植物生态学报 ›› 2014, Vol. 38 ›› Issue (12): 1307-1314.DOI: 10.3724/SP.J.1258.2014.00125
所属专题: 青藏高原植物生态学:种群生态学; 植物功能性状
收稿日期:
2014-07-18
接受日期:
2014-11-06
出版日期:
2014-07-18
发布日期:
2015-04-16
通讯作者:
赵成章
作者简介:
* (E-mail: zhaocz601@163.com)基金资助:
DANG Jing-Jing, ZHAO Cheng-Zhang*(), LI Yu, HOU Zhao-Jiang, DONG Xiao-Gang
Received:
2014-07-18
Accepted:
2014-11-06
Online:
2014-07-18
Published:
2015-04-16
Contact:
ZHAO Cheng-Zhang
摘要:
茎与叶的生长形态决定植物与外界环境的物质交换能力, 茎叶的异速生长模式对认识植物表型可塑性及其调节机理具有重要意义。在祁连山高寒退化草地, 利用ArcGIS建立研究区域的数字高程模型(DEM), 并提取样地坡度数据, 采用标准化主轴估计(SMA)方法, 研究了不同坡度甘肃臭草(Melica przewalskyi)种群茎与叶的生长。结果表明: 随着坡度增大, 甘肃臭草茎干质量、叶干质量、叶面积均呈逐渐减小趋势, 叶片数呈增加趋势; 甘肃臭草叶干质量的增长速度显著大于茎干质量的增长速度, 叶面积与茎干质量近等速增长; 不同坡度间的比较显示, 随着坡度变陡甘肃臭草茎干质量与叶干质量异速斜率显著减小(p < 0.05), 陡坡上的甘肃臭草若要生成与缓坡样地中相同的叶生物量需要投入更多的茎生物量, 茎干质量与叶面积的y轴截距显著减小(p < 0.05), 即相同的茎干质量投入下, 较大坡度的甘肃臭草叶面积投入显著降低, 趋向于减小叶面积增加叶数量。坡度梯度上甘肃臭草加快了茎的相对生长速率而减小了在叶面积上的投入, 体现了不同坡度甘肃臭草茎-叶生物量分配机制及资源利用策略, 同时说明高寒草地中小叶更具生境适应性。
党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚. 高寒草地甘肃臭草茎-叶性状的坡度差异性. 植物生态学报, 2014, 38(12): 1307-1314. DOI: 10.3724/SP.J.1258.2014.00125
DANG Jing-Jing, ZHAO Cheng-Zhang, LI Yu, HOU Zhao-Jiang, DONG Xiao-Gang. Variations with slope in stem and leaf traits of Melica przewalskyi in alpine grassland. Chinese Journal of Plant Ecology, 2014, 38(12): 1307-1314. DOI: 10.3724/SP.J.1258.2014.00125
坡度组 Slope group | 坡度范围 Slope range | 样方数 Number of plots | 高度 Height (cm) | 密度 Density (bunch·m-2) | 盖度 Coverage (%) | 地上生物量 Aboveground biomass (g·m-2) |
---|---|---|---|---|---|---|
A | 0°-10° | 27 | 27.22 ± 1.65a | 219.83 ± 10.42a | 62 ± 3.63a | 73.24 ± 4.23a |
B | 10°-20° | 28 | 25.91 ± 1.52a | 187.61 ± 8.25b | 55 ± 3.02b | 63.83 ± 4.12b |
C | 20°-30° | 25 | 25.24 ± 1.24a | 155.25 ± 7.07c | 49 ± 1.89c | 55.54 ± 3.59c |
表1 样地分组情况和甘肃臭草种群的生物学特征(平均值±标准误差)
Table 1 Plot groups and biological characteristics of Melica przewalskyi population (mean ± SE)
坡度组 Slope group | 坡度范围 Slope range | 样方数 Number of plots | 高度 Height (cm) | 密度 Density (bunch·m-2) | 盖度 Coverage (%) | 地上生物量 Aboveground biomass (g·m-2) |
---|---|---|---|---|---|---|
A | 0°-10° | 27 | 27.22 ± 1.65a | 219.83 ± 10.42a | 62 ± 3.63a | 73.24 ± 4.23a |
B | 10°-20° | 28 | 25.91 ± 1.52a | 187.61 ± 8.25b | 55 ± 3.02b | 63.83 ± 4.12b |
