植物生态学报 ›› 2010, Vol. 34 ›› Issue (4): 427-437.DOI: 10.3773/j.issn.1005-264x.2010.04.008
麦博儒1, 郑有飞1,2,*(), 吴荣军1, 梁骏1,3, 刘霞4
收稿日期:
2009-07-14
接受日期:
2009-12-26
出版日期:
2010-07-14
发布日期:
2010-04-01
通讯作者:
郑有飞
作者简介:
* E-mail: zhengyf@nuist.edu.cn
MAI Bo-Ru1, ZHENG You-Fei1,2,*(), WU Rong-Jun1, LIANG Jun1,3, LIU Xia4
Received:
2009-07-14
Accepted:
2009-12-26
Online:
2010-07-14
Published:
2010-04-01
Contact:
ZHENG You-Fei
摘要:
为了了解我国酸雨污染由硫酸型向硫-硝酸复合型转变所引起的环境效应, 以油菜(Brassica napus)为供试材料, 在大田试验条件下, 系统研究了模拟硫酸型(SAR)、硝酸型(NAR)及其混合型 (MAR) 酸雨对农作物生理特性、生长和产量的影响。结果表明, 3种酸雨胁迫均能抑制油菜生理、生长和产量形成, 但不同类型的酸雨间的抑制效应存在差异。当pH ≤ 4.1时, SAR、NAR、MAR能破坏油菜叶质膜系统、降低光合色素含量及光合速率, 从而抑制作物的光合作用; 当pH ≤ 3.1时, 油菜叶面积减小, 叶受害百分率明显增加。pH = 4.1可作为酸雨对油菜产量的影响阈值。在pH = 7.0-1.5的酸度范围内, 油菜叶片膜透性、丙二醛含量、叶受害百分率表现为NAR > MAR > SAR, 光合速率、光合色素含量、叶面积及产量则表现出SAR > MAR > NAR的变化特征。当pH > 4.1时, 3种酸雨处理间差异均不明显, pH ≤ 3.1时, 3种酸雨间的胁迫效应差异显著增加(p < 0.05), 且酸度越强, 差异越大, 其变化趋势为NAR > MAR > SAR。说明NAR和MAR胁迫对油菜生理、生长及产量的抑制较大。
麦博儒, 郑有飞, 吴荣军, 梁骏, 刘霞. 模拟硫酸型、硝酸型及其混合型酸雨对油菜生理特性、生长和产量的影响. 植物生态学报, 2010, 34(4): 427-437. DOI: 10.3773/j.issn.1005-264x.2010.04.008
MAI Bo-Ru, ZHENG You-Fei, WU Rong-Jun, LIANG Jun, LIU Xia. Effects of simulated sulfur-rich, nitric-rich and mixed acid rain on the physiology, growth and yield of rape (Brassica napus). Chinese Journal of Plant Ecology, 2010, 34(4): 427-437. DOI: 10.3773/j.issn.1005-264x.2010.04.008
pH | 有机质 OM (g·kg-1) | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 全钾 TK (g·kg-1) | 速效磷 AP (mg·kg-1) | 交换性铝 EAl (mg·kg-1) | 交换性锰 EMn (mg·kg-1) | 阳离子交换量 CEC (cmol(+)·kg-1) |
---|---|---|---|---|---|---|---|---|
5.54 | 57.02 | 2.03 | 0.89 | 18.58 | 13.44 | 10.36 | 16.45 | 24.12 |
表1 土壤基本理化性状
Table 1 Physical and chemical properties of the tested soil
pH | 有机质 OM (g·kg-1) | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 全钾 TK (g·kg-1) | 速效磷 AP (mg·kg-1) | 交换性铝 EAl (mg·kg-1) | 交换性锰 EMn (mg·kg-1) | 阳离子交换量 CEC (cmol(+)·kg-1) |
---|---|---|---|---|---|---|---|---|
5.54 | 57.02 | 2.03 | 0.89 | 18.58 | 13.44 | 10.36 | 16.45 | 24.12 |
pH | SO42- | NO3- | Cl- | F- | Ca2+ | NH4+ | Mg2+ | K+ | Na+ |
---|---|---|---|---|---|---|---|---|---|
1.5 | 206.84 | 41.37 | 78.54 | 0.71 | 24.36 | 16.63 | 4.31 | 4.15 | 1.60 |
3.1 | 150.10 | 30.02 | 38.00 | 0.35 | 11.43 | 8.04 | 2.08 | 2.01 | 0.77 |
4.1 | 91.79 | 18.36 | 28.73 | 0.26 | 8.65 | 6.08 | 1.58 | 1.52 | 0.58 |
5.1 | 35.68 | 7.14 | 23.10 | 0.21 | 5.86 | 5.50 | 1.52 | 1.45 | 0.47 |
