植物生态学报 ›› 2011, Vol. 35 ›› Issue (2): 232-236.DOI: 10.3724/SP.J.1258.2011.00232
• 综述 • 上一篇
收稿日期:
2010-03-19
接受日期:
2010-11-04
出版日期:
2011-03-19
发布日期:
2011-01-21
作者简介:
黄艺, E-mail: yhuang@pku.edu.cn
HUANG Yi*(), WANG Dong-Wei, CAI Jia-Liang, ZHENG Wei-Shuang
Received:
2010-03-19
Accepted:
2010-11-04
Online:
2011-03-19
Published:
2011-01-21
摘要:
球囊霉素(glomalin)是丛枝菌根真菌产生的一种含有金属离子的耐热糖蛋白, 能够改善土壤结构, 固定土壤中的重金属, 近期被更名为球囊霉素相关土壤蛋白(glomalin-related soil protein)。该文从球囊霉素的定义、性质与环境功能等方面对相关文献进行了综述, 认为目前对球囊霉素的共识仍停留在理论假设蛋白的程度上, 包括: 1)该蛋白可能是热激蛋白60 (HSP 60)的同系物; 2)该蛋白所携带的阳离子可能随着土壤性质的改变而不同。目前还没有清楚确切地定义球囊霉素的真实分子结构与理化性质。今后需从分子层面对球囊霉素予以深入研究。同时, 需要不断改进球囊霉素的提取和测定方法, 以便进一步探讨球囊霉素固定重金属离子的机理, 提高植物的重金属抗性。
黄艺, 王东伟, 蔡佳亮, 郑维爽. 球囊霉素相关土壤蛋白根际环境功能研究进展. 植物生态学报, 2011, 35(2): 232-236. DOI: 10.3724/SP.J.1258.2011.00232
HUANG Yi, WANG Dong-Wei, CAI Jia-Liang, ZHENG Wei-Shuang. Review of glomalin-related soil protein and its environmental function in the rhizosphere. Chinese Journal of Plant Ecology, 2011, 35(2): 232-236. DOI: 10.3724/SP.J.1258.2011.00232
[1] |
Bolligera A, Nallab A, Magida J, de Neergaarda A, Nallab AD, Bog-Hansen TC (2008). Re-examining the glomalin- purity of glomalin-related soil protein fractions through immunochemical, lectin-affinity and soil labelling experiments. Soil Biology and Biochemistry, 40, 887-893.
DOI URL |
[2] |
Cain JR, Allen RK (1980). Use of a cell wall-less mutant strain to assess the role of the cell wall in cadmium and mercury tolerance by Chlamydomonas reinhardtii. Bulletin of Environmental Contamination and Toxicology, 25, 797-803.
DOI URL PMID |
[3] |
Chern EC, Tsai DW, Ogunseitan OA (2007). Deposition of glomalin-related soil protein and sequestered toxic metals into watersheds. Environmental Science & Technology, 41, 3566-3572.
DOI URL PMID |
[4] | Comis D (2004). Glomalin: hiding place for a third of the world’s stored soil carbon. Australia Farm, 14, 64-66. |
[5] |
Driver JD, Holben WE, Rillig MC (2005). Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 37, 101-106.
DOI URL |
[6] |
Franzluebbers AJ, Wright SF, Stuedemann JA (2000). Soil aggregation and glomalin under pastures in the Southern Piedmont USA. Soil Science Society of America Journal, 64, 1018-1026.
DOI URL |
[7] |
Gadkar V, Rillig MC (2006). The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiology Letters, 263, 93-101.
DOI URL PMID |
[8] | Gardea-Torresdey JL, Cano-Aguilera I, Webb R, Gutierrez- Corona F (1997). Enhanced copper adsorption and morphological alterations of cells of copper-stressed Mucor rouxii. Environmental Toxicology and Chemistry, 16, 435-441. |
[9] | He XL (贺学礼), Bai CM (白春明), Zhao LL (赵丽莉) (2008). Spatial distribution of arbuscular mycorrhizal fungi in Astragalus adsurgens root-zone soil in Mu Us sand land. Chinese Journal of Applied Ecology (应用生态学报), 19, 2711-2716. (in Chinese with English abstract) |
[10] |
Hodge A, Campbell CD, Fitter AH (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413, 297-299.
DOI URL PMID |
[11] |
Lovelock CE, Wright SF, Clark DA, Ruess RW (2004). Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. Journal of Ecology, 92, 278-287.
DOI URL |
[12] |
Miller RM, Reinhardt DR, Jastrow JD (1995). External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia, 103, 17-23.
DOI URL PMID |
[13] | Nichols KA (2003). Characterization of Glomalin, A Glycoprotein Produced by Arbuscular Mycorrhizal Fungi. PhD dissertation, University of Maryland,MD. |
[14] |
Nichols KA, Wright SF (2006). Carbon and nitrogen in operationally defined soil organic matter pools. Biology and Fertility of Soils, 43, 215-220.
DOI URL |
[15] |
Pawlowska TE (2005). Genetic processes in arbuscular mycorrhizal fungi. FEMS Microbiology Letters, 251, 185-192.
DOI URL PMID |
[16] |
Purin S, Rillig MC (2008). Immuno-cytolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. Soil Biology and Biochemistry, 40, 1000-1003.
