植物生态学报 ›› 2025, Vol. 49 ›› Issue (9): 1388-1398.DOI: 10.17521/cjpe.2024.0439 cstr: 32100.14.cjpe.2024.0439
刘影, 李疆枫, 吴佳琪, 王艺帆, 尹清琳, 王静*(
)(
)
收稿日期:2024-12-05
接受日期:2025-03-21
出版日期:2025-09-20
发布日期:2025-03-21
通讯作者:
*王静: ORCID: 0000-0003-4361-7281 (jingwang@hbu.edu.cn)基金资助:
LIU Ying, LI Jiang-Feng, WU Jia-Qi, WANG Yi-Fan, YIN Qing-Lin, WANG Jing*(
)(
)
Received:2024-12-05
Accepted:2025-03-21
Online:2025-09-20
Published:2025-03-21
Supported by:摘要: 草地植物根系和菌根真菌是土壤有机碳的重要来源, 对土壤碳氮组分的形成和周转起重要作用。受气候变化影响, 全球干旱事件频发, 然而干旱如何调控根系和菌根真菌对不同组分土壤碳氮的影响仍不清楚。该研究通过室内盆栽种植草地植物糙隐子草(Cleistogenes squarrosa), 盆内设置根袋和菌根袋, 用以区分根系和菌根真菌在植物生长过程中对土壤碳氮的影响, 同时在植物生长期内进行对照和干旱处理。在植物生长64天后收获, 测定土壤无机氮含量、植物生物量及碳氮含量、根袋和菌根袋中土壤有机质及其组分的碳氮含量、微生物群落组成等。结果显示与无根系参与的菌根袋相比, 根袋中根系分布使土壤有机碳及颗粒态有机碳含量显著提高17.5%和55.8%, 矿物结合态有机质氮含量显著提高10.1%。干旱处理提高土壤无机氮含量、降低植物生物量、对根袋中土壤有机质及其组分的碳氮含量无显著影响, 但显著降低了菌根袋中颗粒态有机碳含量。干旱处理未显著改变根袋中微生物生物量, 但使菌根袋中的微生物生物量呈上升趋势, 且菌根袋中颗粒态有机质碳含量与菌根真菌量及微生物总量呈负相关关系。研究结果表明植物生长过程中根系主要影响土壤中颗粒态有机碳含量, 菌根真菌主要影响矿物结合态有机质氮含量, 短期干旱会降低菌根真菌参与的土壤颗粒态有机碳含量, 未来研究应更加关注全球变化在长时间尺度上如何影响草地植物根系和菌根真菌对土壤有机质及其组分的影响。
刘影, 李疆枫, 吴佳琪, 王艺帆, 尹清琳, 王静. 干旱下草地植物糙隐子草根系和菌根真菌对土壤碳氮的影响. 植物生态学报, 2025, 49(9): 1388-1398. DOI: 10.17521/cjpe.2024.0439
LIU Ying, LI Jiang-Feng, WU Jia-Qi, WANG Yi-Fan, YIN Qing-Lin, WANG Jing. Effects of root and mycorrhizal fungi of Cleistogenes squarrosa on soil carbon and nitrogen under drought conditions. Chinese Journal of Plant Ecology, 2025, 49(9): 1388-1398. DOI: 10.17521/cjpe.2024.0439
图1 干旱处理对糙隐子草(Cleistogenes squarrosa)地上、根生物量以及叶片碳氮含量和碳氮比的影响(平均值±标准误)。**, 处理效应极显著(p ≤ 0.01); *, 处理效应显著(p ≤ 0.05); #, 处理效应边缘显著(p ≤ 0.1)。Control, 对照; Drought, 干旱处理。
Fig. 1 Effects of drought treatment on aboveground, root biomass and the carbon (C) concentration, nitrogen (N) concentration, C:N of Cleistogenes squarrosa (mean ± SE). ** indicated that the treatment effect was extremely significant (p ≤ 0.01); * indicated that the treatment effect was significant (p ≤ 0.05); # indicated that the treatment effect was marginally significant (p ≤ 0.1).
