植物生态学报 ›› 2011, Vol. 35 ›› Issue (1): 110-118.DOI: 10.3724/SP.J.1258.2011.00110
• 综述 • 上一篇
滕中秋1, 付卉青1, 贾少华1, 孟薇薇1,2, 戴荣继1,2,*(), 邓玉林1,2,*(
)
收稿日期:
2010-01-21
接受日期:
2010-08-23
出版日期:
2011-01-21
发布日期:
2011-01-24
通讯作者:
戴荣继,邓玉林
作者简介:
deng@bit.edu.cn
TENG Zhong-Qiu1, FU Hui-Qing1, JIA Shao-Hua1, MENG Wei-Wei1,2, DAI Rong-Ji1,2,*(), DENG Yu-Lin1,2,*(
)
Received:
2010-01-21
Accepted:
2010-08-23
Online:
2011-01-21
Published:
2011-01-24
Contact:
DAI Rong-Ji,DENG Yu-Lin
摘要:
代谢组学技术是研究植物代谢的理想平台, 通过现代检测分析技术对胁迫环境下植物中代谢产物进行定性和定量分析, 可以监测其随时间变化的规律。而各种组学平台包括基因组学、转录组学及代谢组学的整合, 更是一个强有力的工具箱, 将所获得的不同组学的信息联系起来, 有利于从整体研究生物系统对基因或环境变化的响应, 如可判断代谢物的变化是从哪一个层面开始发生的, 帮助人们揭开复杂的植物胁迫应答机制。该文对近期代谢组学技术及其与蛋白质组学、基因组学技术相结合探索植物应答非生物胁迫的研究进行了综述。代谢组学的应用, 拓展了对植物耐受非生物胁迫分子机制的认识, 开展更多这方面的研究, 再通过植物代谢组学、转录组学、蛋白质组学和基因组学整合, 有助于从整体水平上把握植物胁迫应答机制。
滕中秋, 付卉青, 贾少华, 孟薇薇, 戴荣继, 邓玉林. 植物应答非生物胁迫的代谢组学研究进展. 植物生态学报, 2011, 35(1): 110-118. DOI: 10.3724/SP.J.1258.2011.00110
TENG Zhong-Qiu, FU Hui-Qing, JIA Shao-Hua, MENG Wei-Wei, DAI Rong-Ji, DENG Yu-Lin. Review of current progress in the metabolomics for plant response to abiotic stress. Chinese Journal of Plant Ecology, 2011, 35(1): 110-118. DOI: 10.3724/SP.J.1258.2011.00110
[1] |
Bailey NJ, Oven M, Holmes E, Nicholson JK, Zenk MH (2003). Metabolomic analysis of the consequences of cadmium exposure in Silene cucubalus cell cultures via 1H NMR spectroscopy and chemometrics. Phytochemistry, 62, 851-858.
DOI URL PMID |
[2] |
Boyer JS (1982). Plant productivity and environment. Science, 218, 443-448.
URL PMID |
[3] |
Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HWL, Clarke S, Schofield PM, McKilligin E, Mosedale DE, Grainger DJ (2002). Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using1H-NMR-based metabonomics . Nature Medicine, 8, 1439-1444.
DOI URL PMID |
[4] |
Carmo-Silva AE, Keys AJ, Beale MH, Ward JL, Baker JM, Hawkins ND, Arrabaca MC, Parry MAJ (2009). Drought stress increases the production of 5-hydroxynorvaline in two C4 grasses. Phytochemistry, 70, 664-671.
URL PMID |
[5] | Cook D, Fowler S, Fiehn O, Thomashow MF (2004). A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis Proceedings of the National Academy of Sciences of the United States of America, 101, 15243-15248. |
[6] |
Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007). Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics, 7, 111-134.
DOI URL PMID |
[7] |
Dai H, Xiao CN, Liu HB, Tang HR (2010). Combined NMR and LC-MS analysis reveals the metabonomic changes in Salvia miltiorrhiza Bunge induced by water depletion. Journal of Proteome Research, 9, 1460-1475.
URL PMID |
[8] | Dan M (淡墨), Gao XF (高先富), Xie GX (谢国祥), Liu Z (刘忠), Zhao AH (赵爱华), Jia W (贾伟) (2007). Application of metabolomics in research of plant metabolites. China Journal of Chinese Meteria Medica (中国中药杂志), 32, 2337-2341. (in Chinese with English abstract) |
[9] |
Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Merillon JM, Cushman JC, Cramer GR (2009). Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics, 10, 212-244.