7.0 (CK) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
表2 模拟混合酸雨溶液pH值及主要离子浓度
Table 2 pH and main ion concentrations of the mixed simulated acid rain (μmol·L-1)
pH | SO42- | NO3- | Cl- | F- | Ca2+ | NH4+ | Mg2+ | K+ | Na+ |
---|---|---|---|---|---|---|---|---|---|
1.5 | 206.84 | 41.37 | 78.54 | 0.71 | 24.36 | 16.63 | 4.31 | 4.15 | 1.60 |
3.1 | 150.10 | 30.02 | 38.00 | 0.35 | 11.43 | 8.04 | 2.08 | 2.01 | 0.77 |
4.1 | 91.79 | 18.36 | 28.73 | 0.26 | 8.65 | 6.08 | 1.58 | 1.52 | 0.58 |
5.1 | 35.68 | 7.14 | 23.10 | 0.21 | 5.86 | 5.50 | 1.52 | 1.45 | 0.47 |
7.0 (CK) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
图1 SAR、MAR和NAR对油菜叶细胞质膜透性的影响。 图中误差线表示标准偏差。不同小写字母表示在相同pH条件下不同模拟酸雨处理间的差异显著性(p < 0.05)。*和**分别表示各处理与对照(CK, pH = 7.0)差异显著(p < 0.05)和极显著(p < 0.01)。MAR, 混合型酸雨; NAR, 硝酸型酸雨; SAR, 硫酸型酸雨。
Fig. 1 Effects of SAR, MAR and NAR on the leaf cell membrane permeability of Brassica napus. Error bars show SD. Different small letters indicate that NAR, MAR and SAR treatments are significantly different at p < 0.05. * and ** indicate values that differ significantly from control (pH = 7.0) at p < 0.05 and p < 0.01, respectively. MAR, mixed acid rain; NAR, nitric acid rain; SAR, sulphur acid rain.
酸雨处理 Acid rain treatment | 叶绿素a Chl a (mg·g-1 FW) | 叶绿素b Chl b (mg·g-1 FW) | 叶绿素总量 Total Chl (mg·g-1 FW) | 叶绿素a/叶绿素b Chl a/Chl b |
---|---|---|---|---|
硫酸型模拟酸雨 Sulphur-rich simulated acid rain | ||||
pH = 1.5 | 0.678 ± 0.040cC | 0.297 ± 0.005cC | 0.975 ± 0.045cC | 2.279 |
pH = 3.1 | 0.903 ± 0.039bB | 0.328 ± 0.010bB | 1.231 ± 0.047bB | 2.753 |
pH = 4.1 | 0.966 ± 0.047abAB | 0.350 ± 0.008aA | 1.316 ± 0.054abAB | 2.757 |
pH = 5.1 | 1.028 ± 0.045aA | 0.356 ± 0.004aA | 1.384 ± 0.042aA | 2.891 |
pH = 7.0 (CK) | 1.039 ± 0.091aA | 0.361 ± 0.016aA | 1.400 ± 0.090aA | 2.878 |
混合型模拟酸雨 Mixed simulated acid rain | ||||
pH = 1.5 | 0.594 ± 0.034dC | 0.286 ± 0.018cC | 0.880 ± 0.046dC | 2.074 |
pH = 3.1 | 0.854 ± 0.40cB | 0.318 ± 0.013bB | 1.172 ± 0.053cB | 2.689 |
pH = 4.1 | 0.951 ± 0.032bA | 0.348 ± 0.014aA | 1.299 ± 0.039bA | 2.729 |
pH = 5.1 | 1.001 ± 0.035abA | 0.352 ± 0.014aA | 1.353 ± 0.048abA | 2.840 |
pH = 7.0 (CK) | 1.039 ± 0.075aA | 0.361 ± 0.006aA | 1.400 ± 0.072aA | 2.878 |
硝酸型模拟酸雨 Nitric-rich simulated acid rain | ||||
pH = 1.5 | 0.517 ± 0.020eD | 0.278 ± 0.002dD | 0.794 ± 0.018eE | 1.861 |
pH = 3.1 | 0.834 ± 0.024dC | 0.311 ± 0.006cC | 1.145 ± 0.025dD | 2.687 |