C | 20°-30° | 25 | 25.24 ± 1.24a | 155.25 ± 7.07c | 49 ± 1.89c | 55.54 ± 3.59c |
坡度 Slope | 群落特征 Community characteristics | 土壤水分 Soil moisture (%) | ||
---|---|---|---|---|
盖度 Coverage (%) | 高度 Height (cm) | 地上生物量 Aboveground biomass (g·m-2) | ||
0°-10° (A) | 75.67 ± 2.25a | 32.60 ± 1.62a | 100.63 ± 4.28a. | 8.70 ± 0.22a |
10°-20° (B) | 68.75 ± 1.62b | 23.80 ± 1.12b | 93.75 ± 2.45b | 7.50 ± 0.27b |
20°-30° (C) | 62.43 ± 1.05c | 21.80 ± 0.87c | 87.93 ± 2.51c | 5.30 ± 0.16c |
表2 不同坡度草地群落的主要特征指标(平均值±标准误差)
Table 2 The major characteristics of plots of different slopes (mean ± SE)
坡度 Slope | 群落特征 Community characteristics | 土壤水分 Soil moisture (%) | ||
---|---|---|---|---|
盖度 Coverage (%) | 高度 Height (cm) | 地上生物量 Aboveground biomass (g·m-2) | ||
0°-10° (A) | 75.67 ± 2.25a | 32.60 ± 1.62a | 100.63 ± 4.28a. | 8.70 ± 0.22a |
10°-20° (B) | 68.75 ± 1.62b | 23.80 ± 1.12b | 93.75 ± 2.45b | 7.50 ± 0.27b |
20°-30° (C) | 62.43 ± 1.05c | 21.80 ± 0.87c | 87.93 ± 2.51c | 5.30 ± 0.16c |
坡度 Slope | 叶面积 Individual leaf area (cm2) | 叶片数 Leaf number | 叶干质量 Leaf mass (mg) | 茎干质量 Stem mass (mg) |
---|---|---|---|---|
0°-10° (A) | 1.13 ± 0.04a | 3.74 ± 0.07c | 31.09 ± 0.28a | 28.92 ± 0.24a |
10°-20° (B) | 1.03 ± 0.03b | 4.98 ± 0.10b | 29.18 ± 0.18b | 26.81 ± 0.15b |
20°-30° (C) | 0.92 ± 0.01c | 6.33 ± 0.14a | 27.54 ± 0.16c | 25.78 ± 0.29c |
表3 不同坡度甘肃臭草茎与叶性状(平均值±标准误差)
Table 3 Stem and leaf traits of Melica przewalskyi in different slope (mean ± SE)
坡度 Slope | 叶面积 Individual leaf area (cm2) | 叶片数 Leaf number | 叶干质量 Leaf mass (mg) | 茎干质量 Stem mass (mg) |
---|---|---|---|---|
0°-10° (A) | 1.13 ± 0.04a | 3.74 ± 0.07c | 31.09 ± 0.28a | 28.92 ± 0.24a |
10°-20° (B) | 1.03 ± 0.03b | 4.98 ± 0.10b | 29.18 ± 0.18b | 26.81 ± 0.15b |
20°-30° (C) | 0.92 ± 0.01c | 6.33 ± 0.14a | 27.54 ± 0.16c | 25.78 ± 0.29c |
图1 甘肃臭草茎干质量与叶面积的关系。 A, 坡度0°-10°; B, 坡度10°-20°; C, 坡度20°-30°。
Fig. 1 Relationship between stem mass and leaf area in Melica przewalskyi. A, slope 0°-10°; B, slope 10°-20°; C, slope 20°-30°.
图2 甘肃臭草茎干质量与叶干质量的关系。 A, 坡度0°-10°; B, 坡度10°-20°; C, 坡度20°-30°
Fig. 2 Relationship between stem mass and leaf mass in Melica przewalskyi. A, slope 0°-10°; B, slope 10°-20°; C, slope 20°-30°.
1 |
Barthélémy D, Caraglio Y ( 2007). Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany, 99, 375-407.