URL PMID |
[10] |
Fiehn O (2003). Metabolic networks of Cucurbita maxima phloem . Phytochemistry, 62, 875-886.
URL PMID |
[11] |
Foito A, Byrne SL, Shepherd T, Stewart D, Barth S (2009). Transcriptional and metabolic profiles of Lolium perenne L. genotypes in response to a PEG-induced water stress. Plant Biotechnology Journal, 7, 719-732.
URL PMID |
[12] | Fumagalli E, Baldoni E, Abbruscato P, Piffanelli P, Genga A, Lamanna R, Consonni R (2009). NMR techniques coupled with multivariate statistical analysis: tools to analyse Oryza sativa metabolic content under stress conditions. Journal of Agronomy and Crop Science, 195, 77-88. |
[13] |
Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005). Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant Journal, 44, 826-839.
URL PMID |
[14] |
Grimplet J, Wheatley MD, Jouira HB, Deluc LG, Cramer GR, Cushman JC (2009). Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics, 9, 2503-2528.
DOI URL PMID |
[15] | Guo B (郭宾), Dai RK (戴仁科) (2007). The process of metabolomics and its research strategy and analysis method. Chinese Journal of Health Laboratory Technology (中国卫生检验杂志), 17, 554-563. (in Chinese) |
[16] |
Hernandez G, Ramirez M, Valdes-Lopez O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP (2007). Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiology, 144, 752-767.
URL PMID |
[17] |
Holmes E, Antti H (2002). Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterising and interpreting complex biological NMR spectra. Analyst, 127, 1549-1557
URL PMID |
[18] | Hou FY (侯夫云), Zhang LM (张立明), Wang QM (王庆美), Li AX (李爱贤), Zhang HY (张海燕), Dong SX (董顺旭) (2006). The molecular mechanism of plant tolerance under abiotic stress. Molecular Plant Breeding (分子植物育种), 26(6), 158-161. (in Chinese with English abstract). |
[19] |
Jahangir M, Abdel-Farid IB, Choi YH, Verpoorte R (2008). Metal ion-inducing metabolite accumulation in Brassica rapa. Journal of Plant Physiology, 165, 1429-1437.
URL PMID |
[20] |
Johnson HE, Broadhurst D, Goodacre R, Smith AR (2003). Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry, 62, 919-928.
URL PMID |
[21] | Jozef K, Bořivoj K, Josef H, Martin B (2010). Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae). Plant Science, 178, 307-311. |
[22] |
Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004). Exploring the temperature stress metabolome of Arabidopsis. Plant Physiology, 136, 4159-4168.
DOI URL PMID |
[23] |
Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007). Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant Journal, 50, 967-981.
DOI URL PMID |
[24] |
Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann L, Hausman JF, Renaut J (2009). Combining proteomics and metabolite analyses to unravel cadmium stress- response in poplar leaves. Journal of Proteome Research, 8, 400-417.
DOI URL PMID |
[25] |
Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007). Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. Journal of Experimental Botany, 58, 415-424.
DOI URL PMID |
[26] |
Maier W, Schmidt J, Wray V, Walter MH, Strack D (1999). The arbuscular mycorrhizal fungus, Glomus intraradices, induces the accumulation of cyclohexenone derivatives in tobacco roots. Planta, 207, 620-623.
DOI URL |
[27] |
Mane SP, Robinet CV, Ulanov A, Schafleitner R, Tincopa L, Gaudin A, Nomberto G, Alvarado C, Solis C, Bolivar LA, Blas R, Ortega O, Solis J, Panta A, Rivera C, Samolski I, Carbajulca DH, Bonierbale M, Pati A, Heath LS, Bohnert HJ, Grene R (2009). Molecular and physiological adaptation to prolonged drought stress in the leaves of two Andean potato genotypes. Functional Plant Biology, 35, 669-688.
URL PMID |
[28] |
Mittler R (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405-410.
DOI URL PMID |
[29] |
Mittler R, Vanderauwera S, Gollery M, van Breusegem F (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490-498.
DOI URL PMID |
[30] | Morsy MR, Jouve L, Hausman JF, Hoffmann L, Stewart JM (2007). Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice ( Oryza sativa L.) genotypes contrasting in chilling tolerance. Plant Physiology, 164, 157-167. |
[31] |
Nicholson JK, Connelly J, Lindon JC, Holmes E (2002). Metabonomics: a platform for studying drug toxicity and gene function. Nature Reviews Drug Discovery, 1, 153-161.