pH = 4.1 | 0.949 ± 0.014cB | 0.346 ± 0.004bB | 1.295 ± 0.011cC | 2.744 |
pH = 5.1 | 0.999 ± 0.021bA | 0.351 ± 0.009abAB | 1.350 ± 0.019bB | 2.845 |
pH = 7.0 (CK) | 1.039 ± 0.024aA | 0.361 ± 0.005aA | 1.400 ± 0.023aA | 2.878 |
表3 3种不同类型模拟酸雨对油菜叶光合色素的影响(平均值±标准偏差)
Table 3 Effects of three different simulated rain types on the leaf photosynthetic pigment contents of Brassica napus (mean ± SD)
酸雨处理 Acid rain treatment | 叶绿素a Chl a (mg·g-1 FW) | 叶绿素b Chl b (mg·g-1 FW) | 叶绿素总量 Total Chl (mg·g-1 FW) | 叶绿素a/叶绿素b Chl a/Chl b |
---|---|---|---|---|
硫酸型模拟酸雨 Sulphur-rich simulated acid rain | ||||
pH = 1.5 | 0.678 ± 0.040cC | 0.297 ± 0.005cC | 0.975 ± 0.045cC | 2.279 |
pH = 3.1 | 0.903 ± 0.039bB | 0.328 ± 0.010bB | 1.231 ± 0.047bB | 2.753 |
pH = 4.1 | 0.966 ± 0.047abAB | 0.350 ± 0.008aA | 1.316 ± 0.054abAB | 2.757 |
pH = 5.1 | 1.028 ± 0.045aA | 0.356 ± 0.004aA | 1.384 ± 0.042aA | 2.891 |
pH = 7.0 (CK) | 1.039 ± 0.091aA | 0.361 ± 0.016aA | 1.400 ± 0.090aA | 2.878 |
混合型模拟酸雨 Mixed simulated acid rain | ||||
pH = 1.5 | 0.594 ± 0.034dC | 0.286 ± 0.018cC | 0.880 ± 0.046dC | 2.074 |
pH = 3.1 | 0.854 ± 0.40cB | 0.318 ± 0.013bB | 1.172 ± 0.053cB | 2.689 |
pH = 4.1 | 0.951 ± 0.032bA | 0.348 ± 0.014aA | 1.299 ± 0.039bA | 2.729 |
pH = 5.1 | 1.001 ± 0.035abA | 0.352 ± 0.014aA | 1.353 ± 0.048abA | 2.840 |
pH = 7.0 (CK) | 1.039 ± 0.075aA | 0.361 ± 0.006aA | 1.400 ± 0.072aA | 2.878 |
硝酸型模拟酸雨 Nitric-rich simulated acid rain | ||||
pH = 1.5 | 0.517 ± 0.020eD | 0.278 ± 0.002dD | 0.794 ± 0.018eE | 1.861 |
pH = 3.1 | 0.834 ± 0.024dC | 0.311 ± 0.006cC | 1.145 ± 0.025dD | 2.687 |
pH = 4.1 | 0.949 ± 0.014cB | 0.346 ± 0.004bB | 1.295 ± 0.011cC | 2.744 |
pH = 5.1 | 0.999 ± 0.021bA | 0.351 ± 0.009abAB | 1.350 ± 0.019bB | 2.845 |
pH = 7.0 (CK) | 1.039 ± 0.024aA | 0.361 ± 0.005aA | 1.400 ± 0.023aA | 2.878 |
酸雨处理 Acid rain treatment | 叶绿素a Ch l a (mg·g-1 FW) | 叶绿素b Chl b (mg·g-1 FW) | 叶绿素总量 Total Chl (mg·g-1 FW) | |
---|---|---|---|---|
p < 0.05 | p < 0.05 | p < 0.05 | ||
pH = 1.5 | SAR | a | a | a |
MAR | b | ab | b | |
NAR | c | b | c | |
pH = 3.1 | SAR | a | a | a |
MAR | ab | ab | ab | |
NAR | b | b | b | |
pH = 4.1 | SAR | a | a | a |
MAR | a | a | a | |
NAR | a | a | a | |
pH = 5.1 | SAR | a | a | a |
MAR | a | a | a | |
NAR | a | a | a | |
pH = 7.0 (CK) | SAR | a | a | a |
MAR | a | a | a | |
NAR | a | a | a |
表4 同酸度内SAR、MAR和NAR的显著性差异