图2 干旱处理对土壤无机氮含量的影响(平均值±标准误)。**表示处理效应极显著(p ≤ 0.01)。Control, 对照; Drought, 干旱处理。
Fig. 2 Effects of drought treatment on soil inorganic nitrogen (N) content (mean ± SE). ** indicated that the treatment effect was extremely significant (p ≤ 0.01). NH4+-N, ammonium nitrogen; NO3--N, nitrate nitrogen.
图3 干旱处理对根袋和菌根袋中土壤有机质碳氮含量及碳氮比的影响(平均值±标准误)。图中为两因素方差分析结果, Trt表示干旱处理的主效应, Bag表示根袋和菌根袋不同来源的主效应, Trt × Bag表示两者的交互效应。**表示处理的主效应或交互效应极显著(p ≤ 0.01); #表示处理的主效应或交互效应边缘显著(p ≤ 0.1)。Control, 对照; Drought, 干旱处理。
Fig. 3 Effects of drought treatment on carbon and nitrogen concentration of soil organic matter (SOM) (mean ± SE). The results of two-way ANOVA were shown in the figures. Trt represents the main effect of drought, Bag represents the main effect of different sources of root bag and mycorrhizal bag, and Trt × Bag represents the interactive effect of both. ** indicated that the main effect or interaction effect of the treatment was extremely significant (p ≤ 0.01); # indicated that the main effect or interaction effect of the treatment was marginally significant (p ≤ 0.1). SOM_C, carbon concentration of soil organic matter; SOM_N, nitrogen concentration of soil organic matter.
图4 干旱处理对土壤颗粒态有机质和矿物结合态有机质碳氮含量及碳氮比的影响(平均值±标准误)。图中为两因素方差分析结果, Trt表示干旱处理的主效应, Bag表示根袋和菌根袋不同来源的主效应, Trt × Bag表示两者的交互效应。**表示处理的主效应或交互效应极显著(p ≤ 0.01); *表示处理的主效应或交互效应显著(p ≤ 0.05)。Control, 对照; Drought, 干旱处理。
Fig. 4 Effects of drought treatment on carbon and nitrogen concentration of soil particulate organic matter (POM) and soil mineral-associated organic matter (MAOM) (mean ± SE). The results of two-way ANOVA were shown in the figures. Trt represents the main effect of drought, Bag represents the main effect of different sources of root bag and mycorrhizal bag, and Trt × Bag represents the interactive effect of both. ** indicated that the main effect or interaction effect of the treatment was extremely significant (p ≤ 0.01); * indicated that the main effect or interaction effect was significant (p ≤ 0.05). MAOM_C, carbon concentration of mineral-associated organic matter; MAOM_N, nitrogen concentration of mineral-associated organic matter; POC_C, carbon concentration of particulate organic matter; POC_N, nitrogen concentration of particulate organic matter.
图5 干旱处理对土壤微生物群落组成的影响(平均值±标准误)。图中为两因素方差分析结果, Trt表示干旱处理的主效应, Bag表示根袋和菌根袋不同来源的主效应, Trt × Bag表示两者的交互效应。#为处理的主效应或交互效应边缘显著(p ≤ 0.1)。Control, 对照; Drought, 干旱处理。
Fig. 5 Effects of drought treatment on soil microbial community composition (mean ± SE). The results of two-way ANOVA were shown in the figures. Trt represents the main effect of drought, Bag represents the main effect of different sources of root bag and mycorrhizal bag, and Trt × Bag represents the interactive effect of both. AMF, arbuscular mycorrhizal fungi. # indicated that the main effect or interaction effect of the treatment was marginally significant (p ≤ 0.1).
图6 土壤颗粒有机质含碳量与丛枝菌根真菌(A)含量和微生物总量(B)的关系。圆点表示根袋数据, 圆圈表示菌根袋数据。
Fig. 6 Relationships between carbon concentration of soil particulate organic matter (POM_C) and total amount of arbuscular mycorrhizal fungi (AMF, A) or total microbial biomass (B). Dots and circles represent the data from root bags and mycorrhizal bags, respectively.
| [1] |
Bai TS, Qiu YP, Hu SJ (2024). Nitrogen availability mediates the effects of roots and mycorrhizal fungi on soil organic carbon decomposition: a meta-analysis. Pedosphere, 34, 289-296.
DOI URL |
| [2] |
Bai YF, Cotrufo MF (2022). Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 377, 603-608.