DOI URL PMID |
[32] |
Nicholson JK, Lindon JC, Holmes E (1999). Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181-1189.
DOI URL PMID |
[33] |
Nikiforova VJ, Daub CO, Hesse H, Willmitzer L, Hoefgen R (2005a). Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response. Journal of Experimental Botany, 56, 1887-1896.
DOI URL PMID |
[34] |
Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R (2005b). Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiology, 138, 304-318.
DOI URL PMID |
[35] |
Shinozaki K, Sakakibara H (2009). Omics and bioinformatics: an essential toolbox for systems analyses of plant functions beyond 2010. Plant and Cell Physiology, 50, 1177-1180.
DOI URL PMID |
[36] |
Shulaev V, Cortes D, Miller G, Mittler R (2008). Metabolomics for plant stress response. Physiologia Plantarum, 132, 199-208.
DOI URL PMID |
[37] |
Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S (2010). Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. Journal of Proteome Research, 9, 2882-2897.
DOI URL PMID |
[38] |
Tiessen A, Hendriks JHM, Stitt M, Branscheid A, Gibon Y, Farré EM, Geigenberger P (2002). Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell, 14, 2191-2213.
DOI URL PMID |
[39] |
Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2009). Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant Journal, 57, 1065-1078.
DOI URL PMID |
[40] |
Valliyodan B, Nguyen HT (2006). Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 9, 189-195.
DOI URL PMID |
[41] |
Widodo JHP, Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U (2009). Metabolic responses to salt stress of barley ( Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of Experimental Botany, 60, 4089-4103.
URL PMID |
[42] | Xie ZM (谢宗铭), Dong YM (董永梅), Chen SY (陈受宜) (2008). Molecular and physiological mechanisms of higher plant abiotic stress adaptation. Journal of Anhui Agricultural Sciences (安徽农业科学), 36, 7996-7999. (in Chinese with English abstract). |
[43] | Xu GW (许国旺) (2008). Metabolomics―Methods and Applications (代谢组学方法与应用) 1st edn. Science Press, Beijing. 1-4. (in Chinese) |
[44] | Xu GW (许国旺), Lu X (路鑫), Yang SL (杨胜利) (2007). Recent advances in metabonomics. Acta Academiae Medicinae Sinicae (中国医学科学院学报), 29, 701-711. (in Chinese with English abstract) |
[45] | Yin H (尹恒), Li SG (李曙光), Bai XF (白雪芳), Du YG (杜昱光) (2005). Research advances in plant metabolomics. Chinese Bulletin of Botany (植物学通报), 22, 532-540. (in Chinese with English abstract) |
[46] | Zhang LJ (张立军), Liang ZS (梁宗锁) (2007). Plant Physiology (植物生理学) 1st edn. Science Press, Beijing. 378-405. (in Chinese) |
[1] | 席念勋 张原野 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 夏璟钰 张扬建 郑周涛 赵广 赵然 朱艺旋 高洁 沈若楠 李文宇 郑家禾 张雨雪 朱军涛 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[3] | 罗来聪 赖晓琴 白健 李爱新 方海富 唐明 胡冬南 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物 乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[4] | 雷自然 贾国栋 余新晓 刘子赫. 植物水分来源稳定氢氧同位素偏移研究进展[J]. 植物生态学报, 2023, 47(1): 0-0. |
[5] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[6] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[7] | 王姝文, 李文怀, 李艳龙, 严慧, 李永宏. 放牧家畜类型对内蒙古典型草原植物多样性和群落结构的影响[J]. 植物生态学报, 2022, 46(8): 941-950. |
[8] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[9] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[10] | 吴铠, 李凯, 贾伟瀚, 廖梦娜, 倪健. 湖泊沉积植物古DNA的现代过程[J]. 植物生态学报, 2022, 46(7): 735-752. |
[11] | 秦江环, 张春雨, 赵秀海. 基于温带针阔混交林植物-土壤反馈的Janzen- Connell假说检验[J]. 植物生态学报, 2022, 46(6): 624-631. |
[12] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[13] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[14] | 张玉林, 尹本丰, 陶冶, 李永刚, 周晓兵, 张元明. 早春首次降雨时间及降雨量对古尔班通古特沙漠两种短命植物形态特征与叶绿素荧光的影响[J]. 植物生态学报, 2022, 46(4): 428-439. |
[15] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19