DOI URL PMID |
2 | Bazaz FA, Grace J (1997). Plant Resource Allocation. Academic Press, New York. |
3 |
Bloom RG, Mallik AU ( 2004). Indirect effects of black spruce (Picea mariana) cover on community structure and function in sheep laurel (Kalmia angustifolia) dominated heath of eastern Canada. Plant and Soil, 265, 279-293.
DOI URL |
4 |
Brouat C, Gibernau M, Amsellem L, McKey D ( 1998). Corner’s rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry. New Phytologist, 139, 459-470.
DOI URL |
5 |
Cantón Y, Del Barrio G, Solé-Benet A, Lázaro R ( 2004). Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain. Catena, 55, 341-365.
DOI URL |
6 | Cavender-Bares J, Holbrook NM ( 2001). Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats. Plant, Cell & Environment, 24, 1243-1256. |
7 |
Corner EJH ( 1949). The durian theory or the origin of the modern tree. Annals of Botany, 13, 367-414.
DOI URL |
8 |
de Kroon H, Huber H, Stuefer JF, van Groenendael JM ( 2005). A modular concept of phenotypic plasticity in plants. New Phytologist, 166, 73-82.
DOI URL |
9 | Deng JM, Li T, Wang GX, Liu J, Yu ZL, Zhao CM, Ji MF, Zhang Q, Liu JQ ( 2008). Trade-offs between the metabolic rate and population density of plants. PLoS ONE, 3, 1-7. |
10 |
Díaz S, Hodgson J G, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero- Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR. ( 2004). The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295-304.
DOI URL |
11 |
Enquist BJ, Niklas KJ ( 2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520.
DOI URL PMID |
12 |
Fabbro T, Körner C ( 2004). Altitudinal differences in flower traits and reproductive allocation. Flora, 199, 70-81.
DOI URL |
13 | Falster DS, Warton DI, Wright IJ (2012) User’s Guide to SMATR: Standardised Major Axis Tests & Routines Version 2.0. 2006. http://www.bio.mq.edu.au/ecology/SMATR/ . Cited 2014-03-11. |
14 |
Fine PV, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHH, Säksjä I, Schultz JC, Coley PD ( 2006). The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology, 87, S150-S162.
DOI URL PMID |
15 | Gao FY, Zhao CZ (2012). In the process of grassland degradation the spatial pattern and spatial association of dominant species. Acta Ecologica Sinica, 32, 6661-6669.(in Chinese with English abstract) |
[ 高福元, 赵成章 (2012). 甘肃臭草型退化草地优势种群空间格局及其关联性. 生态学报, 32, 6661-6669.] | |
16 |
Hacke UG, Sperry JS, Pockman WT, Divis SD, McCulloh KA ( 2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457-461.
DOI URL PMID |
17 | Huey RB, Gilchrist GW, Carlson ML, Berrigan D, Serra L ( 2000). Rapid evolution of a geographic cline in size in an introduced fly. Science, 287, 308-309. |
18 |
Japhet W, Zhou DW, Zhang HX, Zhang HX, Yu T ( 2009). Evidence of phenotypic plasticity in the response of Fagopyrum esculentum to population density and sowing date. Journal of Plant Biology, 52, 303-311.
DOI URL |
19 |
Kerkhoff AJ, Enquist BJ ( 2006). Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters, 9, 419-427.