DOI PMID |
| [3] |
Chen BD, Fu W, Wu SL, Zhu YG (2024). Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling. Chinese Journal of Plant Ecology, 48, 1-20.
DOI URL |
|
[陈保冬, 付伟, 伍松林, 朱永官 (2024). 菌根真菌在陆地生态系统碳循环中的作用. 植物生态学报, 48, 1-20.]
DOI |
|
| [4] |
Cheng L, Booker FL, Tu C, Burkey KO, Zhou LS, Shew HD, Rufty TW, Hu SJ (2012). Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 337, 1084-1087.
DOI PMID |
| [5] |
Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776-779.
DOI |
| [6] |
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
DOI PMID |
| [7] |
Dai AG (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52-58.
DOI |
| [8] |
Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
DOI |
| [9] | Deng L, Peng CH, Kim DG, Li JW, Liu YL, Hai XY, Liu QY, Huang CB, Shangguan ZP, Kuzyakov Y (2021). Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews, 214, 103501. DOI: 10.1016/j.earscirev.2020.103501. |
| [10] |
Dijkstra FA, Zhu B, Cheng WX (2021). Root effects on soil organic carbon: a double-edged sword. New Phytologist, 230, 60-65.
DOI PMID |
| [11] |
Ekblad A, Mikusinska A, Ågren GI, Menichetti L, Wallander H, Vilgalys R, Bahr A, Eriksson U (2016). Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilization. New Phytologist, 211, 874-885.
DOI PMID |
| [12] |
Feng JG, He KY, Zhang QF, Han MG, Zhu B (2022). Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Global Change Biology, 28, 3426-3440.
DOI URL |
| [13] | Feng XJ (2022). Plant influences on soil organic carbon dynamics//Rumpel C. Understanding and Fostering Soil Carbon Sequestration. Burleigh Dodds Science Publishing, Cambridge, UK. |
| [14] |
Fulton-Smith S, Cotrufo MF (2019). Pathways of soil organic matter formation from above and belowground inputs in a Sorghum bicolor bioenergy crop. Global Change Biology Bioenergy, 11, 971-987.
DOI URL |
| [15] |
Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, de Angelis P, Miglietta F, Peressotti A (2006). Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant and Soil, 281, 15-24.
DOI URL |
| [16] |
Hodge A, Storer K (2015). Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant and Soil, 386, 1-19.
DOI URL |
| [17] |
Horsch CCA, Antunes PM, Fahey C, Grandy AS, Kallenbach CM (2023). Trait-based assembly of arbuscular mycorrhizal fungal communities determines soil carbon formation and retention. New Phytologist, 239, 311-324.
DOI URL |
| [18] | Huang JS, Liu WX, Yang S, Yang L, Peng ZY, Deng MF, Xu S, Zhang BB, Ahirwal J, Liu LL (2021). Plant carbon inputs through shoot, root, and mycorrhizal pathways affect soil organic carbon turnover differently. Soil Biology & Biochemistry, 160, 108322. DOI: 10.1016/j.soilbio.2021.108322. |
| [19] |
Keller AB, Brzostek ER, Craig ME, Fisher JB, Phillips RP (2021). Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type. Ecology Letters, 24, 626-635.
DOI PMID |
| [20] | Klink S, Keller AB, Wild AJ, Baumert VL, Gube M, Lehndorff E, Meyer N, Mueller CW, Phillips RP, Pausch J (2022). Stable isotopes reveal that fungal residues contribute more to mineral-associated organic matter pools than plant residues. Soil Biology & Biochemistry, 168, 108634. DOI: 10.1016/j.soilbio.2022.108634. |
| [21] |
Kou L, Jiang L, Fu XL, Dai XQ, Wang HM, Li SG (2018). Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations. New Phytologist, 218, 1450-1461.
DOI URL |
| [22] |
Lal R (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627.
DOI PMID |
| [23] |
Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105.
PMID |
| [24] |
Ma XH, Huang JY, Yu HL, Han C, Li B (2024). Soil organic carbon and its easily decomposed components under precipitation change and nitrogen addition in a desert steppe in northwest China. Chinese Journal of Plant Ecology, 48, 1065-1077.
DOI URL |
|
[马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰 (2024). 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究. 植物生态学报, 48, 1065-1077.]