Table 4 Significant differences of SAR, MAR and NAR in the same pH value condition
酸雨处理 Acid rain treatment | 叶绿素a Ch l a (mg·g-1 FW) | 叶绿素b Chl b (mg·g-1 FW) | 叶绿素总量 Total Chl (mg·g-1 FW) | |
---|---|---|---|---|
p < 0.05 | p < 0.05 | p < 0.05 | ||
pH = 1.5 | SAR | a | a | a |
MAR | b | ab | b | |
NAR | c | b | c | |
pH = 3.1 | SAR | a | a | a |
MAR | ab | ab | ab | |
NAR | b | b | b | |
pH = 4.1 | SAR | a | a | a |
MAR | a | a | a | |
NAR | a | a | a | |
pH = 5.1 | SAR | a | a | a |
MAR | a | a | a | |
NAR | a | a | a | |
pH = 7.0 (CK) | SAR | a | a | a |
MAR | a | a | a | |
NAR | a | a | a |
[1] | Ashenden TW, Williams JH (1988). Differences in the spectral characteristics of brich canopies exposed to simulated acid rain. New Phytologist, 109, 79-84. |
[2] | Calatayud A, Iglesias DJ, Talón M, Barreno E (2003). Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation. Plant Physiology and Biochemistry, 41, 839-845. |
[3] | Chen HL (陈罕立), Wang JN (王金南) (2005). Exploring the total emission control of nitrogen oxides in China. Research of Environmental Sciences (环境科学研究), 18, 107-110. (in Chinese with English abstract) |
[4] | Demmig-Adams B (1990). Carotenoids and photoprotection in plants: a role for the xanthophylls zeaxanthin. Biochimica et Biophysica Acta, 1020, 1-24. |
[5] | Feng ZW (冯宗炜) (1993). Effect of Acid Rain on Ecosystem (酸雨对生态系统的影响). China Science and Technology Press, Beijing. (in Chinese) |
[6] | Ferenbaugh RW (1976). Effects of simulated acid rain on Phaseolus vulgaris L. American Journal of Botany, 63, 283-288. |
[7] | Guo SK (郭书奎), Zhao KF (赵可夫) (2001). The possible mechanisms of NaCl inhibit photosynthetis of maize seedlings. Acta Photophysiologica Sinica (植物生态学报), 27, 461-466. (in Chinese with English abstract) |
[8] | Hou FL (侯福林) (2004). Plant Physiological and Experimental Course (植物生理学实验教程). Science Press, Beijing. 13-15, 90. (in Chinese) |
[9] | Li HS (李合生) (2000). Principles and Techniques of Plant Physiological Biochemical Experiment (植物生理生化实验原理和技术). Higher Education Press, Beijing. 184-225, 260-261. (in Chinese) |
[10] | Li W (李巍), Yang ZF (杨志峰) (2000). Preliminary study on environmental impact assessment of significant economic policies―EIA of China automobile industry development policy. China Environmental Science (中国环境科学), 20, 114-118. (in Chinese with English abstract) |
