ER, Greco A, Drake JE, Finzi AC (2013). Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochemistry, 115, 65-76. |
[7] |
Brzostek ER, Dragoni D, Brown ZA, Phillips RP (2015). Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytologist, 206, 1274-1282.
DOI PMID |
[6] |
Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015). How tree roots respond to drought. Frontiers in Plant Science, 6, 547. DOI: 10.3389/fpls.2015.00547.
PMID |
[5] | Bastida F, Eldridge DJ, García C, Kenny Png G, Bardgett RD, Delgado-Baquerizo M (2021). Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes. The ISME Journal, 15, 2081-2091. |
[4] | Barceló M, van Bodegom PM, Tedersoo L, Olsson PA, Soudzilovskaia NA (2022). Mycorrhizal tree impacts on topsoil biogeochemical properties in tropical forests. Journal of Ecology, 110, 1271-1282. |
[3] | Averill C, Turner BL, Finzi AC (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature, 505, 543-545. |
[2] | Asmar F, Eiland F, Nielsen NE (1994). Effect of extracellular enzyme activities on solubilization rate of soil organic nitrogen. Biology and Fertility of Soils, 17, 32-38. |
[1] |
Anderson IC, Cairney JW (2007). Ectomycorrhizal fungi: exploring the mycelial frontier. FEMS Microbiology Reviews, 31, 388-406.
PMID |
[1] | 李文竹, 栾军伟, 邸雅平, 王一, 陈志成, 聂秀青, 刘世荣. 模拟干旱对菌根介导下暖温带锐齿栎林土壤酶活性和土壤有机碳组分的影响[J]. , 2026, 50(菌根生态学): 0-. |
[2] | 张子睿, 周静, 胡艳萍, 梁爽, 马永鹏, 陈伟乐. 极度濒危植物巧家五针松的根内和根际真菌群落特征[J]. , 2025, 49(濒危植物的保护与恢复): 0-. |
[3] | 王娟, 张登山, 肖元明, 裴全帮, 王博, 樊博, 周国英. 长期围封后高寒草原植物根系分泌物特征与环境因子关系[J]. 植物生态学报, 2025, 49(4): 596-609. |
[4] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[5] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[6] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[7] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[8] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[9] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[10] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[11] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[12] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[13] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[14] | 单婷婷, 陈彤垚, 陈晓梅, 郭顺星, 王爱荣. 菌根真菌与兰科植物氮营养关系的研究进展[J]. 植物生态学报, 2022, 46(5): 516-528. |
[15] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19