DOI |
|
| [25] |
Peng YF, Guo DL, Yang YH (2017). Global patterns of root dynamics under nitrogen enrichment. Global Ecology and Biogeography, 26, 102-114.
DOI URL |
| [26] | Ridgeway J, Kane J, Morrissey E, Starcher H, Brzostek E (2024). Roots selectively decompose litter to mine nitrogen and build new soil carbon. Ecology Letters, 27, e14331. DOI: 10.1111/ele.14331. |
| [27] |
See CR, Keller AB, Hobbie SE, Kennedy PG, Weber PK, Pett-Ridge J (2022). Hyphae move matter and microbes to mineral microsites: integrating the hyphosphere into conceptual models of soil organic matter stabilization. Global Change Biology, 28, 2527-2540.
DOI URL |
| [28] | Shi BK, Delgado-Baquerizo M, Knapp AK, Smith MD, Reed S, Osborne B, Carrillo Y, Maestre FT, Zhu Y, Chen AP, Wilkins K, Holdrege MC, Kulmatiski A, Picon-Cochard C, Roscher C, et al. (2024). Aridity drives the response of soil total and particulate organic carbon to drought in temperate grasslands and shrublands. Science Advances, 10, eadq2654. DOI: 10.1126/sciadv.adq2654. |
| [29] |
Sokol NW, Bradford MA (2019). Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience, 12, 46-53.
DOI |
| [30] |
Sokol NW, Kuebbing SE, Karlsen-Ayala E, Bradford MA (2019). Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist, 221, 233-246.
DOI PMID |
| [31] |
van Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM (2007). Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. New Phytologist, 176, 175-183.
DOI PMID |
| [32] |
Verlinden MS, Ven A, Verbruggen E, Janssens IA, Wallander H, Vicca S (2018). Favorable effect of mycorrhizae on biomass production efficiency exceeds their carbon cost in a fertilization experiment. Ecology, 99, 2525-2534.
DOI PMID |
| [33] | Villarino SH, Pinto P, Jackson RB, Piñeiro G (2021). Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions. Science Advances, 7, eabd3176. DOI: 10.1126/sciadv.abd3176. |
| [34] | Wang ZH, Lian JQ, Liang JW, Wei HJ, Chen H, Hu WT, Tang M (2024). Arbuscular mycorrhizal symbiosis modulates nitrogen uptake and assimilation to enhance drought tolerance of Populus cathayana. Plant Physiology and Biochemistry, 210, 108648. DOI: 10.1016/j.plaphy.2024.108648. |
| [35] |
Wu SL, Fu W, Rillig MC, Chen BD, Zhu YG, Huang LB (2024). Soil organic matter dynamics mediated by arbuscular mycorrhizal fungi—An updated conceptual framework. New Phytologist, 242, 1417-1425.
DOI URL |
| [36] |
Xu XY, Qiu YP, Zhang KC, Yang F, Chen MF, Luo X, Yan XB, Wang P, Zhang Y, Chen HH, Guo H, Jiang L, Hu SJ (2022). Climate warming promotes deterministic assembly of arbuscular mycorrhizal fungal communities. Global Change Biology, 28, 1147-1161.
DOI URL |
| [37] | Zhang M, Wang CY, Luo S, Xu QY, Yang LM, Yue K, Fan YX (2025). Influence of nitrogen fertilization on soil organic nitrogen components in agroecosystems: a meta-analysis. Acta Ecologica Sinica, 45, 1328-1338. |
| [章梦, 王晨颖, 罗松, 许秋月, 杨柳明, 岳楷, 范跃新 (2025). 施用氮肥对农田土壤有机氮组分影响的整合分析. 生态学报, 45, 1328-1338.] | |
| [38] |
Zhou XH, Zhou LY, Nie YY, Fu YL, Du ZG, Shao JJ, Zheng ZM, Wang XH (2016). Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: a meta-analysis. Agriculture Ecosystems & Environment, 228, 70-81.
DOI URL |
| [39] |
Zhu XM, Zhang ZL, Wang QT, Peñuelas J, Sardans J, Lambers H, Li N, Liu Q, Yin HJ, Liu ZF (2022). More soil organic carbon is sequestered through the mycelium pathway than through the root pathway under nitrogen enrichment in an alpine forest. Global Change Biology, 28, 4947-4961.