[11] | Liang J (梁骏), Zheng YF (郑有飞), Li L (李璐), Mai BR (麦博儒) (2008). Effects of acid rain upon soil acidization and growth/development of rape crop in its middle-late stages. Journal of Agro-Environment Science (农业环境科学学报), 27, 1043-1050. (in Chinese with English abstract) |
[12] | Liu DY (刘大永), Zhu LQ (朱利泉), Liang Y (梁颖) (1997). Effect of acid rain and deposited coal dust on the activities of three antioxidiant enzymes in lettuce and Chinese cabbage. Chinese Journal of Applied & Environmental Biology (应用与环境生物学报), 3, 26-30. (in Chinese with English abstract) |
[13] | Liu YY (刘燕云), Cao HF (曹洪法), Shu JM (舒俭民), Gao YX (高映新) (1991). Effects of simulated acid rain and SO2 on growth and yield of vegetables. Acta Scientiae Circumstantiae (环境科学学报), 11, 328-335. (in Chinese with English abstract) |
[14] | Lu RK (鲁如坤) (1999). Soil Agricultural Chemistry Analysis Method (土壤农业化学分析方法). Chinese Agricultural Science and Technology Press, Beijing. (in Chinese) |
[15] | Lütz C, Anegg S, Gerant D, Alaoui-Sossé B, Gerard J, Dizengremel P (2000). Beech trees exposed to high CO2 and to simulated summer ozone levels: effects on photosynthesis, chloroplast components and leaf enzyme activity. Physiologia Plantarum, 109, 252-259. |
[16] | Niu XM (牛星梅) (1995). Nanjing acid rain condition and its changing trend in these years. Jiangsu Environmental Science and Technology (江苏环境科技), (3), 11-13. (in Chinese with English abstract) |
[17] | Peng CX (彭彩霞), Peng CL (彭长连), Lin GZ (林桂珠), Wen DZ (温达志) (2003). Effects of simulated acid rain on seed germination and seedling growth of three crops. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 11, 400-404. (in Chinese with English abstract) |
[18] | Qi ZM (齐泽民), Zhong ZC (钟章成), Deng J (邓君) (2001b). The effects of simulated acid rain on nitrogen metabolism of Eucommia ulmoides levels. Acta Phytoecologica Sinica (植物生态学报), 25, 544-548. (in Chinese with English abstract) |
[19] | Qi ZM (齐泽民), Zhong ZC (钟章成), Deng J (邓君), Liu SJ (刘素君) (2001a). Effects of simulated acid rain on lipid peroxidation of membrane and nitrogen metabolism of Eucommia ulmoides leaves. Journal of Southwest China Normal University (Natural Science) 西南师范大学学报(自然科学版)), 26, 38-44. (in Chinese with English abstract) |
[20] |
Samuels TD, Kucukakyuz K, Magaly RZ (1997). Al partitioning patterns and root growth as related to Al sensitivity and Al tolerance in wheat. Plant Physiology, 113, 527-534.