DOI URL |
[17] |
Rillig MC (2004). Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science, 84, 355-363.
DOI URL |
[18] |
Rillig MC, Caldwell BA, Wosten HAB, Sollins P (2007). Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry, 85, 25-44.
DOI URL |
[19] |
Rillig MC, Field CB, Allen MF (1999a). Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia, 119, 572-577.
DOI URL PMID |
[20] |
Rillig MC, Hernandez GY, Newton PCD (2000). Arbuscular mycorrhizae respond to elevated atmospheric CO2 after long-term exposure: evidence from a CO2 spring in New Zealand supports the resource-balance model. Ecology Letters, 3, 475-478.
DOI URL |
[21] |
Rillig MC, Mummey DL (2006). Mycorrhizas and soil structure. New Phytologist, 171, 41-53.
DOI URL |
[22] |
Rillig MC, Ramsey PW, Morris S, Paul EA (2003). Glomalin, an arbuscular mycorrhizal fungal soil protein, responds to land-use change. Plant and Soil, 253, 293-299.
DOI URL |
[23] |
Rillig MC, Wright SF, Allen MF, Field CB (1999b). Rise in carbon dioxide changes soil structure. Nature, 400, 628-628.
DOI URL |
[24] |
Rillig MC, Wright SF, Eviner VT (2002a). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil, 238, 325-333.
DOI URL |
[25] |
Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001). Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil, 233, 167-177.
DOI URL |
[26] |
Rillig MC, Wright SF, Shaw MR, Field CB (2002b). Artificial ecosystem warming positively affects arbuscular mycorrhizae but decreases soil aggregation. Oikos, 97, 52-58.
DOI URL |
[27] |
Rosier CL, Hoye AT, Rillig MC (2006). Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biology and Biochemistry, 38, 2205-2211.
DOI URL |
[28] | Ross SM (1994). Toxic Metals in Soil Plant Systems. John Wiley and Sons, London. |
[29] |
Schindler FV, Mercer EJ, Rice JA (2007). Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biology and Biochemistry, 39, 320-329.
DOI URL |
[30] | Smith SE, Read DJ (1997). Mycorrhizal Symbiosis. Academic Press, San Diego. 605. |
[31] | Spiro TG (1981). Copper Proteins. John Wiley and Sons, New York. |
[32] | Steinberg PD, Rillig MC (2003). Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biology and Biochemistry, 35, 191-194. |
[33] | Subramanian KS, Tenshia V, Jayalakshmi K, Ramachandran V (2009). Biochemical changes and zinc fractions in arbuscular mycorrhizal fungus ( Glomus intraradices) inoculated and uninoculated soils under differential zinc fertilization. Applied Soil Ecology, 43, 32-39. |
[34] | Vodnik D, Grcman H, Macek I, van Elteren JT, Kovacevic M (2008). The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of the Total Environment, 392, 130-136. |
[35] | Wright SF, Upadhyaya A (1996). Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Science, 161, 575-586. |
[36] | Wright SF, Upadhyaya A (1998). A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil, 198, 97-107. |
[37] | Wright SF, Upadhyaya A, Buyer JS (1998). Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biology and Biochemistry, 30, 1853-1857. |
[38] | Zhang C (张从), Xia LJ (夏立江) (2000). Bioremediation Technology of Polluted Soil (污染土壤生物修复技术). China Environmental Science Press, Beijing. 306. (in Chinese) |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[3] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[4] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[5] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[6] | 白雪, 李玉靖, 景秀清, 赵晓东, 畅莎莎, 荆韬羽, 刘晋汝, 赵鹏宇. 谷子及其根际土壤微生物群落对铬胁迫的响应机制[J]. 植物生态学报, 2023, 47(3): 418-433. |
[7] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[8] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[9] | 庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790. |
[10] | 崔利, 郭峰, 张佳蕾, 杨莎, 王建国, 孟静静, 耿耘, 李新国, 万书波. 摩西斗管囊霉改善连作花生根际土壤的微环境[J]. 植物生态学报, 2019, 43(8): 718-728. |
[11] | 高文童, 张春艳, 董廷发, 胥晓. 丛枝菌根真菌对不同性别组合模式下青杨雌雄植株根系生长的影响[J]. 植物生态学报, 2019, 43(1): 37-45. |
[12] | 徐丽娇, 郝志鹏, 谢伟, 李芳, 陈保冬. 丛枝菌根真菌根外菌丝跨膜H +和Ca 2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773. |
[13] | 刘海跃, 李欣玫, 张琳琳, 王姣姣, 贺学礼. 西北荒漠带花棒根际丛枝菌根真菌生态地理分布[J]. 植物生态学报, 2018, 42(2): 252-260. |
[14] | 陈宝明, 韦慧杰, 陈伟彬, 朱政财, 原亚茹, 张永隆, 蓝志刚. 外来入侵植物对土壤氮转化主要过程及相关微生物的影响[J]. 植物生态学报, 2018, 42(11): 1071-1081. |
[15] | 陈权, 马克明. 互花米草入侵对红树林湿地沉积物重金属累积的效应与潜在机制[J]. 植物生态学报, 2017, 41(4): 409-417. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19