DOI URL |
| [1] | 张诚航, 卫星, 吴纯泽, 王裕尧, 李浩楠. 大气还原态氮干湿沉降下水曲柳和兴安落叶松菌根化苗木生长响应[J]. 植物生态学报, 2026, 50(菌根生态学): 0-. |
| [2] | 李文竹, 栾军伟, 邸雅平, 王一, 陈志成, 聂秀青, 刘世荣. 模拟干旱对菌根介导下暖温带锐齿栎林土壤酶活性和土壤有机碳组分的影响[J]. , 2026, 50(菌根生态学): 0-. |
| [3] | 王梦雪, 胡明艳, 储诚进, 陈阳, 罗文启, 马子龙. 亚热带森林不同菌根真菌树种叶片和细根的C、N、P化学计量特征[J]. 植物生态学报, 2026, 50(化学计量与功能性状): 1-. |
| [4] | 冯梅, 欧阳胜男, 李迈和, 周晓倩, 铁烈华, 申卫军, 段洪浪. 前期氮添加对无梗花栎幼苗干旱响应中地上-地下碳氮分配动态的影响[J]. 植物生态学报, 2025, 49(9): 1527-1542. |
| [5] | 王尧, 王耀彬, 陈子彦, 伊如汉, 白永飞, 赵玉金, 金晶炜. 连续干旱对蒙古高原草地恢复力和抵抗力的影响[J]. 植物生态学报, 2025, 49(7): 1070-1081. |
| [6] | 张斌, 张浩成, 乔天, 吕治兵, 许亚男, 李雪芹, 原向阳, 冯美臣, 张美俊. 接种丛枝菌根真菌对干旱胁迫燕麦非结构性碳水化合物及碳氮磷化学计量特征的影响[J]. 植物生态学报, 2025, 49(7): 1082-1095. |
| [7] | 王秀媛, 申磊, 刘婷婷, 尉雯雯, 张帅, 张伟. ‘塞外红’苹果-大豆复合系统根系时空分布与种间竞争策略[J]. 植物生态学报, 2025, 49(5): 748-759. |
| [8] | 马富龙, 王雨晴, 郝瑜, 段继超, 刘霏霏, 席琳乔, 韩路. 海拔梯度对昆仑山北坡中部草原植物与土壤微生物群落结构与多样性的影响[J]. 植物生态学报, 2025, 49(5): 732-747. |
| [9] | 刘柯言, 韩璐, 宋午椰, 张初蕊, 胡旭, 许行, 陈立欣. 基于日光诱导叶绿素荧光探测干旱对黄土高原植被光合稳定性的影响[J]. 植物生态学报, 2025, 49(3): 415-431. |
| [10] | 赵洪贤, 刘鹏, 史曼英, 徐铭泽, 贾昕, 田赟, 查天山. 毛乌素沙地典型固沙植物黑沙蒿和赖草叶片氮分配对最大净光合速率的影响[J]. 植物生态学报, 2025, 49(3): 460-474. |
| [11] | 邵畅畅, 段洪浪, 赵熙州, 丁贵杰. 树木干旱死亡点预测及致死生理机制研究进展[J]. 植物生态学报, 2025, 49(2): 221-231. |
| [12] | 王堃莹, 邱贵福, 刘子赫, 孟君, 刘宇轩, 贾国栋. 气候变化对不同退化程度小叶杨林分生长和内在水分利用效率的调节[J]. 植物生态学报, 2025, 49(2): 343-355. |
| [13] | 张子睿, 周静, 胡艳萍, 梁爽, 马永鹏, 陈伟乐. 极度濒危植物巧家五针松的根内和根际真菌群落特征[J]. 植物生态学报, 2025, 49(10): 0-. |
| [14] | 王音, 同小娟, 张劲松, 李俊, 孟平, 刘沛荣, 张静茹. 干旱对栓皮栎人工林碳水通量及其耦合的影响[J]. 植物生态学报, 2024, 48(9): 1157-1171. |
| [15] | 吴风燕, 吴永胜, 陈晓涵, 冯骥, 卢丽媛, 查斯娜, 王超宇, 孟元发, 尹强. 鄂尔多斯高原3种固沙灌木水分利用效率的时空变化特征[J]. 植物生态学报, 2024, 48(9): 1180-1191. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19