DOI URL PMID |
[21] | Shan YF (单运锋), Feng ZW (冯宗炜), Chen CY (陈楚莹) (1989). Effects of simulate acid rain on the biomasses of seven forest species. Acta Ecologica Sinica (生态学报), 9, 274-276. (in Chinese with English abstract) |
[22] | Siffel P, Braunova Z, Sindelkova E, Cudlin P (1996). The effect of simulated acid rain on chlorophyll fluorescence spectra of spruce seedlings ( Picea abies L. Karst). Journal of Plant Physiology, 148, 271-274. |
[23] | Singh A, Agrawal M (1996). Response of two cultivars of Triticum aestivum L. to simulated acid rain. Environmental Pollution, 91, 161-167. |
[24] | Tong GH (童贯和), Liang HL (梁惠玲) (2005). Effects of simulated acid rain and its acidified soil on soluble sugar and nitrogen contents of wheat seedlings. Chinese Journal of Applied Ecology (应用生态学报), 16, 1487-1492. (in Chinese with English abstract) |
[25] | Tong GH (童贯和), Liu TJ (刘天骄), Huang W (黄伟) (2005). Effect of simulated acid rain and its acidified soil on lipid peroxidation of wheat seedlings. Acta Ecologica Sinica (生态学报), 25, 1509-1516. (in Chinese with English abstract) |
[26] | Wang JN (王金南), Chen HL (陈罕立) (2004). China city: urgent to block nitrogen oxides pollution. Environmental Economy (环境经济), (7), 1-5. (in Chinese) |
[27] | Wang KF (王开峰), Liao BH (廖柏寒), Liu HY (刘红玉), Zeng M (曾敏), Zhang Y (张永) (2005). Complex effects of simulated acid rain and zinc on growth and physiological- biochemical characteristics of Vicia faba L. Acta Scientiae Circumstantiae (环境科学学报), 25, 203-207. (in Chinese with English abstract) |
[28] | Wang W (王玮) (2004). The discussion of NOx pollution and related issues. In: Chinese Society for Environmental Science ed. Chinese NOx Pollution Control Papers (全国氮氧化物污染控制研讨会论文集). China Environmental Science Press, Beijing 24. (in Chinese) |
[29] | Wang ZF (王自发), Gao C (高超), Xie FY (谢付莹) (2007). Modeling studies of acid rain in China: progress and challenge. Chinese Journal of Nature (自然杂志), 29(2), 78-82. (in Chinese with English abstract) |
[30] | Wood T, Bormann FH (1974). The effects of an artificial acid mist upon the growth of Betula alleghaniensis Britt. Environmental Pollution, 7, 259-268. |
[31] | Yan CL (严重玲), Li RZ (李瑞智), Zhong ZC (钟章成) (1995). Effect of simulated acid rain on ecophysiological characteristics of mung bean and maize. Chinese Journal of Applied Ecology (应用生态学报), 6(Suppl.), 124-131. (in Chinese with English abstract) |
[32] | Zeng QL (曾庆玲), Huang XH (黄晓华), Zhou Q (周青) (2005). Effect of acid rain on seed germination of rice, wheat and rape. Environmental Science (环境科学), 26, 181-184. (in Chinese with English abstract) |
[33] | Zhang FZ (张福珠), Tang HS (唐鸿寿), Yang XF (杨晓峰) (1993). Acid rain and its harms to the sensitivities of main crops on the southwest. In: National Environmental Protection Agency ed. Air Pollution Prevention Technology Research (大气污染防治技术研究) Science Press, Beijing. 827-834. (in Chinese) |
[34] | Zhang YM (张耀民), Wu LY (吴丽英), Wang XX (王晓霞), Zhang J (张静) (1996). Effects of acid rain on leaf injury and physiological characteristics of crops. Agro- Environmental Protection (农业环境保护), 15, 197-208, 227. (in Chinese with English abstract) |
[35] | Zheng YF (郑有飞), Mai BR (麦博儒), Liang J (梁骏), Li L (李璐), Tang XY (唐信英), Wu RJ (吴荣军) (2008). Effect of different simulated acid rain types on the nutrient quality of rape. Acta Scientiae Circumstantiae (环境科学学报), 28, 2133-2140. (in Chinese with English abstract) |
[36] | Zhou Q (周青), Zeng QL (曾庆玲), Huang XH (黄晓华), Zhang GS (张光生), Liang CJ (梁婵娟), Wang LH (王丽红) (2004). Effects of acid rain on seed germination of various acid-fast plant. Acta Ecologica Sinica (生态学报), 24, 2029-2036. (in Chinese with English abstract) |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 邓蓓 王晓锋 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的整合分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
[4] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[5] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[6] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[7] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[8] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[9] | 白雪, 李玉靖, 景秀清, 赵晓东, 畅莎莎, 荆韬羽, 刘晋汝, 赵鹏宇. 谷子及其根际土壤微生物群落对铬胁迫的响应机制[J]. 植物生态学报, 2023, 47(3): 418-433. |
[10] | 汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响[J]. 植物生态学报, 2023, 47(2): 195-205. |
[11] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[12] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[13] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[14] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[15] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19