URL PMID |
20 | Li L, Zhou DW, Sheng LX (2011). Density dependence- determined plant biomass allocation pattern. Chinese Journal of Ecology, 30, 1579-1589.(in Chinese with English abstract) |
[ 黎磊, 周道玮, 盛连喜 (2011). 密度制约决定的植物生物量分配格局. 生态学杂志, 30, 1579-1589.] | |
21 | Li T, Deng JM, Wang GX, Cheng DL, Yu ZL ( 2009). Isometric scaling relationship between leaf number and size within current-year shoots of woody species across contrasting habitats. Polish Journal of Ecology, 57, 659-667. |
22 | Li Y, Zhao CZ, Dong XG, Hou ZJ, Ma XL, Zhang Q (2013). Responses of Stellera chamaejasme twig and leaf traits to slope aspect in alpine grassland of Northwest China. Chinese Journal of Ecology, 32, 3145-3151.(in Chinese with English abstract) |
[ 李钰, 赵成章, 董小刚, 侯兆疆, 马小丽, 张茜 (2013). 高寒草地狼毒枝-叶性状对坡向的响应. 生态学杂志, 32, 3145-3151.] | |
23 | Li YN, Yang DM, Sun SC, Gao XM (2008). Effects of twig size on biomass allocation within twigs and on lamina area supporting efficiency in Rhododendron: allometric scaling analyses. Journal of Plant Ecology (Chinese Version), 32, 1175-1183.(in Chinese with English abstract) |
[ 李亚男, 杨冬梅, 孙书存, 高贤明 (2008). 杜鹃花属植物小枝大小对小枝生物量分配及叶面积支持效率的影响: 异速生长分析. 植物生态学报, 32, 1175-1183.] | |
24 |
Liu MH, Xin ZM, Xu J, Sun F, Dou LJ, Li YH (2013). Influence of leaf size of plant on leaf transpiration and temperature in arid regions. Chinese Journal of Plant Ecology, 37, 436-442.(in Chinese with English abstract)
DOI URL |
[ 刘明虎, 辛智鸣, 徐军, 孙非, 窦立军, 李永华 (2013). 干旱区植物叶片大小对叶表面蒸腾及叶温的影响. 植物生态学报, 37, 436-442.] | |
25 | Liu ZG, Cai YL, Li K (2008). Studies on the leaf size-twig size spectrum of subtropical evergreen board leaved woody species. Journal of Plant Ecology (Chinese Version), 32, 363-369.(in Chinese with English abstract) |
[ 刘志国, 蔡永立, 李恺 (2008). 亚热带常绿阔叶林植物叶-小枝的异速生长. 植物生态学报, 32, 363-369.] | |
26 |
McIntyre S, Lavorel S, Landsberg J, Forbes TDA ( 1999). Disturbance response in vegetation: towards a global perspective on functional traits. Journal of Vegetation Science, 10, 621-630.
DOI URL |
27 |
Niinemets Ü, Portsmuth A, Tobias M ( 2006). Leaf size modifies support biomass distribution among stems, petioles and midribs in temperate plants. New Phytologist, 171, 91-104.
DOI URL |
28 | Niinemets Ü, Portsmuth A, Tobias M ( 2007). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Functional Ecology, 21, 28-40. |
29 |
Olson ME, Aguirre-Hernández R, Rosell JA ( 2009). Universal foliage-stem scaling across environments and species in dicot trees: plasticity, biomechanics and Corner’s Rules. Ecology Letters, 12, 210-219.
DOI URL PMID |
30 |
Pickup M, Westoby M, Basden A ( 2005). Dry mass costs of deploying leaf area in relation to leaf size. Functional Ecology, 19, 88-97.
DOI URL |
31 |
Pitman EJG (1939). A note on normal correlation. Biometrika, 31, 9-12.
DOI URL |
32 | Shi LL, Zhao CZ, Fan JP, Zhang J, Zhang JX (2013). Spatial patterns of soil moisture and vegetation coverage in Melica przewalskyi patches in degraded alpine grassland of Qilian Mountains, Northwest China. Chinese Journal of Ecology, 32, 285-291.(in Chinese with English abstract) |
[ 史丽丽, 赵成章, 樊洁平, 张静, 张军霞 (2013). 祁连山地甘肃臭草斑块土壤水分与植被盖度空间格局. 生态学杂志, 32, 285-291.] | |
33 |
Skidmore AK ( 1989). A comparison of techniques for calculating gradient and aspect from a gridded digital elevation model. International Journal of Geographical Information Systems, 3, 323-334.
DOI URL |
34 | Tang GA, Li FY, Liu XJ (2010). Tutorial of Digital Elevation Model. Science Press, Beijing. 149.(in Chinese) |
[ 汤国安, 李发源, 刘学军 (2010). 数字高程模型教程. 科学出版社, 北京. 149.] | |
35 |
Violle C, Navas M L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E ( 2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
36 |
Walter A, Schurr U ( 2005). Dynamics of leaf and root growth: endogenous control versus environmental impact. Annals of Botany, 95, 891-900.
DOI URL PMID |
37 |
Warton DI, Weber NC ( 2002). Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174.
DOI URL |
38 |
Warton DI, Wright IJ, Falster DS, Westoby M ( 2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
DOI URL PMID |
39 | Weiner J ( 2004). Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215. |
40 | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ ( 2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159. |
41 | Wright IJ, Falster DS, Pickup M, Westoby M ( 2006). Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiologia Plantarum, 127, 445-456. |
42 | Wright IJ, Westoby M, Reich PB ( 2002). Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology, 90, 534-543. |
43 | Xu Y, Yang XD, Xie YM, Xu YL, Chang SX Yan ER (2012). Twig size-number trade-off among woody plants in Tiantong region, Zhejiang Province of China. Chinese Journal of Plant Ecology, 36, 1268-1276.(in Chinese with English abstract) |
[ 许月, 杨晓东, 谢一鸣, 徐艺露, Chang SX, 阎恩荣 (2012). 浙江天童木本植物小枝的“大小-数量”权衡. 植物生态学报, 36, 1268-1276.] | |
44 | Yang DM, Zhan F, Zhang HW (2012a). Trade-off between leaf size and number in current-year twigs of deciduous broad-leaved woody species at different altitudes on Qingliang Mountain, southeastern China. Chinese Journal of Plant Ecology, 36, 281-191.(in Chinese with English abstract) |
[ 杨冬梅, 占峰, 张宏伟 (2012a). 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系. 植物生态学报, 36, 281-291.] | |
45 | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012b). Leaf and twig functional traits of woody plants and their relationships with environmental change: a review. Chinese Journal of Ecology, 31, 702-713.(in Chinese with English abstract) |
[ 杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012b). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
46 | Zhang DY (2004). Plant Life-History Evolution and Reproductive Ecology. Science Press, Beijing.(in Chinese) |
[ 张大勇 (2004). 植物生活史进化与繁殖生态学. 科学出版社, 北京.] | |
47 | Zhao CZ, Gao FY, Shi FX, Ren H, Sheng YP (2011). Melica przewalskyi population spatial pattern and response to soil moisture in degraded alpine grassland. Acta Ecologica Sinica, 31, 6688-6695.(in Chinese with English abstract) |
[ 赵成章, 高福元, 石福习, 任珩, 盛亚萍 (2011). 高寒退化草地甘肃臭草种群分布格局及其对土壤水分的响应. 生态学报, 31, 6688-6695.] | |
48 | Zhao CZ, Long RJ (2008). Rehabilitation process of degraded Melica Przewalskyi grassland in the upper reaches of Shiyang River. Journal of Mountain Science, 26, 286-292.(in Chinese with English abstract) |
[ 赵成章, 龙瑞军 (2008). 石羊河上游甘肃臭草型退化草地植被恢复过程. 山地学报, 26, 286-292.] | |
49 |
Zhu JD, Meng TT, Ni J, Su HX, Xie ZQ, Zhang SR, Zheng YR, Xiao CW (2011). Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types. Chinese Journal of Plant Ecology, 35, 687-698.(in Chinese with English abstract)
DOI URL |
[ 祝介东, 孟婷婷, 倪健, 苏宏新, 谢宗强, 张守仁, 郑元润, 肖春旺 (2011). 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异. 植物生态学报, 35, 687-698.] |
[1] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[2] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[3] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[4] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[5] | 张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响[J]. 植物生态学报, 2021, 45(3): 253-264. |
[6] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[7] | 秦天姿, 任安芝, 樊晓雯, 高玉葆. 内生真菌种类和母本基因型对内生真菌-禾草共生体叶形状和叶面积的影响[J]. 植物生态学报, 2020, 44(6): 654-660. |
[8] | 李群, 赵成章, 王继伟, 文军, 李子琴, 马俊逸. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应[J]. 植物生态学报, 2019, 43(8): 685-696. |
[9] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[10] | 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健. 测定森林树木叶面积的最适叶片数是多少?[J]. 植物生态学报, 2018, 42(9): 917-925. |
[11] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
[12] | 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994. |
[13] | 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760. |
[14] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
[15] | 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19